
Visualization of large multivariate datasets with the

tabplot package

Martijn Tennekes and Edwin de Jonge

December 18, 2012
(A later version may be available on CRAN)

Abstract

The tableplot is a powerful visualization method to explore and
analyse large multivariate datasets. In this vignette, the implementa-
tion of tableplots in R is described, and illustrated with the diamonds
dataset from the ggplot2 package.

1

http://cran.r-project.org/package=tabplot

Contents

1 Introduction 3

2 Getting started with the tableplot function 3

3 Zooming and filtering 5
3.1 Zooming . 5
3.2 Filtering . 5

4 Continuous variables 7
4.1 Scaling . 7
4.2 Used colors . 7
4.3 X-axes . 7

5 Categorical variables 8
5.1 Color palettes . 8
5.2 High cardinality data . 8

6 Preprocessing of big data 9

7 Miscellaneous 11
7.1 The tabplot object . 11
7.2 Multiple tableplots . 12
7.3 Layout options . 12
7.4 Minor changes . 12
7.5 Save tableplots . 12

Resources 14

A Tableplot creation algorithm 15

B Broken x-axes 16

2

1 Introduction

The tableplot is a visualization method that is used to explore and analyse
large datasets. Tableplots are used to explore the relationships between the
variables, to discover strange data patterns, and to check the occurrence and
selectivity of missing values.

A tableplot applied to the diamonds dataset of the ggplot2 package
(where some missing values were added) is illustrated in Figure 1. Each
column represents a variable. The whole data set is sorted according to one
column (in this case, carat), and then grouped into row bins. Algorithm 1
in Appendix A describes the creation of a tableplot into detail.

Tableplots are aimed to visualize multivariate datasets with several vari-
abels (up tot a dozen) and a large number of records, say at least one
thousand. Tableplots can also be generated for datasets with less records,
but they may be less useful. The maximum number of rows that can be
visualized with the tabplot package depends on the R’s memory, or, when
using the ff package, on the limitations of that package.

2 Getting started with the tableplot function

The diamonds dataset is very suitable to demonstrate the tabplot package.
To illustrate the visualization of missing values, we add several NA’s.

require(ggplot2)

data(diamonds)

add some NA's

is.na(diamonds$price) <- diamonds$cut == "Ideal"

is.na(diamonds$cut) <- (runif(nrow(diamonds)) > 0.8)

A tableplot is simply created by the function tableplot. The result is
depicted in Figure 1. By default, all variables of the dataset are depicted.
With the argument select, we can specify which variables are plotted. The
dataset is by default sorted according to the values of the first column. With
the argument sortCol, we can specify on which column(s) the data is sorted.

The resulting tableplot in Figure 2 consists of five columns, where the
data is sorted on price. Notice that the missing values that we have added
are placed at the bottom and (by default) shown in a bright red color.

Setting an appropriate number of row bins (with the argument nBins)
is important, like in a histogram. A good number of row bins is a trade
of between good polished but meaningless data, and detailed, but noisy
data. In practice, we found that the default number of 100 usually is a good
starting point.

The percentages near the vertical axis indicate which subset of the data
in terms of units (rows) is depicted. The range from 0% to 100% in Figure 2

3

tableplot(diamonds)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 53940

carat

0.0 0.5 1.0 1.5 2.0

cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

missing

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

missing

depth

0.0 61.5 62.0

table

0 57 58

price

0.0 0.5 1.0

x 1e+04

x

0 2 4 6 8

y

0 2 4 6 8

z

0 2 4

Figure 1: Tableplot of the diamonds dataset

tableplot(diamonds, select = c(carat, price,

cut, color, clarity), sortCol = price)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 53940

carat

0.0 0.5 1.0 1.5 2.0

price

0.0 0.5 1.0 1.5

x 1e+04

cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

missing

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

missing

Figure 2: Tableplot sorted by price

4

means that all units of the data are plotted.

3 Zooming and filtering

3.1 Zooming

We can focus our attention to the 5% most expensive diamonds by setting
the from argument to 0 and the to argument to 5. The resulting tableplot
are depicted in Figure 3. Observe that the number of row bins is still 100,
so that the number of units per row bin is now 27 instead of 540. Therefore,
much more detail can be observed in this tableplot.

tableplot(diamonds, select = c(carat, price,

cut, color, clarity), sortCol = price,

from = 0, to = 5)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

row bins:
 100

objects:
 53940

carat

0.0 0.5 1.0 1.5 2.0

price

0.0 0.5 1.0 1.5

x 1e+04

cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

missing

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

missing

Figure 3: Zooming in

The vertical axis contains two sets of tick marks. The small tick marks
correspond with the row bins and the large tick marks correspond with the
percentages between from and to.

3.2 Filtering

The argument subset serves as a data filter. The tableplot in Figure 4
shows that data of premium cut diamonds that cost less than 5000$.

5

tableplot(diamonds, subset = price < 5000 & cut == "Premium")

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 7276

carat

0.0 0.5 1.0

cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

missing

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

missing

depth

0.0 61.0

table

0.058.0 58.5 59.0

price

0 1 2 3 4

x 1e+03

x

0 2 4 6

y

0 2 4 6

z

0 1 2 3 4

Figure 4: Tableplot of filtered diamonds data

It is also possible to create a tableplot for each category of a categorical
variable in one call. For instance, by setting subset=color we create a
tableplot for each color class.

6

4 Continuous variables

4.1 Scaling

For each bin of a continuous variable, the mean value is calculated (see
Algorithm 1). When the distribution of these mean values is exponential, it
is useful to apply a logarithmic transformation. The argument scales can
be set to linear mode "lin", logarithmic mode "log", or the default value
"auto", which automatically determines which of the former two modes is
used.

4.2 Used colors

The colors of the bins indicate the fraction of missing values. By default,
a sequential color palette of blues is used. If a bin does not contain any
missing values, the corresponding bar is depicted in dark blue. The more
missing values, the brighter the color. (Alternatively, other quantitative
palettes can be used by setting the argument numPals; see Figure 5.) Bars
of which all values are missing are depicted in light red.

tablePalettes()

sequential
Blues

Greens
Greys

Oranges
Purples

qualitative
Set1
Set2
Set3
Set4
Set5
Set6
Set7
Set8

Paired
HCL1
HCL2

Figure 5: Color palettes

4.3 X-axes

The x-axes a plotted as compact as possible. This is illustrated in the x-axis
for the variable price.

Observe that the x-axes of the variables depth and table in Figure 1
are broken. In this way the bars are easier to differentiate. The argument
bias brokenX can be set to determine when a broken x-axis is applied. See
Appendix B for details.

For each numerical variable, the limits of the x-axes can be determined
manually with the argument limitsX.

7

5 Categorical variables

5.1 Color palettes

The implemented palettes are depicted in Figure 5. These palettes, as well as
own palettes, can be assigned to the categorical variables with the argument
pals.

Suppose we want a to use the default palette for the variable cut, but
starting with the sixth color, blue. Further we want the fifth palette for the
variable color, and a custom palette, say a rainbow palette, for the variable
clarity. The resulting tableplot is depicted in Figure 6.

tableplot(diamonds, pals = list(cut = "Set1(6)",

color = "Set5", clarity = rainbow(8)))

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 53940

carat

0.0 0.5 1.0 1.5 2.0

cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

missing

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

missing

depth

0.0 61.5 62.0

table

0.0 57.0 58.0

price

0.0 0.5 1.0

x 1e+04

x

0 2 4 6 8

y

0 2 4 6 8

z

0 2 4

Figure 6: Tableplot with other color palettes

Also quantitative palettes can be used (for instance by setting clarity=

"Greens". Missing values are by default depicted in red. This can be
changed with the argument colorNA.

5.2 High cardinality data

To illustrate how tableplots deal with high cardinality data, we extend the
diamonds dataset with a convenient wrapper function num2fac:

8

diamonds$carat_class <- num2fac(diamonds$carat,

n = 20)

diamonds$price_class <- num2fac(diamonds$price,

n = 100)

Warning: var has missing values, omitted in finding classes

For variables with over change palette type at (by default 20) cat-
egories, color palettes are constructed by using interpolated colors. This
creates a rainbow effect (see Figure 7). If the number of categories is than
change palette type at, the assigned palette is recycled in order to obtain
the number of categories.

tableplot(diamonds, select = c(carat, price,

carat_class, price_class))

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 53940

carat

0.0 0.5 1.0 1.5 2.0

price

0.0 0.5 1.0

x 1e+04

carat_class

[0.2, 0.4)
...
[1.6, 1.8)
...
[3.2, 3.4)
...
[4.8, 5)

missing

price_class

[200, 400)...[400, 600)
...
[6,200, 6,400)...[6,400, 6,600)
...
[12,200, 12,400)...[12,400, 12,600)
...
[18,200, 18,400)...[18,400, 18,600)

missing

Figure 7: Tableplot with other color palettes

If the number of categories exceeds max level (by default 50), the cat-
egories are rebinned into max level category groups. This is illustrated by
the variable price class in Figure 7.

6 Preprocessing of big data

For large datasets it is recommended to preprocess the data with the func-
tion tablePrepare. This function determines to sorting order of each data

9

column, the most time consuming task to create tableplots. The advantage
of using tablePrepare as an intermediate step, is that the processing time
to create tabelplots is reduced big time. This is especially useful when ex-
perimenting with arguments such as the number the row bins (nBins) and
the sorting column (sortCol), or when using tableplots interactively.

The following example illustrated the tablePrepare function for big data:

create large dataset

large_diamonds <- diamonds[rep(seq.int(nrow(diamonds)),

10),]

system.time({
p <- tablePrepare(large_diamonds)

})

user system elapsed

5.34 0.50 5.86

system.time({
tableplot(p, plot = FALSE)

})

user system elapsed

0.64 0.04 0.68

system.time({
tableplot(p, sortCol = price, nBins = 200,

plot = FALSE)

})

user system elapsed

0.92 0.06 0.98

Although the first step takes a couple of seconds on a moderate desktop
computer, the processing time to create a tableplot from the intermediate
result, object p, is very short in comparison to the direct approach:

system.time({
tableplot(large_diamonds, plot = FALSE)

})

user system elapsed

4.26 0.74 5.07

10

system.time({
tableplot(large_diamonds, sortCol = price,

nBins = 200, plot = FALSE)

})

user system elapsed

4.42 0.90 5.41

7 Miscellaneous

7.1 The tabplot object

The function tableplot returns a tabplot-object, that can be used to make
minor changes to the tableplot, for instance the order of columns or the
color palettes. Of course, these changes can also be made by generating a
new tableplot. However, if it takes considerable time to generate a tableplot,
then it is practical to make minor changes immediately.

The output of the tableplot function can be assigned to a variable. The
graphical output can be omitted by setting the argument plot to FALSE.

tab <- tableplot(diamonds, plot = FALSE)

The tabplot-object is a list that contains all information to depict a
tableplot. The generic functions summary and plot can be applied to the
tabplot object.

summary(tab)

general variable1 variable2

dataset :diamonds name :carat name :cut

variables:12 type :numeric type :categorical

objects :53940 sort :TRUE sort :NA

bins :100 scale_init :auto categories:6

from :0% scale_final:lin

to :100%

variable3 variable4 variable5

name :color name :clarity name :depth

type :categorical type :categorical type :numeric

sort :NA sort :NA sort :NA

categories:8 categories:9 scale_init :auto

scale_final:lin

##

variable6 variable7 variable8

name :table name :price name :x

type :numeric type :numeric type :numeric

sort :NA sort :NA sort :NA

scale_init :auto scale_init :auto scale_init :auto

scale_final:lin scale_final:lin scale_final:lin

##

11

variable9 variable10 variable11

name :y name :z name :carat_class

type :numeric type :numeric type :categorical

sort :NA sort :NA sort :NA

scale_init :auto scale_init :auto categories:26

scale_final:lin scale_final:lin

##

variable12

name :price_class

type :categorical

sort :NA

categories:51

##

##

plot(tab)

7.2 Multiple tableplots

When a dataset contains more variables than can be plotted, multiple table-
plots can be generated with the argument nCols. This argument determines
the maximum number of columns per tableplot. When the number of se-
lected columns is larger than nCols, multiple tableplots are generated. In
each of them, the sorted columns are plotted on the lefthand side.

When multiple tableplots are created, the (silent) output is a list of
tabplot objects. This is also the case when the dataset is filtered by a
categorical variable, e. g. subset = color (see Section 3.2).

7.3 Layout options

There are several arguments that determine the layout of the plot: fontsize,
legend.lines, max print levels, text NA, title, showTitle, fontsize.
title, showNumAxes, and vp. The following code illustrates this.

The layout arguments named above are passed on from tableplot to
plot.tabplot. These arguments will be especially important when saving
a tableplot (see Section 7.5).

7.4 Minor changes

The function tableChange is used to make minor changes to a tabplot-
object. Suppose we want the columns in the order of 1, and we want to
change all color palettes to default starting with the second color. The code
and the resulting tableplot are given in Figure 9.

7.5 Save tableplots

With the function tableSave, tableplots can be saved to a desired grahical
output format: pdf, eps, svg, wmf, png, jpg, bmp, or tiff.

12

tableplot(diamonds, select = 1:7, fontsize = 14,

legend.lines = 8, title = "Shine on you crazy Diamond",

fontsize.title = 18)

Shine on you crazy Diamond

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 53940

carat

0.0 0.5 1.0 1.5 2.0

cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

missing

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

missing

depth

0.0 61.5 62.0

table

0 57 58

price

0.0 0.5 1.0

x 1e+04

Figure 8: Tableplot with other color palettes

tableSave(tab, filename = "diamonds.png",

width = 5, height = 3, fontsize = 6,

legend.lines = 6)

All layout options named in Section 7.3 can be used here, such as
fontsize and legend.lines. When tab is a list of tabplot-objects (see
Section 7.2), the argument onePage determines whether the tableplots are
stacked on one page or printed on seperate pages.

13

tab2 <- tableChange(tab, select_string = c("carat",

"price", "cut", "color", "clarity"),

pals = list(cut = "Set1(2)"))

plot(tab2)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 53940

carat

0.0 0.5 1.0 1.5 2.0

price

0.0 0.5 1.0

x 1e+04

cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

missing

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

missing

Figure 9: Plot of a tabplot object

Resources

� Summary of the package: help(package=tabplot)

� The main help page: ?tabplot

� Project site: http://code.google.com/p/tableplot/

� References:

– Tennekes, M., Jonge, E. de, Daas, P.J.H. (2013) Visualizing and
Inspecting Large Datasets with Tableplots, Forthcoming in Jour-
nal of Data Science. (paper)

14

http://code.google.com/p/tableplot/
http://www.jds-online.com/file_download/379/JDS-1108.pdf

A Tableplot creation algorithm

A tabplot is basically created by Algorithm 1.

Algorithm 1 Create tableplot

Input: Tabular dataset t, column is of which the distribu-
tion is of interesta, number of row bins n.

1: t′ ← sort t according to the values of column is.
2: Divide t′ into n equally sized row bins according to the

order of t′.
3: for each column i do
4: if i is numeric then
5: mib ← mean value per bin b
6: cib ← fraction of missing values per bin b
7: end if
8: if i is categorical then
9: fijb ← frequency of each category j (including missing values)

per bin b
10: end if
11: end for
12: for each column i do
13: if i is numeric then
14: Plot a bar chart of the mean values {mi1,mi2, . . . ,min}, option-

ally with a logarithmic scale. The fraction of missing values {ci1,
ci2, . . . , cin} determines the lightness of the bar colour. The light-
er the colour, the more missing values occur in bin b. If all values
are missing, a light red bar of full length is drawn.

15: end if
16: if i is categorical then
17: Plot a stacked bar chart according to the frequencies {fi1b, fi2b,

. . .} for each bin b. Each category is shown is a distinct colour.
If there are missing values, they are depicted by a red colour.

18: end if
19: end for
Output: Tableplot

aThe dataset t can also be sorted according to multiple columns.

15

B Broken x-axes

The x-axis of a variable i is broken if either

0 < max(mi1,mi2, . . . ,min) and

bias brokenX ·max(mi1,mi2, . . . ,min) < min(mi1,mi2, . . . ,min)

or

0 > min(mi1,mi2, . . . ,min) and

bias brokenX ·min(mi1,mi2, . . . ,min) > max(mi1,mi2, . . . ,min),

where bias brokenX is a bias parameter that should be a number be-
tween 0 and 1. If bias brokenX = 1 then the above conditions are al-
ways false, which implies that the x-axes are never broken. On the other
hand, if bias brokenX = 0 then the x-axes are always broken. By default,
bias brokenX = 0.8, which mean that an x-axis is broken if (in case of a
variable with positive values) the minimum value is at least 0.8 times the
maximum value. In Figure 1, this applies to the variables depth and table.

16

	Introduction
	Getting started with the tableplot function
	Zooming and filtering
	Zooming
	Filtering

	Continuous variables
	Scaling
	Used colors
	X-axes

	Categorical variables
	Color palettes
	High cardinality data

	Preprocessing of big data
	Miscellaneous
	The tabplot object
	Multiple tableplots
	Layout options
	Minor changes
	Save tableplots

	Resources
	Tableplot creation algorithm
	Broken x-axes

