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Abstract

Outlying data can heavily influence standard clustering methods. At the same time, clus-
tering principles can be useful when robustifying statistical procedures. These two reasons
motivate the interest in developing feasible robust model-based clustering approaches. With
this in mind, an R package for performing non-hierarchical robust clustering, called tclust
is presented here. Instead of trying to “fit” noisy data, a proportion α of the most outlying
observations is trimmed. The tclust package efficiently handles different cluster scatter con-
straints. Graphical exploratory tools are also implemented to help the user make sensible
choices for the trimming proportion as well as the number of clusters to search for.

Keywords: Model-based clustering, trimming, heterogeneous clusters

1 Introduction to robust clustering and tclust

Methods for cluster analysis are basically aimed at detecting homogeneous clusters with large

heterogeneity among them. As happens with other (non-robust) statistical procedures, clustering
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methods may be heavily influenced by even a small fraction of outlying data. For instance,

due to outlying observations, two or more clusters might artificially be joined or “spurious” non-

informative clusters may be made up by only a few outlying observations (see, e.g. Garćıa-Escudero

and Gordaliza, 1999; Garćıa-Escudero et al., 2010b). Therefore, the application of robust methods

in this context is very advisable, especially in fully automatized clustering (unsupervised learning)

problems. Certain relations between cluster analysis and robust methods (Rocke and Woodruff,

2002; Hardin and Rocke, 2004; Garćıa-Escudero et al., 2003; Woodruff and Reiners, 2004) are

also a motivation for the interest of robust clustering techniques. For instance, robust clustering

techniques can be used to handle “clusters” of highly concentrated outliers which are specially

dangerous in (robust) estimation. Garćıa-Escudero et al. (2010b) provides a recent survey of

robust clustering methods.

The tclust package for the R environment for statistical computing (R Development Core

Team, 2010) implements different robust non-hierarchical clustering algorithms where trimming

plays a key role. This package is available at http://CRAN.R-project.org/package=tclust.

As trimming allows to remove a fraction α of the “most outlying” data, the strong influence of

outlying observations can be avoided and robustness naturally arises. This trimming approach

to clustering has been introduced in Cuesta-Albertos et al. (1997), Gallegos (2002), Gallegos and

Ritter (2005) and Garćıa-Escudero et al. (2008). Trimming also serves to highlight interesting

anomalous observations.

Trimming is not a new concept in statistics. For instance, the widely used trimmed mean

for one dimensional data removes a proportion α/2 of the largest, and a proportion α/2 of the

smallest observations before computing the mean. However, it is not straightforward to extend

this philosophy to cluster analysis, because most of these problems are of multivariate nature.

Moreover, it is often the case that “bridge points” lying between clusters ought to be trimmed.

Instead of forcing the statistician to define the regions to be trimmed in advance, the procedures

implemented in tclust take the whole data structure into account in order to decide which parts

of the sample should be discarded. By considering this type of trimming, these procedures are

even able to trim outlying bridge points. The “self-trimming” philosophy behind these procedures

is exactly the same as adopted by some well-known high breakdown-point methods (see, e.g.,

Rousseeuw and Leroy, 1987).
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As a first example of this trimming approach, let us consider the trimmed k-means method

introduced in Cuesta-Albertos et al. (1997). The function tkmeans from the tclust package im-

plements this method. In the following example, this function is applied to a bivariate data set

based on the Old Faithful geyser called geyser2 that accompanies the tclust package. The code

given below creates Figure 1:

R > library ("tclust")

R > data ("geyser2")

R > clus <- tkmeans (geyser2, k = 3, alpha = 0.03)

R > plot (clus)

In the data set geyser2, we are searching for k = 3 clusters and a proportion α = 0.03 of the

data is trimmed. The clustering results are shown in Figure 1. Among this 3% of trimmed data,

we can see 6 anomalous “short followed by short” eruptions lengths. Notice that an observation

situated between the clusters is also trimmed.

The package presented here adopts a “crisp” clustering approach, meaning that each observa-

tion is either trimmed or fully assigned to a cluster. In comparison, mixture approaches estimate

a cluster pertinence probability for each observation. Robust mixture alternatives have also been

proposed where noisy data is tried to be fitted through additional mixture components. For in-

stance, package mclust (Banfield and Raftery, 1993; Fraley and Raftery, 1998) and package f lexmix

(Leisch, 2004; McLachlan and Peel, 2000) implement such robust mixture fitting approaches. Mix-

ture fitting results can be easily converted into a “crisp” clustering result by converting the cluster

pertinence probabilities into 0-1 probabilities. Contrary to these mixture fitting approaches, the

procedures implemented in the tclust package simply remove outlying observations and do not in-

tend to fit them at all. Package tlemix (see Neykov et al., 2007) also implements a closely related

trimming approach. As described in Section 3, the tclust package focuses on offering adequate

cluster scatter matrix constraints to avoid the occurrence of spurious non-interesting clusters. In

contrast, the tlemix mainly controls the minimum number of observations in a cluster. More

comments explaining the differences of the approach followed in the tclust package with respect

to other alternatives can be found in Garćıa-Escudero et al. (2010a).

The outline of the paper is as follows: In Section 2 we briefly review the so-called“spurious out-

liers” model and show how to derive two different clustering criteria from it. Different constraints
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Figure 1: Trimmed k-means results with k = 3 and α = 0.03 for the bivariate Old Faithful Geyser

data. Trimmed observations are denoted by the symbol “◦”.

on the cluster scatter matrices and their implementation in the tclust package are commented in

Section 3. Section 4 presents the numerical output returned by this package. Some brief comments

concerning the implemented algorithms are given in Section 5. Section 6 shows some graphical

outputs that help us to make sensible choices for the number of clusters and trimming propor-

tion. Other useful plots summarizing the robust clustering results are shown in Section 7. Finally,

Section 8 applies the tclust package to a well-know real data set.
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2 Trimming and the spurious outliers model

Gallegos (2002) and Gallegos and Ritter (2005) propose the “spurious outliers model” as a proba-

bilistic framework for robust crisp clustering. Let f(·;µ,Σ) denote the probability density function

of the p-variate normal distribution with mean µ and covariance matrix Σ. The “spurious-outlier

model” is defined through “likelihoods” like[ k∏
j=1

∏
i∈Rj

f(xi;µj,Σj)

][ ∏
i∈R0

gi(xi)

]
(1)

with {R0, ..., Rk} being a partition of the set of indices {1, 2, ..., n} such that #R0 = dnαe. R0 are

the indices of the“non-regular”observations generated by other density functions gi. “Non-regular”

observations can be clearly considered as “outliers” if we assume certain sensible assumptions for

the gi (see details in Gallegos, 2002; Gallegos and Ritter, 2005). Under these assumptions, the

search of a partition {R0, ..., Rk} with #R0 = dnαe, vectors µj and positive definite matrices Σj

maximizing (1) can be simplified to the same search but just maximizing the simpler expression

k∑
j=1

∑
i∈Rj

log f(xi;µj,Σj). (2)

Notice that observations xi with i ∈ R0 are not taken into account in (2). Maximizing (2) with

k = 1 yields the Minimum Covariance Determinant (MCD) estimator (Rousseeuw, 1985).

Unfortunately, the direct maximization of (2) is not a well-defined problem when k > 1. It

is easy to see that (2) is unbounded without any constraint on the cluster scatter matrices Σj.

The tclust function from the tclust package approximately maximizes (2) under different cluster

scatter matrix constraints which will be shown in Section 3.

The maximization of (2) implicitly assumes equal cluster weights. In other words, we are

ideally searching for clusters with equal sizes. The function tclust provides this option by setting

the argument equal.weights = TRUE. Alternatively different cluster sizes or cluster weights can

be considered by searching for a partition {R0, ..., Rk} (with #R0 = dnαe), vectors µj, positive

definite matrices Σj and weights πj ∈ [0, 1] maximizing

k∑
j=1

∑
i∈Rj

(log πj + log f(xi;µj,Σj)). (3)

The (default) option equal.weights = FALSE is used in this case. Again, the scatter matrices

have to be constrained in the same way.
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equal.weights = TRUE equal.weights = FALSE

restr = "eigen"
k-means

Cuesta-Albertos et al. (1997)
Garćıa-Escudero et al. (2008)

restr = "deter" Gallegos (2002) This work

restr = "sigma"
Friedman and Rubin (1967)

Gallegos and Ritter (2005)
This work

Table 1: Clustering methods handled by tclust. Names in cursive letters are untrimmed (α = 0)

methods.

3 Constraints on the cluster scatter matrices

As already mentioned, the function tclust implements different algorithms aimed at approxi-

mately maximizing (2) and (3) under different types of constraints which can be applied on the

scatter matrices Σj. The type of constraint is specified by the argument restr of the tclust

function. Table 1 gives an overview of the different clustering approaches implemented by the

tclust function depending on the chosen type of constraints.

Imposing constraints is compulsory because maximizing (2) or (3) without any restriction is not

a well-defined problem. Notice that an almost degenerated scatter matrix Σj would cause trimmed

log-likelihoods (2) and (3) to tend to infinity. This issue can cause a (robust) clustering algorithm

of this type to end up finding “spurious” clusters almost lying in lower dimensional subspaces.

Moreover, the resulting clustering solutions might heavily depend on the chosen constraint. The

strength of the constraint is controlled by the argument restr.fact ≥ 1 in the tclust function.

The smaller restr.fact, the stronger the scatter matrices are restricted. Values of restr.fact

close to 1 imply very “equally scattered” clusters.

Also arising from the spurious outlier model, other types of constraints have recently been

introduced by Gallegos and Ritter (2009, 2010). These (closely related) constraints also serve to

avoid degeneracy of trimmed likelihoods but they are not implemented in the current version of

the tclust package.
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3.1 Constraints on the eigenvalues

Based on the eigenvalues of the cluster scatter matrices, a scatter similarity constraint may be

defined. With λl(Σj) as the eigenvalues of the cluster scatter matrices Σj and

Mn = max
j=1,...,k

max
l=1,...,p

λl(Σj) and mn = min
j=1,...,k

min
l=1,...,p

λl(Σj) (4)

as the maximum and minimum eigenvalues, the restriction restr = "eigen" constrains the ratio

Mn/mn to be smaller than a fixed value restr.fact. A theoretical study of the properties of this

approach with equal.weights = FALSE can be found in Garćıa-Escudero et al. (2008). This type

of constraints on the eigenvalues goes back to those applied by Hathaway (1985) for univariate

mixture modeling.

Setting equal.weights = TRUE, restr = "eigen" and restr.fact = 1 implies the most con-

strained case. In this case, the tclust function tries to solve the trimmed k-means problem as

introduced by Cuesta-Albertos et al. (1997). This problem simplifies to the well-known k-means

clustering criterion when no trimming is done (i.e. alpha = 0). The tkmeans function directly

implements this most constrained application of the tclust function.

3.2 Constraints on the determinants

Another way of restricting cluster scatter matrices is constraining their determinants. Thus, if

Mn = max
j=1,...,k

|Σj| and mn = min
j=1,...,k

|Σj|

are the maximum and minimum determinants, we attempt to maximize (2) or (3) by constraining

the ratio Mn/mn to be smaller than a fixed value restr.fact. This is done in the function tclust

by using the option restr = "deter".

The untrimmed case alpha = 0, restr = "deter" and restr.fact = 1 was already outlined

in Maronna and Jacovkis (1974), as the only sensible way to avoid (Mahalanobis distance modified)

k-means type algorithms to return clusters of a few almost collinear observations. The possibility

of trimming data is also considered in Gallegos (2002) who implicitly assumes |Σ1| = ... = |Σk|

(and so restr.fact = 1). The package presented here extends her approach to more general

cases (restr.fact ≥ 1).
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3.3 Equal scatter matrices

Among the methods considered, tclust also implements a stronger type of constraint by setting

restr = "sigma" which forces all cluster scatter matrices to be the same: Σ1 = ... = Σk. This

is known as the “determinantal” criterium and it goes back to Friedman and Rubin (1967). The

trimmed version of this approach was introduced by Gallegos and Ritter (2005). The argument

restr.fact is ignored when applying this type of constraint.

3.4 Example

In this example, we compare the clustering results obtained by the tclust function and different

constraints applied to the so-called M5data data set. This data set, that also accompanies the

tclust package, has been generated following the simulation scheme M5 introduced in Garćıa-

Escudero et al. (2008). Thus it is a bivariate mixture of three simulated gaussian components with

very different scatters and a clear overlap between two of these components. A 10% proportion

of outliers is also added in the outer region of the bounding rectangle enclosing the 3 gaussian

components. See Figure 2 for a graphical representation and Garćıa-Escudero et al. (2008) for

more details on the structure of this M5data data set. Executing the following code yields Figure

3.

R > data ("M5data")

R > x <- M5data[, 1:2]

R > res.a <- tclust (x, k = 3, alpha = 0.1, restr.fact = 1, restr = "eigen",

+ equal.weights = TRUE)

R > res.b <- tclust (x, k = 3, alpha = 0.1, restr.fact = 1, restr = "sigma",

+ equal.weights = TRUE)

R > res.c <- tclust (x, k = 3, alpha = 0.1, restr.fact = 1, restr = "deter",

+ equal.weights = TRUE)

R > res.d <- tclust (x, k = 3, alpha = 0.1, restr.fact = 50, restr = "eigen",

+ equal.weights = FALSE)

R > plot (res.a, main = "(a) Trimmed k-means")

R > plot (res.b, main = "(b) Gallegos and Ritter (2005)")
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R > plot (res.c, main = "(c) Gallegos (2002)")

R > plot (res.d, main = "(d) Garcia-Escudero et al. (2008)")

Although different constraints are imposed, we are searching for k = 3 clusters and the trim-

ming proportion is set to α = 0.1 in all the cases. Note that only the clustering procedure

introduced in Garćıa-Escudero et al. (2008), shown in Figure 3,(d), with a sufficiently large value

of restr.fact approximately returns the three original clusters in spite of the very different clus-
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Figure 2: A scatter plot of the M5data data set. Different symbols are used for the data points

generated by each of the three bivariate normal components and “◦” for the added outliers.
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(a) Trimmed k−means
k = 3, α = 0.1
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(b) Gallegos and Ritter (2005)
k = 3, α = 0.1
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k = 3, α = 0.1
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Figure 3: Results of the clustering processes for the M5data data set for different constraints on

the cluster scatter matrices.

ter scatters and different cluster sizes. Moreover, this clustering procedure adequately handles the

severe overlap of two clusters. The value restr.fact = 50 has been chosen in this case because

the eigenvectors of the covariance matrices of the three gaussian components satisfy restriction (4)

for this value. Due to their underlying assumptions, the other three clustering methods (trimmed

k-means in Figure 3,(a), Gallegos and Ritter (2005) in (b), Gallegos (2002) in (c)) return rather

similarly structured clusters. In fact, we found spherical clusters in (a), clusters with the same
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scatter matrix in (b) and clusters with the same cluster scatter matrix determinant in (c).

4 Numerical output

The function tclust returns an S3 object containing the cluster centers µj by columns ($centers),

scatter matrices Σj as an array ($cov) and the maximum value found for the trimmed log-likelihood

objective function (2) or (3) ($obj). The vector $cluster provides the cluster assignment of

each observation, whereas an artificial cluster “0” (without location and scatter information) is

introduced which holds all trimmed data points.

Sometimes equations (2) and (3) maximize with some clusters remaining empty. In this case,

only information on the non-empty groups is returned. Notice that, if we are searching for k

clusters, empty clusters can be found when a clustering solution for a number of clusters strictly

smaller than k attains a higher value for (2) or (3) than the best solution found with k clusters.

In this case, artificial empty clusters may be defined by considering sufficiently remote centers µj

and scatter matrices Σj satisfying the desired constraints.

Let us consider the following code

R > set.seed (10)

R > x <- rbind (rmvnorm (200, c (0, 0), diag (2)),

+ rmvnorm (200, c (5, 0), diag (2)))

R > plot (tclust (x, k = 3, alpha = 0, restr.fact = 1))

Although we are searching for k = 3 clusters, we can see in Figure 4 that only 2 clusters are found.

Notice that k = 2 is surely a more sensible choice for the number of clusters than k = 3 for this

generated data set. Therefore, the detection of empty clusters, or clusters with few data points,

can be helpful providing valuable tools for making sensible choices for k as we will see in Section 6.

On the other hand, the detection of empty clusters is very unlikely to happen when the argument

equal.weights = TRUE is provided in the call to tclust.
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Figure 4: Applying tclust with k = 3 and alpha = 0 on a simulated data set which originally

consists of 2 clusters.

5 Algorithms

The maximization of (2) or (3) considering different cluster scatter matrix constraints is not

straightforward because of the combinatorial nature of the associated maximization problems.

The algorithm presented in Garćıa-Escudero et al. (2008) can be adapted to approximately solve

all these problems. The methods implemented in tclust could be seen as Classification EM al-

gorithms (Celeux and Govaert, 1992), whereas a certain type of “concentration” steps (see the

12



fast-MCD algorithm in Rousseeuw and Van Driessen, 1998) is applied. In fact, the concentra-

tion steps applied by the package tclust can be considered as an extension of those applied by

the Forgy (1965) algorithm used in k-means clustering. It can be seen that the target function

always increases throughout the application of concentration steps, whereas several random start

configurations are needed in order to avoid ending trapped in local minima. Therefore, nstart

random initializations and iter.max to the global optimum maximizing (2) or (3) increases with

larger values of nstart and iter.max. The drawback of high values concentration steps are con-

sidered. The probability that the algorithm converges close of nstart and iter.max obviously is

the increasing computational effort.

In the concentration step, the centers and scatter matrices are updated by considering the clus-

ter sample means and cluster sample covariance matrices. New cluster assignments are obtained

by gathering the “closest” observations to the new centers, whereas the cluster sample covariance

matrices are taken into account. If needed, in the updating step, the cluster sample covariance

matrices are modified as little as possible but in such a way that they satisfy the desired constraints

(see more details in Garćıa-Escudero et al., 2008).

Notice that the weights should be taken all equal to πj = 1/k (equal.weights = TRUE) when

maximizing (2).

6 Selecting the number of groups and the trimming size

Perhaps one of the most complex problems when applying cluster analysis is the choice of the

number of clusters, k. In some cases one might have an idea of the number of clusters in advance,

but usually k is completely unknown. Moreover, in the approach proposed here, the trimming

proportion α has also to be chosen without knowing the true contamination level.

As we will see through the following example, the choices for k and α are related problems that

should be addressed simultaneously. It is important to see that a particular trimming level implies

a specific number of clusters and vice versa. This dependency can be explained as entire clusters

tend to be trimmed completely when increasing α. On the other hand, when choosing α too low,

groups of outliers might form new spurious clusters and thus it appears that the number of clusters

found in the data set is quite high. Moreover, the simultaneous choice of k and α depends on the

allowed differences between cluster scatter sizes, which is controlled by the argument restr.fact.
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Figure 5: Clustering results for the simulated data set mixt with k = 3, α = 0 and restr.fact

= 50 (a) and k = 2, α = 0.1 and restr.fact = 12 (b).

To demonstrate the relation between α, k and restr.fact, let us consider the data set in

Figure 5 which could either be interpreted as a mixture of three components (a) or a mixture of

two components (b) with a 10% outlier proportion. Both clustering solutions shown in Figure 5 are

perfectly sensible and the final choice of α and k only depends on the value given to restr.fact.

The code used to obtain Figure 5 is the following:

R > mixt <- rbind (

+ rmvnorm (360, c (0.0, 0), matrix (c ( 1, 0, 0, 1), ncol = 2)),

+ rmvnorm (540, c (5.0, 10), matrix (c ( 6, -2, -2, 6), ncol = 2)),

+ rmvnorm (100, c (2.5, 5), matrix (c (50, 0, 0, 50), ncol = 2)))

R > plot (tclust (mixt, k = 3, alpha = 0.0, restr.fact = 50))

R > plot (tclust (mixt, k = 2, alpha = 0.1, restr.fact = 12))

In general, we assume that the value of restr.fact has been fixed in advance by the researcher

who applies the robust clustering method. Thus, the choice of restr.fact should depend on prior

knowledge of the type of clusters the researcher is looking for. Large values of restr.fact lead

to rather unrestricted solutions, while smaller values of restr.fact yield more similar structured

clusters.
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Even when specifying a single type of constraint and assuming α = 0, choosing the appropriate

number of clusters is not an easy task. The careful monitoring of the maximum value attained

by log-likelihoods like those in (2) and (3) while changing k has traditionally been applied as a

method for choosing the number of clusters when α = 0. Moreover Bryant (1991) stated that

the use of “weighted” log-likelihoods (3) is preferred to the use of log-likelihoods assuming equal

weights (2). Notice that increasing k always causes the maximized log-likelihood (2) to increase

too, and this could lead to “overestimate” the appropriate number of clusters (see Garćıa-Escudero

et al., 2010a).

In this trimming framework, let us consider LΠ
rest.fact(α, k) as the maximum value reached

by (3) for each combination of a given set of values for k and α. Garćıa-Escudero et al. (2010a)

propose to monitor the “classification trimmed likelihoods” functionals

(α, k) 7→ LΠ
rest.fact(α, k)

while altering α and k, which yields an exploratory graphical tool for making sensible choices for

parameters α and k. In fact, it is proposed to choose the number of clusters as the smallest value

of k such that

LΠ
rest.fact(α, k + 1)− LΠ

rest.fact(α, k) (5)

is always (close to) 0 except for small values of α. Once the number of clusters is fixed, a good choice

for the trimming level is the first α0 such that (5) is (close to) 0 for every α ≥ α0. Although we are

convinced that monitoring the classification trimmed likelihoods functionals is very informative,

no theoretical statistical procedures are available yet for determining when (5) can be formally

considered as “close to 0”.

The function ctlcurves in package tclust approximates the classification trimmed likelihoods

by successively applying the tclust function for a sequence of values of k and α. The default value

restr.fact is set to 50 because we are allowing the method high flexibility for determining extra

clusters but, if desired, smaller values of restr.fact can be passed to tclust via ctlcurves too.

For instance, the following code applied to the previously simulated mixt data set

R > plot (ctlcurves (mixt, k = 1:4, alpha = seq (0, 0.2, by = 0.05)))

results in Figure 6 and shows that increasing k from 2 to 3 is clearly needed when α = 0, as

the objective functions value differs noticeably between k = 2 and k = 3. On the other hand,
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Figure 6: Classification trimmed likelihoods with k = 1, ..., 4, α = 0, 0.05, ..., 0.2 and restr.fact

= 50 for the mixt data set in Figure 5.

increasing k from 2 to 3 is not needed anymore as the third (more scattered) “cluster” vanishes

when trimming 5% of the most outlying observations. Thus, there is no difference of the objective

functions value with α ≥ α0 = 0.05 and k ≥ 2. Note that, although the true contamination

level was actually 10%, a 5% trimming level is enough in this case because the contaminated

observations partially overlap with the two main clusters. Increasing k from 3 to 4 is not needed

in any case.

The curves presented in Garćıa-Escudero et al. (2003) can be considered as precedents of those

we obtain by using the ctlcurves function. Trimmed likelihoods have also been taken into account

in Neykov et al. (2007) for choosing k and α by using a BIC criterium.

Note that if arguments nstart and iter.max are provided in the call to ctlcurves, they are
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internally passed to function tclust.

7 Graphical displays

As seen in previous examples, the package tclust provides functions for visualizing the computed

cluster assignments. One dimensional, two dimensional and higher dimensional cases are visualized

differently:

p = 1: The one-dimensional data set with the corresponding cluster assignments is displayed along

the x-axis. Setting the argument jitter = TRUE jitters the data along the y-axis in order to

increase the visibility of the actual data structure. Additionally, a (robust) scatter estimation

of each cluster is also displayed.

p = 2: Tolerance ellipsoids are plotted additionally in order to visualize the estimated cluster

scatter matrices.

p > 2: The first two Fisher’s canonical coordinates are displayed in this case, which are computed

based on the estimated cluster scatter matrices (notice that trimmed observations are not

taken into account when computing these coordinates). The implementation of these canon-

ical coordinates is derived from the function discrcoord as implemented in the package fpc

(Hennig, 2010).

A simple example demonstrates how the plot function works in different dimensions. The

code

R > geyser1 <- geyser2[, 1, drop = FALSE]

R > geyser3 <- cbind (geyser2, rnorm (nrow (geyser2)))

R > plot (tkmeans (geyser1, k = 2, alpha = 0.03), jitter = TRUE)

R > plot (tkmeans (geyser3, k = 3, alpha = 0.03))

yields Figure 7. We have selected some variables of the geyser2 data to obtain a one-dimensional

and a three-dimensional data set and plotted the results of the trimmed k-means robust clustering

method.
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Figure 7: Trimmed k-means clustering results for a one-dimensional (a) and a three-dimensional

(b) data set based on the geyser2 data. In the one-dimensional setting (a) k = 2 clusters are

considered, whereas in the three-dimensional setting (b) the number of clusters has been increased

to k = 3. A trimming proportion α = 0.03 is fixed in both cases.

Given a tclust object, some additional exploratory graphical tools can be applied in order

to evaluate the quality of the cluster assignments and the trimming decisions. This is done by

applying the function DiscrFact.

Let R̂ = {R̂0, R̂1, ..., R̂k}, θ̂ = (θ̂1, ..., θ̂k) and π̂ = (π̂1, ..., π̂k) be the values obtained by max-

imizing (3). Dj(xi; θ̂, π̂) = π̂jφ(xi, θ̂j) is a measure of the degree of affiliation of observation xi

with cluster j. These values can be ordered as D(1)(xi; θ̂, π̂) ≤ ... ≤ D(k)(xi; θ̂, π̂). Thus the qual-

ity of the assignment decision of a non trimmed observation xi to cluster j can be evaluated by

comparing its degree of affiliation with cluster j to the best second possible assignment through

DF(i) = log
(
D(k)(xi; θ̂, π̂)/D(k−1)(xi; θ̂, π̂)

)
.

It is easy to see that the dnαe observations with smallest values for D(k)(xi; θ̂, π̂) are the

trimmed ones. Considering for a trimmed observation xi, the quality of the trimming decision

can be evaluated by comparing D(k)(xi; θ̂, π̂) and D(k)(xl; θ̂, π̂) with xl being the non-trimmed

observation with smallest value of D(k)(xl; θ̂, π̂) by using DF(i) = log
(
D(k)(xl; θ̂, π̂)/ D(k)(xi; θ̂, π̂)

)
.

Following this approach, discriminant factors DF(i) are obtained for every observation in the data

set, whether trimmed or not.
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Figure 8: Graphical displays based on the DF(i) values for a tclust cluster solution obtained

with k = 3, α = 0.1, restr.fact = 1 and equal.weights = TRUE for the mixt data set.

Observations with large DF(i) values indicate doubtful assignments or trimming decisions.

The use of this type of discriminant factors was already suggested in Van Aelst et al. (2006)

in a clustering problem without trimming. “Silhouette” plots (Rousseeuw, 1987) can be used

for summarizing the obtained ordered discriminant factors. Clusters in the silhouette plot with

many large DF(i) values indicate the existence of not very “well-determined” clusters. The most

“doubtful” assignments with DF(i) larger than a log(threshold) value are highlighted by the

function DiscrFact.

R > clus.w <- tclust (mixt, k = 3, alpha = 0.1, restr.fact = 1,

+ equal.weights = TRUE)

R > discr.clus.w <- DiscrFact (clus.w, threshold = 0.1)

R > plot (discr.clus.w)

Figure 8 shows a clustering solution for the mixt data set shown in Figure 5. Although Figure

6 suggests to choose k = 2, k has been increased to 3 in order to show how such a change
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leads to doubtful cluster assignment decisions which can be visualized by DiscrFact. Figure

8,(a) simply illustrates the cluster assignments and trimming decisions. The mentioned silhouette

plot is presented in (b), whereas the doubtful decisions are marked in (c). All observations with

DF(i) ≥ log(0.1) are highlighted as they are plotted darker/in color. Most of the doubtful decisions

are located in the overlapping area of the two artificially found clusters (highlighted symbols “×”

and “+”). Some doubtfully trimmed observations (highlighted symbol “◦”) are located in the

boundaries of these two clusters.
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Figure 9: Classification trimmed likelihoods for k = 1, ..., 4 and α = 0, .025, ..., .3 when re-

str.fact = 50 for the “Swiss Bank notes” data set.
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8 Swiss Bank notes data

The well-known “Swiss Bank notes” data set includes 6 numerical measurements (six-dimensional

data set) made on 100 genuine and 100 counterfeit old Swiss 1000-franc bank notes (Flury and

Riedwyl, 1988). The following code can be used to obtain the classification trimmed likelihoods

shown in Figure 9.

R > data ("swissbank")

R > plot (ctlcurves (swissbank, k = 1:4, alpha = seq (0, 0.3, by = 0.025)))

This figure indicates the clear existence of k = 2 main clusters (“genuine” and “forged” bills).

Moreover, considering the clear difference between LΠ
50(0, 3) and LΠ

50(0, 2), we can see that a further

cluster, i.e. k = 3, is needed when no trimming is allowed. This extra cluster can be justified by

the inhomogeneity of the group of forgeries (perhaps due to the presence of different sources of

forged bills).

Considering Figure 9, the choice k = 2 and a value of α close to 0.1 also seem sensible. Notice

that LΠ
50(α, 3) is clearly larger than LΠ

50(α, 2) for α < 0.1 while these differences are not so big

when α ≥ 0.1. We can even see smaller differences in the classification trimmed likelihood curves

when increasing k from 3 to 4. However, these differences are less significant than those previously

commented. More spurious clusters can be surely found but they have less entity and importance.

Figure 10 shows the clustering results with k = 2, α = 0.1 and restr.fact = 50 obtained by

executing the code:

R > clus <- tclust (swissbank, k = 2, alpha = 0.1, restr.fact = 50)

R > plot (DiscrFact (clus, threshold = .000125))

The value restr.fact = 50 has been considered because this was also the (default) value used

for ctlcurves. Notice also that variables in this data set are not standardized and, thus, we do

not expect to find very “spherically” shaped clusters and a large value of restr.fact is needed.

We use the function DiscrFact to summarize the obtained clustering results. The two first

Fisher’s canonical coordinates derived from the final cluster assignments are plotted. The threshold

value 0.000125 is chosen in order to highlight the 7 most doubtful decisions.

Finally, Figure 11 shows a scatterplot of the fourth (“Distance of the inner frame to lower

border”) against the sixth variable (“Length of the diagonal”) with the corresponding cluster as-

21



●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

(a) Classification
k = 2, α = 0.1

First discriminant coord.

S
ec

on
d 

di
sc

rim
in

an
t c

oo
rd

.

(b) Silhouette Plot

Discriminant Factor

C
lu

st
er

s

−100 −80 −60 −40 −20 0

O
1

2

Mean Discriminant Factors

−37.26
−41.66
−21.94

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

(c) Doubtful Assignments

First discriminant coord.

S
ec

on
d 

di
sc

rim
in

an
t c

oo
rd

.
Figure 10: Clustering results with k = 2, α = 0.1 and restr.fact = 50 summarized by the use of

DiscrFact function for the “Swiss Bank notes” data set. The threshold value is chosen in order

to highlight the 7 most doubtful cluster assignments.

signments. We use the symbols “G” for the genuine bills and “F” for the forged ones. The 7 most

doubtful decisions (i.e., the observations with largest DF(i) values that were highlighted in Figure

10,(c)) are surrounded by circles in this figure.

We can see that “Cluster 1” essentially includes most of the “forged” bills while “Cluster 2”

includes most of the “genuine” ones. Among the trimmed observations, we can find a subset of 15

forged bills following a clearly different forgery pattern that has been previously commented by

other authors (see, e.g. Flury and Riedwyl, 1988; Cook, 1999). These most doubtful assignments

include 5 “genuine” bills that have perhaps been wrongly trimmed.
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Figure 11: Clustering results with k = 2, α = .1 and restr.fact = 50 for the “Swiss Bank notes”

data set. Only the fourth and sixth variables are plotted. The 7 most doubtful decisions are

rounded by a circle symbol.

9 Conclusion

We have presented a package called tclust for robust (non-hierarchical) clustering. As the package

is implemented in a flexible manner, only the restrictions on the cluster scatters have to be changed

in order to carry out different robust clustering algorithms. Robustness is achieved by trimming

a specific amount of observations which are identified as the “most outlying” ones.

This R-package implements robust clustering approaches which have already been described

in the literature, whereas some of these approaches are extended to gain flexibility. The package

also provides some graphical tools which on the one hand help to chose appropriate parameters

(ctlcurves) and on the other hand help to estimate the adequacy of a particular clustering

solution (DiscrFact).

The future work on this package focuses on implementing further types of scatter restrictions,

making the algorithm even more flexible and on providing more numerical tools for automatically
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choosing the number of clusters and the trimming proportion.
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