
TEXreg: Conversion of R regression output to LATEX tables

Philip Leifeld <philip.leifeld@eawag.ch>

June 21, 2012

1 Motivation

The TEXreg package for the statistical computing environment R was designed to convert regression
model output from multiple models into tables for inclusion in LATEX documents. It is an alternative
to packages like xtable, apsrtable, outreg and memsic, which can also convert R tables to LATEX
tables. Only a subset of these packages is able to merge multiple regression models in a single
table. Those packages which can do this do not support important model types such as lme (linear
mixed effects models) and ergm objects (exponential random graph models from the statnet suite
of packages). TEXreg, in contrast, accepts these model types and can also merge multiple models
in a single table. Currently, lm, lme, gls, glm and ergm objects are supported. New model types
can be easily implemented (see section 5). TEXreg can be used within Sweave. LATEX packages for
creating fancy tables, like dcolumn or booktabs, are supported.

2 Installation

It should be possible to install TEXreg using a simple command:

> install.packages("texreg")

If this is not possible for some reason, the source files and binaries can be downloaded from
http://r-forge.r-project.org/projects/texreg/. To load the package in R once it has been
installed, enter the following command:

> library(texreg)

3 Getting help

This R package vignette is part of the TEXreg package. It can be displayed in R by entering the
command:

> vignette("texreg")

The help page of the package can be displayed as follows:

> help(package="texreg")

More specific help on the texreg command can be obtained by entering the following command
once the package has been loaded:

> help(texreg)

If all else fails, more help can be obtained from the homepage of the TEXreg package. Questions
can be posted to a public forum at http://r-forge.r-project.org/projects/texreg/. A prior
registration may be required.

1

mailto:philip.leifeld@eawag.ch
http://www.statnet.org
http://r-forge.r-project.org/projects/texreg/
http://r-forge.r-project.org/projects/texreg/

4 TEXreg examples

Suppose you fit two simple OLS models. The following example was taken from the lm() help file.

> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

> group <- gl(2,10,20, labels=c("Ctl","Trt"))

> weight <- c(ctl, trt)

> m1 <- lm(weight ~ group)

> m2 <- lm(weight ~ group - 1) # omitting intercept

The coefficients, standard errors, p values etc. can be displayed as follows:

> summary(m2)

Call:

lm(formula = weight ~ group - 1)

Residuals:

Min 1Q Median 3Q Max

-1.0710 -0.4938 0.0685 0.2462 1.3690

Coefficients:

Estimate Std. Error t value Pr(>|t|)

groupCtl 5.0320 0.2202 22.85 9.55e-15 ***

groupTrt 4.6610 0.2202 21.16 3.62e-14 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6964 on 18 degrees of freedom

Multiple R-squared: 0.9818, Adjusted R-squared: 0.9798

F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16

Now it is fairly tedious to copy every single coefficient and standard error to a LATEX table when
you design your academic paper. To improve the situation, the following commands can do this
automatically (the LATEX output code is shown below the R code, and the resulting table is shown
in table 1):

> library(texreg)

> table <- texreg(m2)

\usepackage{booktabs}

\usepackage{dcolumn}

\begin{table}

\begin{center}

\begin{tabular}{l D{.}{.}{3.5} @{}}

\toprule

& \multicolumn{1}{c}{Model 1} \\

\midrule

groupCtl & 5.03^{***} \\

& (0.22) \\

groupTrt & 4.66^{***} \\

& (0.22) \\

\midrule

R2 & 0.98 \\

Adj. R2 & 0.98 \\

Num. obs. & 20 \\

2

Model 1

groupCtl 5.03∗∗∗

(0.22)
groupTrt 4.66∗∗∗

(0.22)

R2 0.98
Adj. R2 0.98
Num. obs. 20

***p < 0.01, **p < 0.05, *p < 0.1

Table 1: Statistical models

Model 1 Model 2

(Intercept) 5.03∗∗∗

(0.22)
groupTrt −0.37 4.66∗∗∗

(0.31) (0.22)
groupCtl 5.03∗∗∗

(0.22)

R2 0.07 0.98
Adj. R2 0.02 0.98
Num. obs. 20 20

***p < 0.01, **p < 0.05, *p < 0.1

Table 2: Statistical models

\bottomrule

\vspace{-2mm}\\

\multicolumn{2}{l}{***$p<0.01$, **$p<0.05$, *$p<0.1$}

\end{tabular}

\end{center}

\caption{Statistical models}

\label{table:coefficients}

\end{table}

The table is saved in the object table. Moreover, it is printed directly to the R console for easy
copy & paste. In order to print it to the R console again, the following command can be used:

> cat(table)

The texreg command also accepts multiple models as a list and merges them in a table. The
output of the following command is shown in table 2.

> table <- texreg(list(m1,m2))

The TEXreg package contains many customizations. Among other options, the use.packages

argument can be used to switch off package loading at the beginning of the table code. Using
the label argument, the label of the table can be set. In a similar way, the caption argument
takes care of the caption. Activating the scriptsize option prints the table in a smaller font size.
The sideways argument rotates the table by 90 degrees and uses the rotating package and the
sidewaystable environment. The position of the table on the page or in the document can be
specified using the float.pos argument. The custom.names and model.names arguments can be
used to specify the names of the model terms and the models, respectively. An example:

3

> table <- texreg(list(m1, m2), use.packages=FALSE, label="tab:3", caption="My regression table", scriptsize=TRUE, custom.names=c("(Intercept)", "Treatment", "Control"), model.names=c("First model", "Second model"), float.pos="b")

The output of this command is shown as table 3. Another argument is table. By deactivating it,
the plain tabular environment is printed, and the whole table environment and header is omitted
from the output. This may be useful for integrating tables in Sweave, or for tweaking the floating
environment of the table. The no.margin argument can be used to control the cell spacing of the
table. If set to TRUE, regular margins are used. By default, no margins are used in order not to
waste any horizontal space on the page.

TEXreg employs functions from the booktabs and dcolumn packages to generate beautiful
tables. If these packages should not be used when generating tables, the arguments booktabs and
dcolumn, respectively, can be set to FALSE.

The TEXreg package can also handle ergm objects (that is, exponential random graph models,
which are used in social network analysis). Here is an example: the following code creates a network
matrix.

> mat <- rbinom(400,1,0.16) #create a matrix

> mat <- matrix(mat, nrow=20)

Using the network package, the matrix can be converted into a network object. The ergm()

command from the ergm package can be used to fit some models:

> library(network)

> library(ergm)

> nw <- network(mat)

> m4 <- ergm(nw ~ edges)

> m5 <- ergm(nw ~ edges + mutual)

> m6 <- ergm(nw ~ edges + mutual + twopath)

The TEXreg command can then be used to create a table with the coefficients. Switching on
strong.signif returns the significance levels used by the ergm package (three stars for p values
smaller than 0.001 etc.) instead of using conventional significance stars:

> table <- texreg(list(m4, m5, m6), use.packages=FALSE, label="tab:4", scriptsize=FALSE, strong.signif=TRUE)

Table 4 shows the result of this command.
Most academic journals require tables where the coefficient and the standard error are stored

in two separate rows of the table, as shown in tables˜1 to˜4. In some situations, however, it makes
sense to accommodate them in a single row. The single.row argument can take care of this:

> table <- texreg(list(m4, m5, m6), use.packages=FALSE, label="tab:5", single.row=TRUE)

The result is shown in table 5. Note the difference between tables 4 and 5.
The TEXreg command can also combine the output of different model types in a single table.

Consider the following example of an lm object, an lme (linear mixed-effects) model and an ergm

object:

First model Second model

(Intercept) 5.03∗∗∗

(0.22)
Treatment −0.37 4.66∗∗∗

(0.31) (0.22)
Control 5.03∗∗∗

(0.22)

R2 0.07 0.98
Adj. R2 0.02 0.98
Num. obs. 20 20

***p < 0.01, **p < 0.05, *p < 0.1

Table 3: My regression table

4

Model 1 Model 2 Model 3

edges −1.78∗∗∗ −1.93∗∗∗ −1.36∗

(0.15) (0.18) (0.55)
mutual 0.86· 0.87·

(0.50) (0.49)
twopath −0.12

(0.11)

AIC 316.24 315.51 316.22
BIC 320.18 323.39 328.04
Log Likelihood −157.12 −155.75 −155.11

***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1

Table 4: Statistical models

Model 1 Model 2 Model 3

edges −1.78 (0.15)
∗∗∗ −1.93 (0.18)

∗∗∗ −1.36 (0.55)
∗∗

mutual 0.86 (0.50)
∗

0.87 (0.49)
∗

twopath −0.12 (0.11)

AIC 316.24 315.51 316.22
BIC 320.18 323.39 328.04
Log Likelihood −157.12 −155.75 −155.11

***p < 0.01, **p < 0.05, *p < 0.1

Table 5: Statistical models

5

Model 1 Model 2 Model 3

(Intercept) 17.71∗∗∗

(0.83)
age 0.66∗∗∗

(0.06)
SexFemale −2.32∗∗∗

(0.76)
groupCtl 5.03∗∗∗

(0.22)
groupTrt 4.66∗∗∗

(0.22)
edges −1.36∗∗

(0.55)
mutual 0.87∗

(0.49)
twopath −0.12

(0.11)

AIC 447.51 316.22
BIC 460.78 328.04
Log Likelihood −218.76 −155.11
Num. obs. 108 20
R2 0.98
Adj. R2 0.98

***p < 0.01, **p < 0.05, *p < 0.1

Table 6: Statistical models

> library(nlme)

> m3 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)

> table <- texreg(list(m3, m2, m6), label="tab:6", use.packages=FALSE)

The output is shown in table 6. Note that different model types may report different kinds of
goodness-of-fit statistics at the bottom of the table.

5 Creating templates for new model types

Currently, TEXreg supports lm, lme, gls, glm and ergm objects. However, implementing new
kinds of statistical models is fairly easy (if you know how to modify R functions). For any model
type, there exists a function which extracts the relevant information from a model. For example,
extract.lm() provides coefficients and goodness-of-fit statistics for lm objects, extract.ergm()
provides this information for ergm objects, etc. Any new function of this kind must return a list
with two objects:

1. A matrix containing the coefficients. This matrix must have exactly three columns. The
first column contains the coefficients, the second column contains the standard errors, and
the third column contains the p values for any coefficient. The names of the coefficients or
independent variables must be stored as row names of the matrix. Column names do not
matter.

2. A matrix of goodness-of-fit statistics. This matrix must have exactly one column and as
many rows as there are gof measures. For example, the extract.lm() function extracts R2,
Adj. R2 and Num. obs. They are aggregated in a 3 × 1 matrix. The row names of this
matrix should indicate what is being measured, for instance “Num. obs.”

6

The following code is an example. It shows the extract.lme() function:

extract.lm <- function(model) {

if (!class(model) == "lm") {

stop("Internal error: Incorrect model type! Should be an lm object!")

}

tab <- summary(model)$coef[,-3] #extract coefficient table

#third column (t values) is omitted

rs <- summary(model)$r.squared #extract R-squared

adj <- summary(model)$adj.r.squared #extract adjusted R-squared

n <- nobs(model) #extract number of observations

gof <- matrix(c(rs, adj, n), ncol=1) #put gof measures in a 1-column matrix

row.names(gof) <- c("R2", "Adj. R2", "Num. obs.") #set row names

table.content <- list(tab, gof) #put coefficients and gofs in a list

return(table.content) #return the list object

}

After writing a custom function, this function has to be registered in the texreg() function. There
are two locations where the code has to be slightly adjusted. These two locations are marked by
a comment stating “IMPLEMENT NEW EXTENSIONS HERE”.

If you write such a function, it would be very helpful to post them in the forum (see section
3) in order to let other users profit from it. If it works and if you can provide a self-contained
example, the code can be implemented in a future version of TEXreg. Please send an inquiry if you
are interested in joining the TEXreg project and working directly on the code.

7

	1 Motivation
	2 Installation
	3 Getting help
	4 TeXreg examples
	5 Creating templates for new model types

