
3.6 Adaptive Sampling

In this section, sequential design of experiments, a.k.a. adaptive sampling, is
demonstrated on the exponential data of Section 3.3. Gathering, again, the
data:

> exp2d.data <- exp2d.rand(lh = 0, dopt = 10)

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> Xcand <- lhs(1000, rbind(c(-2, 6), c(-2, 6)))

In contrast with the data from Section 3.3, which was based on a grid, the
above code generates a randomly subsampled D–optimal design X from LH
candidates, and random responses Z. As before, design configurations are more
densely packed in the interesting region. Candidates X̃ are from a large LH–
sample.

Given some data {X,Z}, the first step in sequential design using tgp is to
fit a treed GP LLM model to the data, without prediction, in order to infer the
MAP tree T̂ .

> exp1 <- btgpllm(X = X, Z = Z, pred.n = FALSE, corr = "exp",

+ verb = 0)

The trees are shown in Figure 15. Then, use the tgp.design function to create
D–optimal candidate designs in each region of T̂ . For the purposes of illustrating
the improv statistic, I have manually added the known (from calculus) global
minimum to XX.

> XX <- tgp.design(200, Xcand, exp1)

sequential treed D-Optimal design in 3 partitions

dopt.gp (1) choosing 55 new inputs from 272 candidates

dopt.gp (2) choosing 53 new inputs from 263 candidates

dopt.gp (3) choosing 93 new inputs from 465 candidates

> XX <- rbind(XX, c(-sqrt(1/2), 0))

Figure 16 shows the sampled XX locations (circles) amongst the input locations
X (dots) and MAP partition (T̂ ). Notice how the candidates XX are spaced
out relative to themselves, and relative to the inputs X, unless they are near
partition boundaries. The placing of configurations near region boundaries is
a symptom particular to D–optimal designs. This is desirable for experiments
with tgp models, as model uncertainty is usually high there [3].

Now, the idea is to fit the treed GP LLM model, again, in order to assess
uncertainty in the predictive surface at those new candidate design points. The
following code gathers all three adaptive sampling statistics: ALM, ALC, & EI.

> exp.as <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",

+ improv = TRUE, Ds2x = TRUE, verb = 0)
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> tgp.trees(exp1)

NOTICE: skipped plotting tree of height 1, with lpost = 120.941
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Figure 15: MAP trees of each height encountered in the Markov chain for the exponential

data, showing σ̂2 and the number of observations n at the leaves. T̂ is the one with the
maximum log(p) above.

Figure 17 shows the posterior predictive estimates of the adaptive sampling
statistics. The error surface, on the left, summarizes posterior predictive uncer-
tainty by a norm of quantiles.

In accordance with the ALM algorithm, candidate locations XX with largest
predictive error would be sampled (added into the design) next. These are
most likely to be in the interesting region, i.e., the first quadrant. However,
these results depend heavily on the clumping of the original design in the un-
interesting areas, and on the estimate of T̂ . Adaptive sampling via the ALC,
or EI (or both) algorithms proceeds similarly, following the surfaces shown in
center and right panels of Figure 17.

A Implementation notes

The treed GP model is coded in a mixture of C and C++: C++ for the tree data
structure (T ) and C for the GP at each leaf of T . The code has been tested on
Unix (Solaris, Linux, FreeBSD, OSX) and Windows (2000, XP) platforms.

It is useful to first translate and re-scale the input data (X) so that it lies in
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> plot(exp1$X, pch = 19, cex = 0.5)

> points(XX)

> mapT(exp1, add = TRUE)
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Figure 16: Treed D–optimal candidate locations XX (circles), input locations X (dots), and

MAP tree T̂

> par(mfrow = c(1, 3), bty = "n")

> plot(exp.as, main = "tgpllm,", layout = "as", as = "alm")

> plot(exp.as, main = "tgpllm,", layout = "as", as = "alc")

> plot(exp.as, main = "tgpllm,", layout = "as", as = "improv")
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Figure 17: Left: Image plots of adaptive sampling statistics and MAP trees T̂ ; Left; ALM
adaptive sampling image for (only) candidate locations XX (circles); center: ALC; and right:

EI.
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an <mX dimensional unit cube. This makes it easier to construct prior distri-
butions for the width parameters to the correlation function K(·, ·). Proposals
for all parameters which require MH sampling are taken from a uniform“sliding
window” centered around the location of the last accepted setting. For exam-
ple, a proposed a new nugget parameter gν to the correlation function K(·, ·) in
region rν would go as

g∗
ν
∼ Unif

(

3

4
gν ,

4

3
gν

)

.

Calculating the corresponding forward and backwards proposal probabilities for
the MH acceptance ratio is straightforward.

B Interfaces and features

The following subsections describe some of the ancillary features of the tgp

package such as the gathering and summarizing of MCMC parameter traces,
the progress meter, and an example of how to use the predict.tgp function in
a collaborative setting.

B.1 Parameter traces

Traces of (almost) all parameters to the tgp model can be collected by supplying
trace=TRUE to the b* functions. In the current version traces for the linear prior
correlation matrix (W) are not provided. I shall illustrate the gathering and
analyzing of traces through example. But first, a few notes and cautions.

Models which involve treed partitioning may have more than one base model
(GP or LM). The process governing a particular input x depends on the coordi-
nates of x. As such, tgp records region–specific traces of parameters to GP (and
linear) models at the locations enumerated in the XX argument. Even traces of
single–parameter Markov chains can require hefty amounts of storage, so record-
ing traces at each of the XX locations can be an enormous memory hog. A related
warning will be given if the product of |XX|, (BTE[2]-BTE[1])/BTE[3] and R

is beyond a threshold. The easiest way to keep the storage requirements for
traces down is to control the size of XX and the thinning level BTE[3]. Finally,
traces for most of the parameters are stored in output files. The contents of the
trace files are read into R and stored as data.frame objects, and the files are
removed. The existence of partially written trace files in the current working
directory (CWD)—while the C code is executing—means that not more than
one tgp run (with trace = TRUE) should be active in the CWD at one time.

Consider again the exponential data. For illustrative purposes I chose XX

locations (where traces are gathered) to be (1) in the interior of the interesting
region, (2) on/near the plausible intersection of partition boundaries, and (3) in
the interior of the flat region. The hierarchical prior bprior = "b0" is used to
leverage a (prior) belief the most of the input domain is uninteresting.

> exp2d.data <- exp2d.rand(n2 = 150, lh = 0, dopt = 10)

> X <- exp2d.data$X
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