use for comparison is root mean-square error (RMSE)
MSE = 30, (i — 2)*/n RMSE = vMSE

where z; is the model-predicted response for input x;. The x’s are randomly
distributed on the unit interval.

Input data, responses, and predictive locations of size N = 200 and N' =
1000, respectively, can be obtained by a function included in the tgp package.

> f <- friedman.1.data(200)

> ff <- friedman.1.data(1000)
> X <= f[, 1:10]

> 7 <- 8§y

> XX <- ff[, 1:10]

This example compares Bayesian linear CART with Bayesian GP LLM (not
treed), following the RMSE experiments of Chipman et al. It helps to scale the
responses so that they have a mean of zero and a range of one. First, fit the
Bayesian linear CART model, and obtain the RMSE.

> fr.btlm <- btlm(X = X, Z = Z, XX = XX, tree = c(0.95,

+ 2, 10), mOr1l = TRUE)

> fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue) "2))
> fr.btlm.mse

Next, fit the GP LLM, and obtain its RMSE.

> fr.bgpllm <- bgplim(X = X, Z = Z, XX = XX, mOr1 = TRUE)
> fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue) "2))
> fr.bgpllm.mse

So, the GP LLM is 3.868 times better than Bayesian linear CART on this data,
in terms of RMSE (in terms of MSE the GP LLM is 1.967 times better). Watch-
ing the evolution of the Markov chain for the GP LLM (via the progress state-
ments written to stdout, not shown because the not would fit on the page), it
is easy to see how the GP LLM quickly learns that b = (1,1,1,0,0,0,0,0,0,0),
and that 84 =~ 4 and 5 =~ 10—basically that only the first three inputs con-
tribute nonlinearly, the fourth and fifth contribute linearly, and the remaining
five not at all [10].

3.6 Adaptive Sampling

In this section, sequential design of experiments, a.k.a. adaptive sampling, is
demonstrated on the exponential data of Section 3.3. Gathering, again, the
data:

> exp2d.data <- exp2d.rand()
> X <- exp2d.data$X

> Z <- exp2d.data$Z

> Xcand <- exp2d.data$XX

29

Start by fitting a treed GP LLM model to the data, without prediction, in order
to infer the MAP tree T.

> expl <- btgpllm(X = X, Z = Z, pred.n = FALSE, corr = "exp")

> tgp.trees(expl)

NOTICE: skipped plotting tree of height 1, with lpost = 143.976

height=2, log(p)=185.103 height=3, log(p)=206.764
x1<>2 x1<>2
x2<>1.6 ®
0
19 ok
@ 2 @ 2
0138 0 0138 0
1 obs 19 ob 40bs 17 obs

Figure 15: MAP trees of each height encountered in the Markov chain for the exponential
data, showing 42 and the number of observations n at the leaves. 7 is the one with the
maximum log(p) above.

The trees are shown in Figure 15. Then, use the tgp.design function to create
D-optimal candidate designs in each region of 7.

> XX <- tgp.design(10, Xcand, expl)

sequential treed D-Optimal design in 3 partitioms

dopt.gp (1) choosing 2 new inputs from 66 candidates
dopt.gp (2) choosing 3 new inputs from 104 candidates
dopt.gp (3) choosing 6 new inputs from 191 candidates

Figure 16 shows the sampled XX locations (circles) amongst the input locations
X (dots) and MAP partition (7). Notice how the candidates XX are spaced
out relative to themselves, and relative to the inputs X, unless they are near
partition boundaries. The placing of configurations near region boundaries is
a symptom particular to D-optimal designs. This is desirable for experiments
with tgp models, as model uncertainty is usually high there [2].

30

> plot(exp1$X, pch = 19, cex = 0.5)
> points(XX)
> tgp.plot.parts.2d(expl$parts)

O - fmm e e e e e e - - S S .
R ! o o
! ! .
\ [e] | [e] . .
. o 1 .
< ! o °
|
' oo .
! . ! .
| . . * (e} °
§ Nt . . e o & M
. . o o o . .
LY e« o o o .
o o o o
o - . o o o . .
. . . .
(e} e o . * o o
. . .
o o . .
fl\‘_ EC REREEEEEE Ot °
T T T T T
-2 0 2 4 6
x1

Figure 16: Treed D-optimal candidate locations XX (circles), input locations X (dots), and
MAP tree T

Figure 16 uses the tgp.plot.parts.2d function. Unfortunately, this func-
tion is not well documented in the current version of the tgp package. This
should change in future versions.

Now, the idea is to fit the treed GP LLM model, again, in order to as-
sess uncertainty in the predictive surface at those new candidate design points.
For illustrative purpose, the following code gathers all three adaptive sampling
statistics: ALM, ALC, & EGO.

> expl.btgpllm <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",
+ ego = TRUE, ds2x = TRUE)

Figure 17 shows the posterior predictive surface. The error surface, on the
right, summarizes posterior predictive uncertainty by a norm of quantiles. Since
the combined data and predictive locations are not densely packed in the input
space, the loess smoother may have trouble with the interpolation. One option
is increase the tgp-default kernel span supplied to loess, e.g., span = 0.5. Or,
the akima method can be used instead.

In accordance with the ALM algorithm, candidate locations XX with largest
predictive error would be sampled (added into the design) next. These are most
likely to be in the interesting region, i.e., the first quadrant. However, due to
the random nature of this Sweave document, this is not always the case. Results

31

> par (mfrow = c(1, 2), bty = "n")

> plot(expl.btgpllm, main = "treed GP LLM,", method = "akima",
+ layout = '"surf")

> plot(expl.btgpllm, main = "treed GP LLM,", method = "akima",
+ layout = "as", as = "alm")

treed GP LLM, z mean treed GP LLM, z ALM stats

) .
T T 1
-2 [2 4

1

Figure 17: Left: Posterior mean surface; right ALM adaptive sampling image for (only)
candidate locations XX (circles), MAP tree 7 and input locations X (dots). (circles), input
locations X (dots), and MAP tree T

depend heavily on the clumping of the original design in the un-interesting areas,
and on the estimate of 7.

Adaptive sampling via the ALC, or EGO (or both) algorithms proceeds
similarly, following the surfaces shown in Figure 18.

A Linking to ATLAS

ATLAS [23] is supported as an alternative to standard BLAS and LAPACK
for fast, automatically tuned, linear algebra routines. Compared standard
BLAS/Lapack, those automatically tuned by ATLAS are signigantly faster. If
you know that R has already been linked to tuned linear algebra libraries (e.g.,
on 0SX), then compiling with ATLAS as described below, is unncessary—just
install as usual. As an alternative to linking tgp to ATLAS directly, one could
re-compile all of R linking it to ATLAS following the documentation on the R
website. While this is arguably best solution since all of R benefits, the task
can prove challenging to accomplish and may require administrator (root) priv-
iledges. Linking tgp with ATLAS directly is described here.

Three easy steps (assuming, of course, you have already compiled and in-
stalled ATLAS — http://math-atlas.sourceforge.net) need to be performed
before you install the tgp package from source.

1. Edit src/Makevars. Comment out the existing PKG_LIBS line, and replace

32

> par (mfrow = c(1, 2), bty = "n")
> plot(expl.btgpllm, main = "treed GP LLM,", method = "akima",

+ layout = "as", as = "alc")
> plot(expl.btgpllm, main = "treed GP LLM,", method = "akima",
+ layout = "as", as = '"ego")

treed GP LLM, z ALC stats treed GP LLM, z EGO stats

-2 0 2 a -2 [2 4

x1 x1
Figure 18: Adaptive sampling images for (only) candidate locations XX (circles), MAP tree

T and input locations X (dots). (circles), input locations X (dots), and MAP tree 7. Left:
ALC; right: EGO.

it with:
PKG_LIBS = -L/path/to/ATLAS/1ib -1llapack -lcblas -latlas

You may need replace "-1lapack -lcblas -latlas" with whatever AT-
LAS recommends for your OS. (See ATLAS README.) For example, if
your ATLAS compilation included F77 support, you might need to add
"-1F77blas",if you compiled with pthreads, you would might use "-11lapack
-lptcblas -1lptf77blas -latlas".

2. Continue editing src/Makevars. Add:
PKG_CFLAGS = -I/path/to/ATLAS/include
3. Edit src/linalg.h and commend out lines 40 & 41:

/*#define FORTPACK
#define FORTBLAS*/

Now simply install the tgp package as usual. Reverse the above instructions to
disable ATLAS. Don’t forget to re-install the package when you’re done.

33

