
streamMOA: Interface to Algorithms from MOA for

stream

Matthew Bolaños
Southern Methodist University

John Forrest
Microsoft

Michael Hahsler
Southern Methodist University

Abstract

This packages provides an interface for several algorithms from the Massive Online
Analysis (MOA) framework to be used in stream. This vignette contains some examples.

Keywords: data stream, data mining, clustering, MOA.

1. Introduction

Please refer to the vignette in package stream for an introduction to data stream mining
in R. In this vignette we give two examples that show how to use the stream framework
being used from start to finish. The examples encompasses the creation of data streams,
preparation of data stream clustering algorithms, the online clustering of data points into
micro-clusters, reclustering and finally evaluation. The first example shows how compare a
set of data stream clustering algorithms on a static data set. The second example shows how
to perform evaluation on a data stream with concept drift (clusters evolve over time).

2. Experimental Comparison on Static Data

First, we set up a static data set. We extract 1500 data points from the Bars and Gaussians
data stream generator with 5% noise and put them in a DSD_Memory. The wrapper is used to
replay the same part of the data stream for each algorithm. We will use the first 1000 points
to learn the clustering and the remaining 500 points for evaluation.

R> library("stream")

R> stream <- DSD_Memory(DSD_BarsAndGaussians(noise=0.05), n=1500)

R> stream

Memory Stream Interface

Class: DSD_Memory, DSD_R, DSD_data.frame, DSD

With 4 clusters in 2 dimensions

Contains 1500 data points - currently at position 1 - loop is FALSE

2 Introduction to streamMOA

−5 0 5

−
6

−
4

−
2

0
2

4
6

x

y

Figure 1: Bar and Gaussians data set.

R> plot(stream)

Figure 6 shows the structure of the data set. It consists of four clusters, two Gaussians and
two uniformly filled rectangular clusters. The Gaussian and the bar to the right have 1/3 the
density of the other two clusters.

We initialize four algorithms from stream. We choose the parameters experimentally so that
the algorithm produce each (approximately) 100 micro-clusters.

R> sample <- DSC_TwoStage(micro=DSC_Sample(k=100), macro=DSC_Kmeans(k=4))

R> window <- DSC_TwoStage(micro=DSC_Window(horizon=100), macro=DSC_Kmeans(k=4))

R> dstream <- DSC_DStream(gridsize=.7)

R> tNN <- DSC_tNN(r=.5)

We will also use two MOA-based algorithms available in package streamMOA.

R> library("streamMOA")

R> denstream <- DSC_DenStream(epsilon=.5, mu=1)

R> clustream <- DSC_CluStream(m=100, k=4)

We store the algorithms in a list for easier handling and then cluster the same 1000 data points
with each algorithm. Note that we have to reset the stream each time before we cluster.

R> algorithms <- list(Sample=sample, Window=window, 'D-Stream'=dstream, tNN=tNN,

+ DenStream=denstream, CluStream=clustream)

R> for(a in algorithms) {

+ reset_stream(stream)

+ update(a, stream, 1000)

+ }

Matthew Bolanos, John Forrest, Michael Hahsler 3

We use nclusters() to inspect the number of micro-clusters.

R> sapply(algorithms, nclusters, type="micro")

Sample Window D-Stream tNN DenStream CluStream

100 100 98 88 50 100

All algorithms except DenStream produce around 100 micro-clusters. We were not able to
adjust DenStream to produce more than around 50 micro-clusters for this data set.

To inspect micro-cluster placement, we plot the calculated micro-clusters and the original
data.

R> op <- par(no.readonly = TRUE)

R> layout(mat=matrix(1:6, ncol=2))

R> for(a in algorithms) {

+ reset_stream(stream)

+ plot(a, stream, main=a$description, type="micro")

+ }

R> par(op)

Figure 2 shows the micro-cluster placement by the different algorithms. Micro-clusters are
shown as red circles and the size is proportional to each cluster’s weight. Reservoir sampling
and the sliding window randomly place the micro-clusters and also a few noise points (shown
as grey dots). Clustream also does not suppress noise and places even more micro-clusters on
noise points since it tries to represent all data as faithfully as possible. D-Stream, DenStream
and tNN all suppress noise and concentrate the micro-clusters on the real clusters. D-Stream is
grid-based and thus the micro-clusters are regularly spaced. tNN produces a similar, almost
regular pattern. DenStream produces one heavy micro-cluster on one cluster, while using
a large number of micro clusters for the others. It also has problems with detecting the
rectangular low-density cluster.

It is also interesting to compare the assignment areas for micro-clusters created by different
algorithms. The assignment area is the area around the center of a micro-cluster in which
points are considered to belong to the micro-cluster. In case that a point is in the assignment
area of several micro-clusters, the closer center is chosen. To show the assignment area we
add assignment=TRUE to plot. We also disable showing micro-cluster weights to make the
plot clearer.

R> op <- par(no.readonly = TRUE)

R> layout(mat=matrix(1:6, ncol=2))

R> for(a in algorithms) {

+ reset_stream(stream)

+ plot(a, stream, main=a$description, assignment=TRUE, weight=FALSE, type="micro")

+ }

R> par(op)

Figure 3 shows the assignment areas as dotted circles around micro-clusters. Reservoir sam-
pling and sliding window does not provide assignment areas and data points are always as-
signed to the nearest micro-cluster. D-Stream is grid-based and shows the assignment area as

4 Introduction to streamMOA

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

● ●

●

● ●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●
●

●
●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●
●

−5 0 5

−
6

−
4

−
2

0
2

4
6

Reservoir sampling + k−Means (weighted)

x

y

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

8

Sliding window + k−Means (weighted)

x

y

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●

●

●

●

●

●

●
●
●
●

●

●
●
●
●
●
●

●
●●
●●
●
●

●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●
●
●

●
●
●
●

●

●
●
●
●
●
●

●

●
●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

−5 0 5

−
6

−
4

−
2

0
2

4
6

D−Stream

x

y

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●
●●●

−5 0 5

−
6

−
4

−
2

0
2

4
6

Threshold nearest−neighbor (tNN)

x

y

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

DenStream

x

y

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

−5 0 5

−
5

0
5

CluStream

x

y

Figure 2: Micro-cluster placement for different data stream clustering algorithms.

Matthew Bolanos, John Forrest, Michael Hahsler 5

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

Reservoir sampling + k−Means (weighted)

x

y

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

8

Sliding window + k−Means (weighted)

x

y

−5 0 5

−
5

0
5

D−Stream

V1

V
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

Threshold nearest−neighbor (tNN)

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

DenStream

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

−5 0 5

−
5

0
5

CluStream

x

y

Figure 3: Micro-cluster assignment areas for different data stream clustering algorithms.

6 Introduction to streamMOA

grey boxes. tNN uses the same radius for all micro-clusters, while DenStream and CluStream
calculate the assignment area for each micro-cluster.

To compare the cluster quality, we can check for example the micro-cluster purity, the sum
of squares and the average silhouette coefficient. Note that we reset the stream to position
1001 since we have used the first 1000 points for learning and we want to use data points not
seen by the algorithms for evaluation.

R> sapply(algorithms, FUN=function(a) {

+ reset_stream(stream, 1001)

+ evaluate(a, stream,

+ measure=c("numMicroClusters", "purity", "SSQ", "silhouette"),

+ n=500, assignmentMethod="auto", type="micro")

+ })

Sample Window D-Stream tNN DenStream CluStream

numMicroClusters 100.000 100.000 98.000 88.000 50.000 100.000

purity 0.956 0.947 0.968 0.966 0.963 0.955

SSQ 216.769 245.412 739.957 676.979 1092.193 514.401

silhouette 0.151 0.147 0.128 0.174 0.111 0.225

We need to be careful with the comparison of these numbers, since the depend heavily on the
number of micro-clusters with more clusters leading to a better value. Therefore, a comparison
with DenStream is not valid. We can compare the measures, of the other algorithms since the
number of micro-clusters is close. Sampling and the sliding window produce very good values
for purity, CluStream achieves the highest average silhouette coefficient and tNN produces
the lowest sum of squares. For better results more data and cross-validation could be used.

Next, we compare macro-clusters. D-Stream, DenStream, tNN and CluStream have built-
in reclustering strategies. D-Stream joins adjacent dense grid cells for form macro-clusters.
DenStream and tNN use the reachability concept (from DBSCAN). CluStream used weighted
k-means clustering (note that we used k = 4 when we initialized DSC_DenStream above).
For sampling and window we apply here weighted k-means reclustering with k = 4, the true
number of clusters.

R> op <- par(no.readonly = TRUE)

R> layout(mat=matrix(1:6, ncol=2))

R> for(a in algorithms) {

+ reset_stream(stream)

+ plot(a, stream, main=a$description, type="both")

+ }

R> par(op)

Figure 4 shows the macro-cluster placement. Sample, window and CluStream use k-means
reclustering and therefore produce exactly four clusters. However, the placement is off, split-
ting a true cluster and missing one of the less dense clusters. DenStream, tNN and D-Stream
identify the two denser clusters correctly, but split the lower density clusters into multiple
pieces.

Matthew Bolanos, John Forrest, Michael Hahsler 7

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

● ●

●

● ●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●
●

●
●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●
●

−5 0 5

−
6

−
4

−
2

0
2

4
6

Reservoir sampling + k−Means (weighted)

x

y

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

8

Sliding window + k−Means (weighted)

x

y

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●

●

●

●

●

●

●
●
●
●

●

●
●
●
●
●
●

●
●●
●●
●
●

●
●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●
●
●
●
●
●
●

●
●
●
●

●

●
●
●
●
●
●

●

●
●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

−5 0 5

−
6

−
4

−
2

0
2

4
6

D−Stream

x

y

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●
●●●

−5 0 5

−
6

−
4

−
2

0
2

4
6

Threshold nearest−neighbor (tNN)

x

y

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

DenStream

x

y

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

−5 0 5

−
5

0
5

CluStream

x

y

Figure 4: Macro-cluster placement for different data stream clustering algorithms

8 Introduction to streamMOA

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2

Figure 5: Data points from DSD_Benchmark(1) at the beginning of the stream. The two
arrows are added to highlight the direction of movement.

R> sapply(algorithms, FUN=function(a) {

+ reset_stream(stream, 1001)

+ evaluate(a, stream, measure=c("numMacroClusters","purity", "SSQ", "cRand"),

+ n=500, assign="micro", type="macro")

+ })

Sample Window D-Stream tNN DenStream CluStream

numMacroClusters 4.000 4.000 7.000 9.000 NA NA

purity 0.870 0.833 0.900 0.853 NA NA

SSQ 1655.925 2094.181 1475.324 2035.116 NA NA

cRand 0.581 0.550 0.846 0.726 NA NA

The evaluation measures at the macro-cluster level reflect the findings from the visual analysis
of the clustering with D-Stream producing the best results.

3. Experimental Comparison using an Evolving Data Stream

In this section we compare different clustering algorithms on an evolving data stream. We use
DSD_Benchmark(1) which creates two clusters moving in two-dimensional space. One moves
from top left to bottom right and the other one moves from bottom left to top right. Both
clusters overlap when they meet exactly in the center of the data space.

R> set.seed(0)

R> stream <- DSD_Memory(DSD_Benchmark(1), 5000)

Figure 5 illustrates the structure of the data stream. Next, we define the clustering algorithms.

Matthew Bolanos, John Forrest, Michael Hahsler 9

R> algorithms <- list(

+ Sample = DSC_TwoStage(micro=DSC_Sample(k=100, biased=TRUE),

+ macro=DSC_Kmeans(k=2)),

+ Window = DSC_TwoStage(micro=DSC_Window(horizon=100, lambda=.01),

+ macro=DSC_Kmeans(k=2)),

+

+ 'D-Stream' = DSC_DStream(gridsize=.05, lambda=.01),

+ tNN = DSC_tNN(r=.02, lambda=.01),

+ DenStream = DSC_DenStream(epsilon=.05, lambda=.01),

+ CluStream = DSC_CluStream(m=100, k=2)

+)

We perform the evaluation using evaluate_cluster which performs clustering and evaluates
clustering quality every horizon=250 data points. For sampling and window we have to
specify a macro-clustering algorithm. We use k-means with the true number of clusters
k = 2.

R> n <- 5000

R> horizon <- 250

R> reset_stream(stream)

R> evaluation <- lapply(algorithms, FUN=function(a) {

+ reset_stream(stream)

+ evaluate_cluster(a, stream,

+ type="macro", assign="micro",

+ measure=c("numMicro","numMacro","SSQ", "cRand"),

+ n=n, horizon=horizon)

+ })

First, we look at the development of the corrected Rand index over time.

R> Position <- evaluation[[1]][,"points"]

R> cRand <- sapply(evaluation, FUN=function(x) x[,"cRand"])

R> cRand

Sample Window D-Stream tNN DenStream CluStream

[1,] 0.7590 0.7590 0.990 0.977 NA NA

[2,] 0.8070 0.8098 0.982 0.998 NA NA

[3,] 0.8280 0.8280 0.976 0.997 NA NA

[4,] 0.7876 0.7884 0.990 0.972 NA NA

[5,] 0.7745 0.1639 0.981 0.988 NA NA

[6,] 0.8371 0.8371 0.982 0.988 NA NA

[7,] 0.8833 0.8833 1.000 0.992 NA NA

[8,] 0.8166 0.1178 1.000 0.976 NA NA

[9,] 0.8365 0.8359 0.991 0.978 NA NA

[10,] 0.7943 0.0605 0.249 0.936 NA NA

[11,] 0.0689 0.0384 0.220 0.227 NA NA

10 Introduction to streamMOA

[12,] 0.0991 0.0759 0.199 0.209 NA NA

[13,] 0.7489 0.7507 0.334 0.314 NA NA

[14,] 0.8903 0.8903 1.000 1.000 NA NA

[15,] 0.8669 0.8646 0.983 0.988 NA NA

[16,] 0.7629 0.7629 0.977 0.977 NA NA

[17,] 0.8448 0.8451 1.000 0.991 NA NA

[18,] 0.8220 0.8147 0.992 0.996 NA NA

[19,] 0.8719 0.8688 0.983 0.983 NA NA

[20,] 0.8019 0.8021 0.985 0.982 NA NA

R> matplot(Position, cRand, type="l", lwd=2)

R> legend("bottomleft", legend=names(evaluation),

+ col=1:6, lty=1:6, bty="n", lwd=2)

R> boxplot(cRand, las=2)

And then we compare the sum of squares.

R> SSQ <- sapply(evaluation, FUN=function(x) x[,"SSQ"])

R> SSQ

Sample Window D-Stream tNN DenStream CluStream

[1,] 9.02 8.37 0.0915 0.0954 NA NA

[2,] 6.97 7.27 0.1072 0.1004 NA NA

[3,] 4.05 4.05 94.8014 0.0988 NA NA

[4,] 4.92 5.01 0.1093 0.0992 NA NA

[5,] 6.03 15.30 48.2478 0.0988 NA NA

[6,] 3.22 3.27 23.4405 0.0973 NA NA

[7,] 2.25 2.30 0.0985 0.0927 NA NA

[8,] 3.72 6.21 0.0937 0.0866 NA NA

[9,] 3.06 3.11 0.1069 0.1061 NA NA

[10,] 3.91 4.12 0.6858 0.1127 NA NA

[11,] 3.13 3.08 0.1832 0.1721 NA NA

[12,] 1.67 1.48 0.2290 0.2109 NA NA

[13,] 5.28 5.35 0.8783 0.8784 NA NA

[14,] 2.05 2.05 0.1175 0.1000 NA NA

[15,] 2.77 2.60 15.5424 0.1051 NA NA

[16,] 4.51 4.58 0.1024 0.0908 NA NA

[17,] 3.03 3.02 0.1003 0.0945 NA NA

[18,] 3.25 3.34 0.1292 0.1036 NA NA

[19,] 3.55 3.82 0.1128 0.1048 NA NA

[20,] 6.57 6.63 0.0903 0.0849 NA NA

R> matplot(Position, SSQ, type="l", lwd=2)

R> legend("topright", legend=names(evaluation),

+ col=1:6, lty=1:6, bty="n", lwd=2)

Matthew Bolanos, John Forrest, Michael Hahsler 11

1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position

cR
an

d Sample
Window
D−Stream
tNN
DenStream
CluStream ●

●

●
●●

●

●

●●

●

S
am

pl
e

W
in

do
w

D
−

S
tr

ea
m

tN
N

D
en

S
tr

ea
m

C
lu

S
tr

ea
m

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000

0
20

40
60

80

Position

S
S

Q

Sample
Window
D−Stream
tNN
DenStream
CluStream

●

●

●

●

●

●

●●●

S
am

pl
e

W
in

do
w

D
−

S
tr

ea
m

tN
N

D
en

S
tr

ea
m

C
lu

S
tr

ea
m

0

20

40

60

80

Figure 6: Evaluation of data stream clustering of an evolving stream.

R> boxplot(SSQ, las=2)

Figure 6 shows how the different clustering algorithms compare in terms of the corrected Rand
index and the sum of squares. For all algorithms the performance degrades around position
3000 since both clusters overlap completely at that point in the stream. The box-plots to the
right indicate that D-Stream and tNN perform overall better than the other algorithms.

Acknowledgments

This work is supported in part by the U.S. National Science Foundation as a research ex-
perience for undergraduates (REU) under contract number IIS-0948893 and by the National
Human Genome Research Institute under contract number R21HG005912.

Affiliation:

Michael Hahsler
Engineering Management, Information, and Systems
Lyle School of Engineering
Southern Methodist University
P.O. Box 750122
Dallas, TX 75275-0122
E-mail: mhahsler@lyle.smu.edu
URL: http://lyle.smu.edu/~mhahsler

mailto:mhahsler@lyle.smu.edu
http://lyle.smu.edu/~mhahsler

12 Introduction to streamMOA

Matthew Bolaños
Computer Science and Engineering
Lyle School of Engineering
Southern Methodist University
E-mail: mbolanos@smu.edu

John Forrest
Microsoft Corporation
E-mail: jforrest@microsoft.com

mailto:mbolanos@smu.edu
mailto:jforrest@microsoft.com

	Introduction
	Experimental Comparison on Static Data
	Experimental Comparison using an Evolving Data Stream

