
Package ‘textrecipes’

September 6, 2019

Title Extra 'Recipes' for Text Processing

Version 0.0.2

Description Converting text to numerical features requires
specifically created procedures, which are implemented as steps
according to the 'recipes' package. These steps allows for
tokenization, filtering, counting (tf and tfidf) and feature hashing.

License MIT + file LICENSE

URL https://github.com/tidymodels/textrecipes

BugReports https://github.com/tidymodels/textrecipes/issues

Depends R (¿= 2.10),
recipes (¿= 0.1.4)

Imports generics,
rlang,
tokenizers,
dplyr,
tibble,
purrr,
SnowballC,
stopwords,
magrittr,
stringr,
text2vec,
textfeatures (¿= 0.3.3),
lifecycle

Suggests covr,
testthat (¿= 2.1.0),
knitr,
rmarkdown

VignetteBuilder knitr

RdMacros lifecycle

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

SystemRequirements GNU make, C++11

1

https://github.com/tidymodels/textrecipes
https://github.com/tidymodels/textrecipes/issues

2 okc text

R topics documented:

count functions . 2
okc text . 2
step sequence onehot . 3
step stem . 4
step stopwords . 6
step textfeature . 8
step texthash . 10
step tf . 11
step tfidf . 13
step tokenfilter . 15
step tokenize . 17
step tokenmerge . 19
step untokenize . 20
step word2vec . 22

Index 24

count functions Counting functions from textfeatures

Description

Counting functions from textfeatures

okc text OkCupid Text Data

Description

These are a sample of columns and users of OkCupid dating website. The data are from
Kim and Escobedo-Land (2015). Permission to use this data set was explicitly granted by
OkCupid. The data set contains 10 text fields filled out by users.

Value

okc text a tibble

Source

Kim, A. Y., and A. Escobedo-Land. 2015. ”OkCupid Data for Introductory Statistics and
Data Science Courses.” *Journal of Statistics Education: An International Journal on the
Teaching and Learning of Statistics*.

Examples

data(okc_text)
str(okc_text)

step sequence onehot 3

step sequence onehot Generate the basic set of text features

Description

‘step sequence onehot‘ creates a *specification* of a recipe step that will take a string and
do one hot encoding for each character by position.

Usage

step_sequence_onehot(recipe, ..., role = "predictor", trained = FALSE,
columns = NULL, length = 100, key = letters, prefix = "seq1hot",
skip = FALSE, id = rand_id("sequence_onehot"))

S3 method for class 'step_sequence_onehot'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step sequence onehot‘,
this indicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role For model terms created by this step, what analysis role should they be
assigned?. By default, the function assumes that the new columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

length A numeric, number of characters to keep before discarding. Defaults to
100.

key A character vector, characters to be mapped to integers. characters not
in the key will be encoded as 0. Defaults to ‘letters‘.

prefix A prefix for generated column names, default to ”seq1hot”.

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it

x A ‘step sequence onehot‘ object.

Details

The string will be capped by the length argument, strings shorter then length will be padded
with empty characters. The encoding will assign a integer to each character in the key, and
will encode accordingly. Characters not in the key will be encoded as 0.

4 step stem

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

Source

https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.
pdf

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_sequence_onehot(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

juice(okc_obj)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)

step stem Stemming of list-column variables

Description

‘step stem‘ creates a *specification* of a recipe step that will convert a list of tokens into a
list of stemmed tokens.

Usage

step_stem(recipe, ..., role = NA, trained = FALSE, columns = NULL,
options = list(), custom_stemmer = NULL, skip = FALSE,
id = rand_id("stem"))

S3 method for class 'step_stem'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step stem‘, this
indicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role Not used by this step since no new variables are created.

https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf

step stem 5

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

options A list of options passed to the stemmer function.

custom stemmer A custom stemming function. If none is provided it will default to ”Snow-
ballC”.

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it.

x A ‘step stem‘ object.

Details

Words tend to have different forms depending on context, such as organize, organizes, and
organizing. In many situations it is beneficial to have these words condensed into one to
allow for a smaller pool of words. Stemming is the act of choping off the end of words using
a set of heuristics.

Note that the steming will only be done at the end of the string and will therefore not work
reliably on ngrams or sentences.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

See Also

[step stopwords()] [step tokenfilter()] [step tokenize()]

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_stem(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

6 step stopwords

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

Using custom stemmer. Here a custom stemmer that removes the last letter
if it is a s.
remove_s <- function(x) gsub("s$", "", x)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_stem(essay0, custom_stemmer = remove_s)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

step stopwords Filtering of stopwords from a list-column variable

Description

‘step stopwords‘ creates a *specification* of a recipe step that will filter a list of tokens for
stopwords(keep or remove).

Usage

step_stopwords(recipe, ..., role = NA, trained = FALSE,
columns = NULL, language = "en", keep = FALSE,
stopword_source = "snowball", custom_stopword_source = NULL,
skip = FALSE, id = rand_id("stopwords"))

S3 method for class 'step_stopwords'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step stopwords‘,
this indicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

language A character to indicate the langauge of stopwords by ISO 639-1 coding
scheme.

step stopwords 7

keep A logical. Specifies whether to keep the stopwords or discard them.

stopword source

A character to indicate the stopwords source as listed in ‘stopwords::stopwords getsources‘.

custom stopword source

A character vector to indicate a custom list of words that cater to the
users specific problem.

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it.

x A ‘step stopwords‘ object.

Details

Stop words are words which sometimes are remove before natural language processing
tasks. While stop words usually refers to the most common words in the laguange there is
no universal stop word list.

The argument ‘custom stopword source‘ allows you to pass a character vector to filter
against. With the ‘keep‘ argument one can specify to keep the words instead of removing
thus allowing you to select words with a combination of these two arguments.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

See Also

[step stem()] [step tokenfilter()] [step tokenize()]

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_stopwords(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

tidy(okc_rec, number = 2)

8 step textfeature

tidy(okc_obj, number = 2)
With a custom stopwords list

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_stopwords(essay0, custom_stopword_source = c("twice", "upon"))

okc_obj <- okc_rec %>%
prep(traimomg = okc_text, retain = TRUE)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

step textfeature Generate the basic set of text features

Description

‘step textfeature‘ creates a *specification* of a recipe step that will extract a number of
numeric features of a text column.

Usage

step_textfeature(recipe, ..., role = "predictor", trained = FALSE,
columns = NULL, extract_functions = count_functions,
prefix = "textfeature", skip = FALSE, id = rand_id("textfeature"))

S3 method for class 'step_textfeature'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step textfeature‘,
this indicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role For model terms created by this step, what analysis role should they be
assigned?. By default, the function assumes that the new columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

extract functions

A named list of feature extracting functions. default to [count functions]
from the textfeatures package. See details for more information.

prefix A prefix for generated column names, default to ”textfeature”.

step textfeature 9

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it

x A ‘step textfeature‘ object.

Details

This step will take a character column and returns a number of numeric columns equal to
the number of functions in the list passed to the ‘extract functions‘ argument. The default
is a list of functions from the textfeatures package.

All the functions passed to ‘extract functions‘ must take a character vector as input and
return a numeric vector of the same length, otherwise an error will be thrown.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_textfeature(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

juice(okc_obj) %>%
slice(1:2)

juice(okc_obj) %>%
pull(textfeature_essay0_n_words)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)

Using custom extraction functions
nchar_round_10 <- function(x) round(nchar(x) / 10) * 10

recipe(˜ ., data = okc_text) %>%
step_textfeature(essay0,

extract_functions = list(nchar10 = nchar_round_10)) %>%
prep(training = okc_text) %>%
juice()

10 step texthash

step texthash Term frequency of tokens

Description

‘step texthash‘ creates a *specification* of a recipe step that will convert a list of tokens
into multiple variables using the hashing trick.

Usage

step_texthash(recipe, ..., role = "predictor", trained = FALSE,
columns = NULL, signed = TRUE, num_terms = 1024, prefix = "hash",
skip = FALSE, id = rand_id("texthash"))

S3 method for class 'step_texthash'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step texthash‘,
this indicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role For model terms created by this step, what analysis role should they be
assigned?. By default, the function assumes that the new columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

signed A logical, indicating whether to use a signed hash-function to reduce
collisions when hashing. Defaults to TRUE.

num terms An integer, the number of variables to output. Defaults to 1024.

prefix A character string that will be the prefix to the resulting new variables.
See notes below.

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it.

x A ‘step texthash‘ object.

step tf 11

Details

Feature hashing, or the hashing trick, is a transformation of a text variable into a new set
of numerical variables. This is done by applying a hashing function over the tokens and
using the hash values as feature indices. This allows for a low memory representation of
the text. This implementation is done using the MurmurHash3 method.

The argument ‘num terms‘ controls the number of indices that the hashing function will
map to. This is the tuning parameter for this transformation. Since the hashing function
can map two different tokens to the same index, will a higher value of ‘num terms‘ result
in a lower chance of collision.

The new components will have names that begin with ‘prefix‘, then the name of the variable,
followed by the tokens all seperated by ‘-‘. The variable names are padded with zeros. For
example, if ‘num terms ¡ 10‘, their names will be ‘hash1‘ - ‘hash9‘. If ‘num terms = 101‘,
their names will be ‘hash001‘ - ‘hash101‘.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

References

Kilian Weinberger; Anirban Dasgupta; John Langford; Alex Smola; Josh Attenberg (2009).

See Also

[step tf()] [step tfidf()] [step tokenize()]

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_tokenfilter(essay0, max_tokens = 10) %>%
step_texthash(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

bake(okc_obj, okc_text)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

step tf Term frequency of tokens

Description

‘step tf‘ creates a *specification* of a recipe step that will convert a list of tokens into
multiple variables containing the token counts.

12 step tf

Usage

step_tf(recipe, ..., role = "predictor", trained = FALSE,
columns = NULL, weight_scheme = "raw count", weight = 0.5,
vocabulary = NULL, res = NULL, prefix = "tf", skip = FALSE,
id = rand_id("tf"))

S3 method for class 'step_tf'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step tf‘, this indi-
cates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role For model terms created by this step, what analysis role should they be
assigned?. By default, the function assumes that the new columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

weight scheme A character determining the weighting scheme for the term frequency
calculations. Must be one of ”binary”, ”raw count”, ”term frequency”,
”log normalization” or ”double normalization”. Defaults to ”raw count”.

weight A numeric weight used if ‘weight scheme‘ is set to ”double normalization”.
Defaults to 0.5.

vocabulary A character vector of strings to be considered.

res The words that will be used to calculate the term frequency will be stored
here once this preprocessing step has be trained by [prep.recipe()].

prefix A character string that will be the prefix to the resulting new variables.
See notes below

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it.

x A ‘step tf‘ object.

Details

It is strongly advised to use [step tokenfilter] before using [step tf] to limit the number of
variables created, otherwise you might run into memmory issues. A good strategy is to
start with a low token count and go up according to how much RAM you want to use.

Term frequency is a weight of how many times each token appear in each observation.
There are different ways to calculate the weight and this step can do it in a couple of ways.

step tfidf 13

Setting the argument ‘weight scheme‘ to ”binary” will result in a set of binary variables
denoting if a token is present in the observation. ”raw count” will count the times a token
is present in the observation. ”term frequency” will devide the count with the total number
of words in the document to limit the effect of the document length as longer documents
tends to have the word present more times but not necessarily at a higher procentage. ”log
normalization” takes the log of 1 plus the count, adding 1 is done to avoid taking log of 0.
Finally ”double normalization” is the raw frequency divided by the raw frequency of the
most occurring term in the document. This is then multiplied by ‘weight‘ and ‘weight‘ is
added to the result. This is again done to prevent a bias towards longer documents.

The new components will have names that begin with ‘prefix‘, then the name of the variable,
followed by the tokens all seperated by ‘-‘. The new variables will be created alphabetically
according to token.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

See Also

[step hashing()] [step tfidf()] [step tokenize()]

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_tf(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

bake(okc_obj, okc_text)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

step tfidf Term frequency-inverse document frequency of tokens

Description

‘step tfidf‘ creates a *specification* of a recipe step that will convert a list of tokens into
multiple variables containing the Term frequency-inverse document frequency of tokens.

14 step tfidf

Usage

step_tfidf(recipe, ..., role = "predictor", trained = FALSE,
columns = NULL, vocabulary = NULL, res = NULL, smooth_idf = TRUE,
norm = "l1", sublinear_tf = FALSE, prefix = "tfidf",
skip = FALSE, id = rand_id("tfidf"))

S3 method for class 'step_tfidf'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step tfidf‘, this in-
dicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role For model terms created by this step, what analysis role should they be
assigned?. By default, the function assumes that the new columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

vocabulary A character vector of strings to be considered.

res The words that will be used to calculate the term frequency will be stored
here once this preprocessing step has be trained by [prep.recipe()].

smooth idf TRUE smooth IDF weights by adding one to document frequencies, as
if an extra document was seen containing every term in the collection
exactly once. This prevents division by zero.

norm A character, defines the type of normalization to apply to term vectors.
”l1” by default, i.e., scale by the number of words in the document. Must
be one of c(”l1”, ”l2”, ”none”).

sublinear tf A logical, apply sublinear term-frequency scaling, i.e., replace the term
frequency with 1 + log(TF). Defaults to FALSE.

prefix A character string that will be the prefix to the resulting new variables.
See notes below.

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it.

x A ‘step tfidf‘ object.

Details

It is strongly advised to use [step tokenfilter] before using [step tfidf] to limit the number
of variables created, otherwise you might run into memmory issues. A good strategy is to
start with a low token count and go up according to how much RAM you want to use.

step tokenfilter 15

Term frequency-inverse document frequency is the product of two statistics. The term
frequency (TF) and the inverse document frequency (IDF).

Term frequency is a weight of how many times each token appear in each observation.

Inverse document frequency is a measure of how much information a word gives, in other
words, how common or rare is the word across all the observations. If a word appears in
all the observations it might not give us that much insight, but if it only appear in some it
might help us differentiate the observations.

The IDF is defined as follows: idf = log(# documents in the corpus) / (# documents where
the term appears + 1)

The new components will have names that begin with ‘prefix‘, then the name of the variable,
followed by the tokens all seperated by ‘-‘. The new variables will be created alphabetically
according to token.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

See Also

[step hashing()] [step tf()] [step tokenize()]

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_tfidf(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

bake(okc_obj, okc_text)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

step tokenfilter Filter the tokens based on term frequency

Description

‘step tokenfilter‘ creates a *specification* of a recipe step that will convert a list of tokens
into a list where the tokens are filtered based on frequency.

16 step tokenfilter

Usage

step_tokenfilter(recipe, ..., role = NA, trained = FALSE,
columns = NULL, max_times = Inf, min_times = 0,
percentage = FALSE, max_tokens = 100, res = NULL, skip = FALSE,
id = rand_id("tokenfilter"))

S3 method for class 'step_tokenfilter'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step tokenfilter‘,
this indicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

max times An integer. Maximal number of times a word can appear before getting
removed.

min times An integer. Minimum number of times a word can appear before getting
removed.

percentage A logical. Should max times and min times be interpreded as a percent-
age instead of count.

max tokens An integer. Will only keep the top max tokens tokens after filtering done
by max times and min times. Defaults to 100.

res The words that will be keep will be stored here once this preprocessing
step has be trained by [prep.recipe()].

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it.

x A ‘step tokenfilter‘ object.

Details

This step allow you to limit the tokens you are looking at by filtering on their occurance
in the corpus. You are able to exclude tokens if they appear too many times or too fews
times in the data. It can be specified as counts using ‘max times‘ and ‘min times‘ or as
percentages by setting ‘percentage‘ as ‘TRUE‘. In addition one can filter to only use the
top ‘max tokens‘ used tokens. If ‘max tokens‘ is set to ‘Inf‘ then all the tokens will be used.
This will generally lead to very large datasets when then tokens are words or trigrams. A
good strategy is to start with a low token count and go up according to how much RAM
you want to use.

step tokenize 17

It is strongly advised to filter before using [step tf] or [step tfidf] to limit the number of
variables created.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

See Also

[step untokenize()]

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_tokenfilter(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

step tokenize Tokenization of character variables

Description

‘step tokenize‘ creates a *specification* of a recipe step that will convert a character pre-
dictor into a list of tokens.

Usage

step_tokenize(recipe, ..., role = NA, trained = FALSE,
columns = NULL, options = list(), token = "words",
custom_token = NULL, skip = FALSE, id = rand_id("tokenize"))

S3 method for class 'step_tokenize'
tidy(x, ...)

18 step tokenize

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step tokenize‘,
this indicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

options A list of options passed to the tokenizer.

token Unit for tokenizing. Built-in options from the [tokenizers] package are
”words” (default), ”characters”, ”character shingles”, ”ngrams”, ”skip ngrams”,
”sentences”, ”lines”, ”paragraphs”, ”regex”, ”tweets” (tokenization by
word that preserves usernames, hashtags, and URLS), ”ptb” (Penn Tree-
bank), ”skip ngrams” and ”word stems”.

custom token User supplied tokenizer. use of this argument will overwrite the token
argument. Must take a character vector as input and output a list of
character vectors.

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it

x A ‘step tokenize‘ object.

Details

Tokenization is the act of splitting a character string into smaller parts to be further anal-
ysed. This step uses the ‘tokenizers‘ package which includes heuristics to split the text
into paragraphs tokens, word tokens amough others. ‘textrecipes‘ keeps the tokens in a
list-column and other steps will do their tasks on those list-columns before transforming
them back to numeric.

Working will ‘textrecipes‘ will always start by calling ‘step tokenize‘ followed by modifying
and filtering steps.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

See Also

[step untokenize]

step tokenmerge 19

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)

okc_obj_chars <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0, token = "characters") %>%
prep(training = okc_text, retain = TRUE)

juice(okc_obj_chars) %>%
slice(2) %>%
pull(essay0)

step tokenmerge Generate the basic set of text features

Description

‘step tokenmerge‘ creates a *specification* of a recipe step that will take multiple list-
columns of tokens and combine them into one list-column.

Usage

step_tokenmerge(recipe, ..., role = "predictor", trained = FALSE,
columns = NULL, prefix = "tokenmerge", skip = FALSE,
id = rand_id("tokenmerge"))

S3 method for class 'step_tokenmerge'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step tokenmerge‘,
this indicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

20 step untokenize

role For model terms created by this step, what analysis role should they be
assigned?. By default, the function assumes that the new columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

prefix A prefix for generated column names, default to ”tokenmerge”.

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it

x A ‘step tokenmerge‘ object.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0, essay1) %>%
step_tokenmerge(essay0, essay1)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

juice(okc_obj)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)

step untokenize Untokenization of list-column variables

Description

‘step untokenize‘ creates a *specification* of a recipe step that will convert a list of tokens
into a character predictor.

step untokenize 21

Usage

step_untokenize(recipe, ..., role = NA, trained = FALSE,
columns = NULL, sep = " ", skip = FALSE,
id = rand_id("untokenize"))

S3 method for class 'step_untokenize'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step untokenize‘,
this indicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

sep a character to determine how the tokens should be seperated when pasted
together. Defaults to ‘” ”‘.

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

id A character string that is unique to this step to identify it.

x A ‘step untokenize‘ object.

Details

This steps will turn a tokenized list-column back into a character vector.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_tokenize(essay0) %>%
step_untokenize(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

22 step word2vec

juice(okc_obj, essay0) %>%
slice(1:2)

juice(okc_obj) %>%
slice(2) %>%
pull(essay0)

tidy(okc_rec, number = 2)
tidy(okc_obj, number = 2)

step word2vec Calculates word2vec dimension estimates

Description

Experimental ‘step word2vec‘ creates a *specification* of a recipe step that will return the
word2vec dimension estimates of a text variable.

Usage

step_word2vec(recipe, ..., role = "predictor", trained = FALSE,
columns = NULL, lda_models = NULL, num_topics = 10,
prefix = "word2vec", skip = FALSE, id = rand_id("word2vec"))

S3 method for class 'step_word2vec'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for
this recipe.

... One or more selector functions to choose variables. For ‘step word2vec‘,
this indicates the variables to be encoded into a list column. See [recipes::selections()]
for more details. For the ‘tidy‘ method, these are not currently used.

role For model terms created by this step, what analysis role should they be
assigned?. By default, the function assumes that the new columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the recipe has been baked.

columns A list of tibble results that define the encoding. This is ‘NULL‘ until the
step is trained by [recipes::prep.recipe()].

lda models A WarpLDA model object from the text2vec package. If left to NULL,
the default, will it train its model based on the training data. Look at
the examples for how to fit a WarpLDA model.

num topics integer desired number of latent topics.

prefix A prefix for generated column names, default to ”word2vec”.

skip A logical. Should the step be skipped when the recipe is baked by
[recipes::bake.recipe()]? While all operations are baked when [recipes::prep.recipe()]
is run, some operations may not be able to be conducted on new data
(e.g. processing the outcome variable(s)). Care should be taken when
using ‘skip = TRUE‘ as it may affect the computations for subsequent
operations.

step word2vec 23

id A character string that is unique to this step to identify it

x A ‘step word2vec‘ object.

Value

An updated version of ‘recipe‘ with the new step added to the sequence of existing steps (if
any).

Source

https://arxiv.org/abs/1301.3781

Examples

library(recipes)

data(okc_text)

okc_rec <- recipe(˜ ., data = okc_text) %>%
step_word2vec(essay0)

okc_obj <- okc_rec %>%
prep(training = okc_text, retain = TRUE)

juice(okc_obj) %>%
slice(1:2)

tidy(okc_rec, number = 1)
tidy(okc_obj, number = 1)

Changing the number of topics.
recipe(˜ ., data = okc_text) %>%

step_word2vec(essay0, essay1, num_topics = 20) %>%
prep() %>%
juice() %>%
slice(1:2)

Supplying A pre-trained LDA model trained using text2vec
library(text2vec)
tokens <- word_tokenizer(tolower(okc_text$essay5))
it <- itoken(tokens, ids = seq_along(okc_text$essay5))
v <- create_vocabulary(it)
dtm <- create_dtm(it, vocab_vectorizer(v))
lda_model <- LDA$new(n_topics = 15)

recipe(˜ ., data = okc_text) %>%
step_word2vec(essay0, essay1, lda_models = lda_model) %>%
prep() %>%
juice() %>%
slice(1:2)

https://arxiv.org/abs/1301.3781

Index

∗Topic datasets
okc text, 2

count functions, 2

okc text, 2

step sequence onehot, 3
step stem, 4
step stopwords, 6
step textfeature, 8
step texthash, 10
step tf, 11
step tfidf, 13
step tokenfilter, 15
step tokenize, 17
step tokenmerge, 19
step untokenize, 20
step word2vec, 22

tidy.step sequence onehot
(step sequence onehot), 3

tidy.step stem (step stem), 4
tidy.step stopwords (step stopwords), 6
tidy.step textfeature

(step textfeature), 8
tidy.step texthash (step texthash), 10
tidy.step tf (step tf), 11
tidy.step tfidf (step tfidf), 13
tidy.step tokenfilter

(step tokenfilter), 15
tidy.step tokenize (step tokenize), 17
tidy.step tokenmerge (step tokenmerge),

19
tidy.step untokenize (step untokenize),

20
tidy.step word2vec (step word2vec), 22

24

	count_functions
	okc_text
	step_sequence_onehot
	step_stem
	step_stopwords
	step_textfeature
	step_texthash
	step_tf
	step_tfidf
	step_tokenfilter
	step_tokenize
	step_tokenmerge
	step_untokenize
	step_word2vec
	Index

