optimal design may not choose candidates in the “interesting” part of the input
space, because sampling is high there already. Classic optimal design criteria,
in general, are ill-suited partition models wherein “closeness” may not measured
homogeneously across the input space. Another disadvantage is computational,
namely decomposing and finding the determinant of a large covariance matrix.

One possible solution to both computational and nonstationary modeling
issues is to use treed sequential D-optimal design [10]. Separate sequential
D-optimal designs can be computed in each of the partitions depicted by the
maximum a posteriori (MAP) tree 7. The number of candidates selected from
each region can be proportional to the volume of—or proportional to the num-
ber of grid locations in—the region. MAP parameters 9V|’f', or “neutral” or
“exploration encouraging” ones, can be used to create the candidate design.
Separating design from inference by using custom parameterizations in design
steps, rather than inferred ones, is a common practice [20]. Small range param-
eters, for learning about the wiggliness of the response, and a modest nugget
parameter, for numerical stability, tend to work well together.

Finding a local maxima is generally sufficient to get well-spaced candidates.
The dopt.gp function uses a stochastic ascent algorithm which can find local
maxima without calculating too many determinants.

3 Examples using tgp

The following subsections take the reader through a series of examples based,
mostly, on synthetic data. At least two different b* models are fit for each
set of data, offering comparisons and contrasts. Duplicating these examples in
your own R session is highly recommended. The Stangle function can help
extract executable R code from this document. For example, the code for the
exponential data of Section 3.3 can be extracted with one command.

> Stangle(vignette("exp", package="tgp")$file))

This will write a file called “exp.R”. Additionally, each of the subsections that
follow is available as an R demo. Try demo (package="tgp") for a listing of
available demos. To envoke the demo for the exponential data of Section 3.3 try
demo (exp, package="tgp"). This is equivalent to source("exp.R") because
the demos were created using Stangle on the source files of this document.

Other successful uses of the methods in this pacakge include applications to
the Boston housing data [13], and designing an experiment for a reusable NASA
launch vehicle [11, 10] called the Langely glide-back booster (LGBB).

3.1 1-d Linear data

Consider data sampled from a linear model.

zi=1+2z;+¢ where € ~ N(0,0.25%) (13)
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The following R code takes a sample {X,Z} of size N = 50 from (13). It
also chooses N' = 99 evenly spaced predictive locations X = XX.

> X <- seq(0, 1, length = 50)
> XX <- seq(0, 1, length = 99)
>Z <-1+ 2 % X + rnorm(length(X), sd = 0.25)

Using tgp on this data with a Bayesian hierarchical linear model goes as
follows:

> lin.blm <- blm(X = X, XX = XX, Z = Z)

tree[alpha,beta,nmin]=[0,0,10]
n=50, d=1, nn=99
BTE=(1000,4000,3), R=1, linburn=0
preds: data

linear prior: flat
s2[a0,g0]=[5,10]

s2 lambda[a0,g0]=[0.2,10]

corr prior: separable power
nugla,bl[0,1]=[1,1],[1,1]

nug prior fixed
gamlin=[-1,0.2,0.7]
d[a,b][0]=[1,20],[10,20]

d prior fixed

burn in:
r=1000 corr=[0] : n = 50

Obtaining samples (nn=99 predictive locatiomns):
r=1000 corr=[0] : mh=1 n = 50
r=2000 corr=[0] : mh=1 n = 50
r=3000 corr=[0] : mh=1 n = 50

finished repetition 1 of 1
removed 0 leaves from the tree

The first group of text printed to stdout is a summary of inputs to the
C code, and the prior parameterization. Then, MCMC progress indicators are
printed every 1,000 rounds. The linear model is indicated by cor=[0]. In
terminal versions, e.g. Unix, the progress indicators can give a sense of when
the code will finish. GUI versions of R—Windows or Mac0S X—usually buffer
stdout, rendering this feature essentially useless as a real-time indicator of
progress.

The generic plot method can be used to visualize the fitted posterior pre-
dictive surface (with option layout = ’surf’) in terms of means and credible
intervals. Figure 3 shows how to do it, and what you get. The default option
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> plot(lin.blm, main

"Linear Model,", layout

"gurf n)

> abline(1, 2, 1ty = 3, col = "blue'")

Linear Model, z

mean and error

15 20 25 3.0

1.0

x1

Figure 3: Posterior predictive distribution using blm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

layout = ’both’ shows both a predictive surface and error (or uncertainty)

plot, side by side. The error plot can be obtained alone via layout

Examples of these layouts appear later.

’as’.

If, say, you were unsure about the dubious “linearness” of this data, you
might try a GP LLM (using btgpllm) and let a more flexible model speak as to

the linearity of the process.

> lin.gpllm <- bgpllm(X = X, XX

tree[alpha,beta,nmin]=[0,0,10]
n=50, d=1, nn=99
BTE=(1000,4000,2), R=1, linburn=0
preds: data

linear prior: flat
s2[a0,g0]=[5,10]

s2 lambdal[a0,g0]1=[0.2,10]

corr prior: separable power
nugla,bl[0,1]=[1,1],[1,1]

nug prior fixed
gamlin=[10,0.2,0.7]

d[a,b] [0]=[1,20],[10,20]

d prior fixed

burn in:

r=1000 corr=[0] : n = 50
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Obtaining samples (nn=99 predictive locatiomns):
r=1000 corr=[0] : mh=1 n = 50
r=2000 corr=[0] : mh=1 n = 50
r=3000 corr=[0] : mh=1 n = 50

finished repetition 1 of 1
removed 0 leaves from the tree

> plot(lin.gpllm, main = "GP LLM,", layout = "surf")
> abline(1, 2, 1ty = 4, col = "blue")

GP LLM, z mean and error

3.0
|

2.0

15

1.0

x1

Figure 4: Posterior predictive distribution using bgpllm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

Whenever the progress indicators show corr[0] the process is under the LLM
in that round, and the GP otherwise. A plot of the resulting surface is shown in
Figure 4 for comparison. Since the data is linear, the resulting predictive surfaces
should look strikingly similar to one another. On occasion, the GP LLM may
find some bendy-ness in the surface. This happens rarely with samples as large
as N = 50, but is quite a bit more common for N < 20.

3.2 1-d Synthetic Sine Data
Consider 1-dimensional simulated data which is partly a mixture of sines and
cosines, and partly linear.

(14)

z(x):{ sin () + Leos (412) z < 10

z/10 -1 otherwise

The R code below obtains N = 100 evenly spaced samples from this data
in the domain [0, 20], with noise added to keep things interesting. Some evenly
spaced predictive locations XX are also created.
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