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Abstract

In recent years, data streams have become an increasingly important area of research
for the computer science, database and data mining communities. Data streams are
ordered and potentially unbounded sequences of data points created by a typically non-
stationary generation process. Common data mining tasks associated with data streams
include clustering, classification and frequent pattern mining. New algorithms are pro-
posed regularity and it is important to evaluate them thoroughly under standardized
conditions.

In this paper we introduce stream, an R package that provides an intuitive interface for
experimenting with data streams and data stream mining algorithms. stream is a general
purpose tool that includes modeling and simulating data streams as well an extensible
framework for implementing, interfacing and experimenting with algorithms for various
data stream mining tasks.
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1. Introduction

Typical statistical and data mining methods (e.g., parameter estimation, statistical tests,
clustering, classification and frequent pattern mining) work with “static” data sets, meaning
that the complete data set is available as a whole to perform all necessary computations. Well
known methods like k-means clustering, decision tree induction and the APRIORI algorithm
to find frequent itemsets scan the complete data set repeatedly to produce their results (Hastie,
Tibshirani, and Friedman 2001). However, in recent years more and more applications need
to work with data which are not static, but the result of a continuous data generation process
which even might evolve over time. Some examples are web click-stream data, computer
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network monitoring data, telecommunication connection data, readings from sensor nets and
stock quotes. This type of data is called a data stream and dealing with data streams has
become an increasingly important area of research (Babcock, Babu, Datar, Motwani, and
Widom 2002; Gaber, Zaslavsky, and Krishnaswamy 2005; Aggarwal 2007). Early on, the
statistical community also started to see the emerging field of statistical analysis of massive
data streams (see Keller-McNulty (2004)).

A data stream can be formalized as an ordered sequence of data points

Y = <Y1a}’27}’3a .. '>7

where the index reflects the order (either by explicit time stamps or just by an integer reflecting
order). The data points themselves can be simple vectors in multidimensional space, but can
also contains nominal/ordinal variables, complex information (e.g., graphs) or unstructured
information (e.g., text). The characteristic of continually arriving data points introduces an
important property of data streams which also poses the greatest challenge: the size of a data
stream is unbounded. This leads to the following requirements for data stream processing
algorithms:

e Bounded storage: The algorithm can only store a very limited amount of data to
summarize the data stream.

e Single pass: The incoming data points cannot be permanently stored and need to be
processed at once in the arriving order.

e Real-time: The algorithm has to process data points on average at least as fast as the
arriving data.

e Concept drift: The algorithm has be able to deal with a data generation process which
evolves over time (e.g., distributions change or new structure in the data appears).

Obviously, most existing algorithms designed for static data are not able to satisfy these
requirements and thus are only usable if techniques like sampling or time windows are used
to extract small, quasi-static subsets. While these approaches are important, new algorithms
are needed and have been introduced over the last decade to deal with the special challenges
posed by data streams.

Even though R is an ideal platform to develop and test prototypes for data stream algorithms,
currently R does not have an infrastructure to support data streams.

1. Data sets are typically represented by data.frames or matrices which is suitable for static
data but not to represent streams.

2. Algorithms for data streams are not available in R.

In this paper we introduce the package stream which provides a framework to represent and
process data streams and use them to develop, test and compare data stream algorithms in
R. We include an initial set of data stream generators and data stream algorithms (focusing
on clustering) in this package with the hope that other researchers will use stream to develop,
study and improve their own algorithms.
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The paper is organized as follows. We briefly review data stream mining in Section 2. In
Section 3 we cover the stream framework including the design of the class hierarchy to rep-
resent different data streams and data stream clustering algorithms, evaluation of algorithms
and how to extend the framework with new data stream sources and algorithms. We provide
comprehensive examples in Section 5 and conclude with Section 6.

2. Data Stream Mining

Due to advances in data gathering techniques, it is often the case that data is no longer viewed
as a static collection, but rather as a dynamic set, or stream, of incoming data points. The
most common data stream mining tasks are clustering, classification and frequent pattern
mining (Aggarwal 2007; Gama 2010). The rest of this section will give a brief introduce these
data stream mining tasks. We will focus on clustering, since this is also the current focus of
stream.

2.1. Clustering

Clustering, the assignment of data points to groups (typically k) such that point within each
group are more similar than points in different groups is a very basic unsupervised data min-
ing task. For static data sets methods like k-means, k-medians, hierarchical clustering and
density-based methods have been developed among others(Jain, Murty, and Flynn 1999).
However, the standard algorithms for these methods need access to all data points and typi-
cally iterate over the data multiple times. This requirement makes these algorithms unsuitable
for data streams and led to the development of data stream clustering algorithms.

In the last 10 years many algorithms for clustering data streams have been proposed Guha,
Meyerson, Mishra, Motwani, and O’Callaghan (2003); Aggarwal, Han, Wang, and Yu (2003a,
2004a); Cao, Ester, Qian, and Zhou (2006a); Tasoulis, Adams, and Hand (2006); Tasoulis,
Ross, and Adams (2007); Udommanetanakit, Rakthanmanon, and Waiyamai (2007); Tu and
Chen (2009); Wan, Ng, Dang, Yu, and Zhang (2009); Kranen, Assent, Baldauf, and Seidl
(2011). Most data stream clustering algorithms use a two-stage online/offline approach:

1. Online: Summarize the data using a set of &’ micro-clusters organized in a space effi-
cient data structure which also enables fast look-up. Micro-clusters are representatives
for sets of similar data points and are created using a single pass over the data (typically
in real time when the data stream arrives). Micro-clusters are typically represented by
cluster centers and additional statistics as weight (density) and dispersion (variance).
Each new data point is assigned to its closest (in terms of a similarity function) micro-
cluster. Some algorithms use a grid instead and micro-clusters represent non-empty
grid cells (e.g., Tu and Chen (2009); Wan et al. (2009)). If a new data point cannot
be assigned to an existing micro-cluster, a new micro-cluster is created. The algorithm
might also perform some housekeeping (merging or deleting micro-clusters) to keep the
number of micro-clusters at a manageable size or to remove information outdated due
to a change in the stream’s data generating process.

2. Offline: When the user or the application requires a clustering, the &’ micro-clusters
are reclustered into k (k < k') final clusters sometimes referred to as macro-clusters.
Since the offline part is usually not regarded time critical, most researchers only state
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that they use a conventional clustering algorithm (typically k-means or DBSCAN Ester,
Kriegel, Sander, and Xu (1996)) by regarding the micro-cluster centers as pseudo-points.
The algorithms are often modified to take also the weight of micro-clusters into account.

2.2. Classification

Classification, learning a model in order to assign labels to new, unlabeled data points is a well
studied supervised machine learning task. Methods include naive Bayes, k-nearest neighbors,
classification trees, support vector machines, rule-based classifiers and many more (Hastie
et al. 2001). However, as with clustering these algorithms need access to all the training data
several times and thus are not suitable for data streams with constantly arriving new training
data.

Several classification methods suitable for data streams have been developed recently. Exam-
ples are Very Fast Decision Trees (VFDT) (Domingos and Hulten 2000) using Hoeffding trees,
the time window-based Online Information Network (OLIN) (Last 2002) and on-demand
classification (Aggarwal, Han, Wang, and Yu 2004b) based on micro-clusters found with the
data-stream clustering algorithm CluStream. For a detailed description of these and other
methods we refer the reader to the survey by Gaber, Zaslavsky, and Krishnaswamy (2007).

2.3. Frequent Pattern Mining

The aim of frequent pattern mining is to discover frequently occurring patterns (e.g., itemsets,
subsequences, subtrees, subgraphs) in large datasets. Patterns are then used to summarize
the dataset and can provide insights into the data. Although finding all frequent pattern is
a computationally expensive task, many efficient algorithms have been developed for static
data sets. Most notably the APRIORI algorithm (Agrawal, Imielinski, and Swami 1993) for
frequent itemsets. However, these algorithms use breath-first or depth-first search strategies
which results in the need to pass over the data several times and thus makes them unusable for
the streaming case. We refer the interested reader to the survey of frequent pattern mining in
data streams by Jin and Agrawal (2007) which describe several algorithms for mining frequent
itemsets.

2.4. Existing Solution: The MOA Framework

MOA (short for Massive Online Analysis) is a framework implemented in Java for both
stream classification and stream clustering (Bifet, Holmes, Kirkby, and Pfahringer 2010).
It is the first experimental framework to provide easy access to multiple data stream mining
algorithms, as well as tools to generate data streams that can be used to measure and compare
the performance of different algorithms. Like WEKA (Witten and Frank 2005), a popular
collection of machine learning algorithms, MOA is also developed by the University of Waikato
and its interface and workflow are similar to those of WEKA.

The workflow in MOA consists of three main steps:

1. Selection of the data stream model (also called data feeds or data generators).

2. Selection of the learning algorithm.
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3. Apply selected evaluation methods on the results of the algorithm on the generated data
stream.

MOA uses a graphical user interface. As the output MOA generates a report which contains
the results from the data mining task as well as the performance evaluation. The learn-
ing algorithm and the evaluation differs depending in the data mining task (classification or
clustering). Classification results are shown as text, while clustering results have a visualiza-
tion component that shows both the clustering (for two-dimensional data) and the change in
performance metrics over time.

The MOA framework is an important pioneer in experimenting with data stream algorithms.
MOA'’s advantages are that it interfaces with WEKA, provides already a set of data stream
classification and clustering algorithms and it provides a clear Java interface to add new
algorithms or use the existing algorithms in other applications.

3. The stream Framework

A drawback of MOA for R users is that for all but very simple experiments Java code has to
be developed. Also, using MOA’s data stream mining algorithms together with the advanced
capabilities of R to create artificial data and to analyze and visualize the results is currently
only partially possible or very difficult.

The stream framework provides a R-based alternative to the MOA framework. It is based
on several packages including proxy (Meyer and Buchta 2010), MASS (Venables and Ripley
2002), clusterGeneration (Qiu and Joe. 2009), and several others. stream also interfaces
the data stream clustering algorithms already available in MOA using the rJava package by
Urbanek (2010). Furthermore, stream can incorporate any algorithm which is written in a
language interfaceable by R.

The stream framework consists of two main components:

1. Data Stream Data (DSD) which manages or creates a data stream, and

2. Data Stream Task (DST) which performs a data stream mining task.

Figure 1 shows a high level view of the interaction of the components. We start by creating
a DSD object and a DST object. Then the DST object starts receiving data form the DSD
object. At any time, we can obtain the current results from the DST object. DSTs can
implement any type of data streaming mining task (e.g., classification or clustering). In the
following we will concentrate on clustering since stream currently focuses on this type of task,
but the framework is implemented such that classification, frequent pattern mining or any
other task can easily be added.

For stream rely on object-oriented design using the S3 class system (Chambers and Hastie
1992) to provide for each of the two core components a lightweight interface (i.e., an abstract
class) which can be easily implemented to create new data stream types or data stream mining
algorithms. The detailed design of the DSD and DSC classes will be discussed in the following
subsections.

3.1. Data Stream Data (DSD)
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Data Stream Data Data Stream Task
(DSD) —— (DST) —— Result

Figure 1: A high level view of the stream architecture.

The first step in the stream workflow is to select a data stream implemented as a Data
Stream Data (DSD) object. This object can be a management layer on top of a real data
stream, a wrapper for data stored on disk or a generator which simulates a data stream
with know properties for controlled experiments. Figure 2 shows relationship of the DSD
classes as a UML class diagram (Fowler 2003). All DSD classes extend the base class DSD.
There are currently two types of DSD implementations, classes which implement R-based data
streams (DSD_R) and MOA-based stream generators (DSD_MOA). stream currently provides the
following generators:

e DSD_GaussianStatic, a DSD that generates static cluster data with a random Gaussian
distribution.

e DSD_GaussianMoving, a DSD that generates moving cluster data with a Gaussian dis-
tribution.

e DSD_UniformNoise, generates uniform noise in a d-dimensional (hyper) cube.

e DSD_mlbenchGenerator, a class uses the generators for artificial datasets defined in the
mlbench package.

e DSD_mlbenchData, a DSD that wraps datasets found within the mlbench package.
e DSD_Target, a DSD that generates a ball in circle data set.

e DSD_BarsAndGaussians, a DSD that generates two bars and two Gaussians clusters
with different density.

e DSD_RandomRBFGeneratorEvents (from MOA), a data generator for moving Gaussian
clusters which noise which can merge and split.

For reading a saved data stream from a file (in csv format) or to connection to a real stream
using a R connection stream provides:

e DSD_ReadStream, a class designed to read data from files or open connections. This
object also provides support to scale the data points using scale().

A non-streaming data set (in a data.frame) can also be wrapped in stream class and to be
replayed as a stream over and over again using:

e DSD_Wrapper, a DSD class that wraps static data (e.g., a data.frame, a matrix or a fixed
portion of another data stream) as a data stream.
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Figure 2: Overview of the DSD class structure.

As depicted in the class diagram, other data steam implementations can be easily added in
the future.

All DSD implementations share a simple interface consisting of the following two functions:

1. A creator function. This function typically has the same name as the class. The list
of parameters depends on the type of data stream it creates. The most common input
parameters for the creation of DSD classes are k, number of clusters (i.e. areas with
high densities), and d, number of dimensions. A full list of parameters can be obtained
from the help page of each class. The result of this creator function is not a data set
but an object representing the streams properties and its current state.

2. The data generation function get_points(x, n=1, ...). This function is used to
obtain the next data point (or next n data points) from the stream represented by
object x. The data point(s) are returned as a data.frame with each row representing a
single data point.

Next to these core functions several utility functions like print (), plot () and write_stream()
to save a part of a data stream to disk are provided automatically by stream. Different
data stream implementations might have additional functions implemented. For example,
DSD_Wrapper and DSD_ReadStream have reset_stream() implemented to reset the stream
to its beginning.

3.2. Data Stream Task (DST)

After choosing a DSD class to use as the data stream source, the next step in the workflow is
to define a Data Stream Task (DST). In stream, a DST refers to any data mining task that
can be applied to data streams. The design is flexible to allow for future extensions with even
currently unknown tasks. Figure 3 shows the class hierarchy for DST. It is important to note
that the concept of the DST class is merely for conceptual purposes, the actual implementation
of clustering, classification or frequent pattern mining are typically quite different and share
only basic management functionality. We will restrict the following discussion on data stream
clustering (DSC) since stream currently focus on this task.

3.3. Data Stream Clustering (DSC)
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Figure 3: Overview of the DST class structure.

Data stream clustering algorithms are implemented as subclasses of the DSC class (see Fig-
ure 3). DSCs implement the online process as subclasses of DSC_Micro (since it produces
micro-clusters) and the offline process as subclasses of DSC_Macro.

The following function can be used for objects of subclasses of DSC:

A creator function which creates an empty clustering.

cluster(dsc, dsd, n=1) which accepts a DSC object and a DSD object. It takes n
data points out of the DSD and adds them to the clustering in the DSC object.

nclusters(x) which returns the number of clusters currently in the DSC object.

get_centers(x, type=c("auto", "micro", "macro"), ...) returns the centers, ei-
ther the centroids or the medoids, of the clusters of the DSC object. The default value
for type is "auto" and results in DSC_Micro objects to return micro-cluster centers and
DSC_Macro objects to return macro-cluster centers. Most DSC_Macro objects also store
the micro-cluster centers and using type these centers can also be retrieved. Trying to
access centers that are not available in the clustering results in an error.

get_weights(x, type=c("auto", "micro", "macro"), ...) returns the weights of
the clusters (typically the number of points assigned to the cluster after fading) in the
DSC object.

get_assignment(dsc, points, type=c("auto", "micro", "macro"), ...) assigns
each data point in points to its nearest cluster center using Euclidean distance and re-
turns a cluster assignment vector.

get_copy(x) creates a deep copy of a DSC object. This is necessary since most clus-
terings are represented by data structures in Java (for MOA-based algorithms) or by
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Figure 4: Interaction between the DSD and DSC classes

R-based reference classes. This function is currently not available for all DSC imple-
mentations.

e plot(x, dsd=NULL, ..., method="pairs", type = c("auto", "micro", "macro")
(see manual page for more available parameters) plots the centers of the clusters. There
are 3 available plot methods: "pairs", "plot", "pc". Method "pairs" is the default
method that produces a matrix of scatter plots that plots the attributes against one
another (this method is only available when d > 2). Method "plot" simply takes the
first two attributes of the matrix and plots it as x and y on a scatter plot. Lastly,
method "pc" performs Principle Component Analysis (PCA) on the data and projects
the data to a 2 dimensional plane and then plots the results. Parameter type controls
if micro- or macro-clusters are plotted.

e print(x, ...) prints common attributes of the DSC object (a small description of the
underlying algorithm and the number of clusters that have been calculated).

Figure 4 shows the typical use of cluster() and other functions. Clustering on a data
stream (DSD) is performed with cluster() on a DSC object. This is typically done with
a DSC_micro object which will perform its online clustering process and the resulting micro-
clusters will be available (via get_centers(), etc.) from the object after clustering. Note
that DSC classes are implemented as reference classes and thus the result of cluster does not
need to be reassigned to the object. New data points can be assigned to the clusters in the
clustering using get_assignment resulting in the cluster assignments.

Reclustering (the offline component of data stream clustering) is done with recluster (macro,
dsc, type="auto", ...). Herethe centersin dsc are used as pseudo-points by the DSC_macro
object macro. After reclustering the macro-clusters can be inspected (using get_centers(),
etc.) and the assignment of micro-clusters to macro-clusters is available via microToMacro ().
The implementations for DSC are split again into R-based implementations (DSC_R) and
MOA-based implementations. The following clustering algorithms are available:

e DSC_Sample, selects representatives via Reservoir Sampling (Vitter 1985).
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e DSC_BIRCH, the first pass of the BIRCH (balanced iterative reducing and clustering
using hierarchies) algorithm (Zhang, Ramakrishnan, and Livny 1996). used to generate
a CF tree where the leave notes are used as micro-clusters.

e DSC_CluStream, the CluStream algorithm from MOA (Aggarwal, Han, Wang, and Yu
2003b).

e DSC_DenStream, the DenStream algorithm from MOA (Cao, Ester, Qian, and Zhou
2006b).

e DSC_ClusTree, the ClusTree algorithm from MOA (Kranen, Assent, Baldauf, and Seidl
2009).

e DSC_tNN, a simple data stream clustering algorithm called threshold nearest-neighbors
(Hahsler and Dunham 2010a,b) extended by a new shared-density graph reclustering
method which makes DSC_tNN a combined micro- and macro-clustering algorithm.

For reclustering, the following traditional clustering algorithms are available as objects of
class DSC_Macro:

DSC_Kmeans, interface to R’s k-means implementation.

e DSC_KmeansW, a version of k-means where the data points (micro-clusters) are weighted
by the micro-cluster weights, i.e., a micro-cluster representing more data points has
more weight.

e DSC_DBSCAN, DBSCAN (Ester et al. 1996).

e DSC_Hierarchical, interface to R’s hclust function.

Finally, clustering sometimes creates small clusters for noise or outliers in the data. stream
provides prune_clusters(dsc, threshold=.05, weight=TRUE) to remove a given percent-
age (given by threshold) of the clusters with the least weight. The percentage is either
computed with the number of clusters or with the sum of the weight of all clusters (weight).
The resulting clustering is a static copy (DSC_Static). Further clustering cannot be per-
formed by it, but it can be used as input for reclustering.

4. Evaluating Data Stream Mining

Evaluation of data stream mining is an important issue. We will only briefly introduce the
evaluation of data stream clustering here and refer the interested reader to the books by
Aggarwal (2007) and Gama (2010).

4.1. Evaluating Data Stream Clustering

Evaluation of clustering and in particular data stream clustering is discussed in the literature
extensively and there are many evaluation criteria available. For the evaluation of conventional
clustering we refer the reader to the popular books by Jain and Dubes (1988) and Kaufman
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and Rousseeuw (1990). Evaluation of data stream clustering is treated in the book by Gama
(2010).

Evaluation of data stream clustering is performed in stream via

evaluate(dsc, dsd, method, n = 1000, type=c("auto", "micro", "macro"),
assign="micro"),

where n data points are taken from dsd and assigned to their closest cluster in the clustering in
dsc using Euclidean distance. By default the points are assigned to micro-clusters (assign),
but it is also possible to direct assign them to macro-cluster centers. Then initial assignments
are aggregated to the level specified in type. For example, for a macro-clustering, the ini-
tial assignments will be made by default to micro-clusters and then these assignments will
be translated into macro-cluster assignments using the micro- to macro-cluster relationships
stored in the clustering. Then the evaluation measure specified in method is calculated.

A simple measure is to evaluate the compactness of the data points assigned to each cluster
using the sum of squared distances between each data point and the center of its cluster
(method "SSQ"). This is measure of internal cluster validity which does not require any
information about the ground truth (i.e., true partitioning of the data into classes).

Most evaluation measures perform external evaluation and require the ground truth (class
label) for the data (dsd). Then based on cluster membership of each new data point and the
class label different measures can be computed. We will not describe each measure here since
most of them are standard measures which can be found in many text books (e.g., Jain and
Dubes 1988; Kaufman and Rousseeuw 1990). We only list the measures currently available
for evaluate() (method name are under quotation marks):

e "precision", "recall", F1 measure ("F1"),

e "purity", false positive rate ("fpr")

e Rand index ("Rand"), adjusted Rand index ("cRand"),

e Jaccard index ("Jaccard"),

e Euclidean dissimilarity of the memberships ("Euclidean")

e Manhattan dissimilarity of the memberships ("Manhattan"),
e Normalized Mutual Information ("NMI")

e Katz-Powell index ("KP")

e Fowlkes and Mallows’s index ("FM")

e Maximal cosine of the angle between the agreements ("angle"),
e Maximal co-classification rate ("diag"),

e Prediction Strength ("PS").

11
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4.2. Extending the stream Framework

Since stream mining is a relatively young field and many advances are expected in the near
future, the object oriented framework in stream is developed with easy extensibility in mind.
Implementations for data streams (DSD) and data stream tasks (DST) can be easily added
by implementing a small number of core functions. The actual implementation can be written
in either R, Java, C/C++ or any other programming language which can be interfaced by R.
In the following we discuss how to extend DSD and DST.

4.3. Implementing new Data Stream Data (DSD) Classes

The class hierarchy in Figure 2 (on page 7) is implemented in the S3 class system by using a
vector of class names for the class attribute. For example, an object of class DSD_GaussianStatic
will have the class attribute vector ¢ ("DSD_GaussianStatic", "DSD_R", "DSD") indicating
that the object also is an R implementation of DSD. This allows the framework to implement
all common functionality as functions at the level of DSD and DSD_R and only a minimal set
of functions has to be implemented in order to add a new data stream implementation.

For a new DSD implementation only a creator function and a get_points() method for the
class needs to be implemented. The creator function creates an object of the appropriate DSD
subclass. Typically this S3 object is a list of all parameters, an open R connection and/or
an environment (or a reference class) for storing state information (e.g., the current position
in the stream). Also an element called "description" should be provided. This element is
used by print (). Note that the class attribute has to contain a vector of all parent classes in
the class diagram in bottom-up order. The implemented get_points () needs to dispatch for
the class and create as the output a data.frame containing the data points as rows. Also, if
the ground truth (true cluster assignment) for the data is available, then this can be attached
to the data.frame as an attribute called "assignment" as an integer vector (noise typically is
represented by NA).

For a complete example, look at the implementation of DSD_UniformNoise in the package’s
source code.

4.4. Implementing new Data Stream Task (DST) Classes

We concentrate again on data stream clustering. However, to add new data stream mining
tasks, a subclass hierarchy similar to the hierarchy in Figure 3 (on page 8) for data stream
clustering (DSC) can be easily added.

To implement a new clustering algorithm, a creator function (typically named after the al-
gorithm) and a cluster() function is needed. The clustering algorithm itself is part of the
object created by the creator. To understand this slightly complicated approach consider
again Figure 4 (on page 9). The framework provides the function cluster(dsc, dsd, n=1)
which contains a loop to go through n new data points. In the loop a block of data points
is obtained from dsd using its get_point () function and then the data points are passed on
to an internal generic clustering function which has implementations for DSC_MOA and DSC_R.
The implementation for DSC_MOA takes care of all MOA-based clustering algorithms. For R-
based implementation, the DSC_R version looks in the list of the dsc object for an element
called "RObj", which needs to be a reference class object. Reference classes have been recently
introduced with R-2.12 in package methods as a construct for mutable objects. Mutability
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means that the object can be changed without creating a copy and assigning it back to itself
as would be necessary in a purely functional programming language. The RObj in DSC is
expected to be a reference class with a cluster method. Note at this point that methods of
reference classes are called in a very different way from normal R function calls. For example,
the cluster method of Robj is invoked by RObj$cluster (). However, this is not important
for the end user since the cluster method is only used internally and never called directly by
the user.

To obtain the clustering result, a methods called get_microclusters and get_microweights
which dispatched for the new class need to be implemented. These methods extract the
centers/weights of the clusters from the reference class object in dsc and return them as a
data.frame (centers) or a vector (weights). These methods are also not exposed to the user
and are called internally from get_centers and get_weights.

For a macro clustering algorithm, the cluster method performs reclustering and get_macroclusters
and get_macroweights need to be implemented. In addition microToMacro, a method which
does micro- to macro-cluster matching, has to be provided.

For a complete example, look at the implementation of DSC_tNN in the package’s source code.

5. Examples

Developing new data stream mining algorithms and comparing them experimentally is the
main purpose of stream. In this section we give several increasingly complex examples of how
to use stream. First, we start with creating a data stream using different implementations of
the DSD class. The second example shows how to save and read stream data to and from
disk. We then give examples in how to reuse the same data from a stream in order to perform
comparison experiments with multiple data stream mining algorithms on exactly the same
data. Finally, the last example introduces the use of data stream clustering algorithms with
a detailed comparison of two algorithms from start to finish by first running the online com-
ponents, then using a weighted k-means algorithm to re-cluster the micro-clusters generated
by each algorithm into final clusters.

5.1. Creating a data stream

In this example, we focus on the DSD class to model data streams.

> library("stream")

> set.seed(1000)

> dsd <- DSD_GaussianStatic(k=3, d=2, noise=0.05)
> dsd

Static Mixture of Gaussians Data Stream (DSD_GaussianStatic, DSD_R, DSD)
With 3 clusters in 2 dimensions

After loading the stream package (and setting a seed for the random number generator to make
the experiments reproducible), we call the creator function for the class DSD_GaussianStatic
specifying the number of clusters as k = 4, the data dimensionality to d = 2 and a noise of
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5%. This data stream generator chooses for each cluster randomly a mean and a covariance
matrix.

New data points are requested from the stream using get_points(x, n=1, ...). When a
new data point is requested from this generator, a cluster is chosen randomly and then point
is drawn from a multivariate normal distribution given by the mean and covariance matrix of
the cluster. The following instruction requests n = 5 new data points.

> p <- get_points(dsd, n=5)
> p

Vi V2
0.7254021 0.44002678
0.2642523 0.25574463
0.3684851 0.13816977
0.6470814 0.52239215
0.4239730 0.08627291

g s N -

The result is a data.frame containing the data points as rows. For evaluation it is often
important to know the ground truth, in this case from which cluster each point was created.
The generator also returns the ground truth if it is called with assignment=TRUE. The ground
truth is returned as an attribute with the name "assignment" and can easily be accessed in
the following way:

> p <- get_points(dsd, n=100, assignment=TRUE)
> attr(p, "assignment")

[1] NA 1 3 2 i1 123311313 3 211212 1 2
[26] 3 1 3 3 1 NA 2 2 2NA 2NA 1 2 3 2NA 2 3 3 1 1 3 2
[51] 21 2 3 3 3 2 1 3N 2 1 3 2 1 1N 3 3 2 1 2 2
[r6] 1 2 3 3N 1 1 1 2 2 3 3 2 2 1 2 2 1 3N 2 3 1 3

Note that we created a generator with 5% noise. Noise points do not belong to any cluster
and thus have an assignment value of NA.

Next, we plot 500 points from the data stream to get an idea about its structure.
> plot(dsd, n=500)

Figure 5 shows the resulting plot. The assignment value is used to change the color in the
plot. Noise points are plotted as gray crosses.

DSD_RandomRBFGeneratorEvents creates dynamic data streams where clusters move over
time which is called in the data mining community concept drift.

> set.seed(1000)
> dsd <- DSD_RandomRBFGeneratorEvents (k=3, d=2)
> dsd

W N W
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Figure 5: Plotting 1000 data points from the data stream

Random RBF Generator Events (MOA) (DSD_RandomRBFGeneratorEvents, DSD_MOA, DSD)
With 3 clusters in 2 dimensions

k and d again represent the number of clusters and the dimensionality of the data, respectively.
In the following we request 4 times 500 data points from the stream and create a plot.

> plot(dsd, 500)
> plot(dsd, 500)
> plot(dsd, 500)
> plot(dsd, 500)

Figure 6 shows the results of the four plot instructions. It shows that the 3 clusters move
over time (the ).

An animation of the plot can also be generated using data_animation().

> data_animation(dsd, 5000)

5.2. Reading and writing data streams

Although data streams by definition are unbounded and thus storing them long term is
typically infeasible, it is often useful to store parts of a stream to disk. For example, a small
part of a stream with an interesting feature can be used to test how a new algorithm handles
this specific case. stream has support for reading and writing parts of data streams through an
R connection which provide a set of functions to interface file-like objects like files, compressed
files, pipes, URLSs or sockets (R Foundation 2011).

We start by creating a DSD object.
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Static Mixture of Gaussians Data Stream (DSD_GaussianStatic, DSD_R, DSD)
With 3 clusters in 5 dimensions

Next, we write 100 data points to disk using write_stream().
> write_stream(dsd, "data.csv", n=100, sep=",")

write_stream() accepts a DSD object, and then either a connection directly, or the file
name. The instruction above will create a new file called dsd_data.cvs (an existing file will
be overwritten). The sep parameter defines how the dimensions in each data point (row) are
separated. Here "," is used to create a comma separated values file. The actual writing is
done by the write.table() function and any additional parameters are passed directly to it.
Data points are requested individually from the stream and then written to the connection.
This way the only restriction for the size of the written stream is the available storage at the
receiving end.

The DSD_ReadStream object is used to read a stream from a connection or a file. It reads
a single data point at a time with the read.table() function. Since, after the read data is
processed, e.g., by a data stream clustering algorithm, it it removed from memory, we can
efficiently process files larger than the available main memory.

> file <- system.file("examples", "kddcupl10000.data.gz", package="stream")

> dsd_file <- DSD_ReadStream(gzfile(file),take=c(1, 5, 6, 8:11, 13:20, 23:41),
+ assignment=42, k=7)

> dsd_file

File Data Stream (DSD_ReadStream, DSD_R, DSD)
With 7 clusters in 34 dimensions

DSD_ReadStream objects are just like any other DSD object in that you can call get_points()
to retrieve data points from the data stream.

> get_points(dsd_file,5)

Vi V56 V6 V8 V9 V10 V11 Vi3 Vi4 V15 Vie V17 V18 V19 V20 V23 V24 V25 V26

1 021545076 0 0 0 O O O O O O O O O 1 1 0 ©
2 0162 4528 0 0 0 O O O O O O O O o 2 2 0 o
3 0236 1228 0 0 0O O O O O O O O O o©O 1 1 0 O
4 0233 2032 0 O 0 O O O O O O o o o0 2 2 o0 o
5 0239 486 0 O O O O o0 o o o o o o 3 3 o0 o

V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41

i o0 o0 1 o0 O o o o0 0000 O O O O o
2 0 o0 1 0 O 1 1 i 01.00 0O O O O O
3 0 o0 1 o 0o 2 2 1 005 0 O O 0 O
4 0o o0 1 o o0 3 3 1 00383 O O O 0 O
5 o0 o0 1 o0 O 4 4 1 00.25 O O O O O
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Looping over the data several times and resetting the position in the DSD_ReadStream to the
file’s beginning is possible and will described in the next example.

5.3. Replaying a data stream

An important feature of stream is the ability to replay portions of a data stream. With
this feature we can capture a special feature of the data (e.g., an anomaly) and then adapt
our algorithm and test if the change improved the behavior on exactly that data. Also, this
feature can be used to conduct experiments where different algorithms need to see exactly
the same data.

There are several ways to replay streams. We can write a portion of a stream to disk with
write_stream() and then use DSD_ReadStream to read the stream portion back every time it
is needed. However, often the interesting portion of the stream is small enough to fit into main
memory or might be already available as a matrix or a data.frame in R. In this case we can
use the DSD class DSD_Wrapper which provides a stream interface for a matrix/data.frame.

First we create some data and use get_points() to store 100 points as a data.frame in
points.

library("stream")

set.seed(1000)

dsd <- DSD_GaussianStatic(k=3, d=2)
p <- get_points(dsd, 100)

head (p)

vV V. Vv Vv V

Vi V2
.7497399 0.4127833
.4564119 0.1287219
.1190636 0.1263880
.6875141 0.5917221
.3401115 0.3384190
.6331463 0.4436735

D O W
O O O O O o

Next, we create a DSD_Wrapper object which provides a data stream wrapper for points.

> replayer <- DSD_Wrapper (p)
> replayer

Data Frame/Matrix Stream Wrapper (DSD_Wrapper, DSD_R, DSD)
With NA clusters in 2 dimensions
Contains 100 data points - currently at position 1 - loop is FALSE

Every time we get a point from replayer, the stream moves to the next position (row) in the
data.frame.

> get_points(replayer, n=5)
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Vi V2
0.7497399 0.4127833
0.4564119 0.1287219
0.1190636 0.1263880
0.6875141 0.5917221
0.3401115 0.3384190

g s N -

> replayer

Data Frame/Matrix Stream Wrapper (DSD_Wrapper, DSD_R, DSD)
With NA clusters in 2 dimensions
Contains 100 data points - currently at position 6 - loop is FALSE

The stream only has 94 points left and the following request for more than the available data
points will result in an error.

> get_points(replayer,n = 1000)

DSD_Wrapper and DSD_ReadStream can be created to loop indefinitely, i.e., start over once
the last data point is reached. This is achieved by passing 1oop=TRUE to the creator function.
The current position in the stream for those two types of DSD classes can also be reset to the
beginning of the stream via reset_stream().

> reset_stream(replayer)
> replayer

Data Frame/Matrix Stream Wrapper (DSD_Wrapper, DSD_R, DSD)
With NA clusters in 2 dimensions
Contains 100 data points - currently at position 1 - loop is FALSE

5.4. Clustering a data stream

In this example we show how to cluster data using DSC objects. First, we create a data
stream (two Gaussian clusters in two dimensions with 5% noise).

> library("stream")

> set.seed(1000)

> dsd <- DSD_GaussianStatic(k=3, d=2, noise=0.05)
> dsd

Static Mixture of Gaussians Data Stream (DSD_GaussianStatic, DSD_R, DSD)
With 3 clusters in 2 dimensions

Next, we prepare the clustering algorithm. We use here DSC_BIRCH and set the radius
(BIRCH’s closeness criterion) to 0.01.

19
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> birch <- DSC_BIRCH(radius=0.01)
> birch

BIRCH (DSC_BIRCH, DSC_Micro, DSC_R, DSC)
Number of micro-clusters: 0O

Now we are ready to cluster data from the stream using the cluster () function. Note, that
cluster () will implicitly alter dsc so no reassignment is necessary.

> cluster(birch, dsd, 500)
> birch

BIRCH (DSC_BIRCH, DSC_Micro, DSC_R, DSC)
Number of micro-clusters: 35

After clustering 500 data points data the clustering contains 35 micro clusters. The micro
cluster centers are:

> head(get_centers (birch))

Vi V2
1 0.2097448 0.2734255
2 0.1976754 0.1597070
3 0.2840328 0.1478495
4 0.6910668 0.4507183
5 0.6335987 0.5383234
6 0.2950907 0.5313310

It is often helpful to visualize the results of the clustering operation during the comparison
of algorithms.

> plot(birch, dsd)

The resulting plot is shown in Figure 7. The micro-clusters are plotted in red on top of grey
data points.

5.5. Evaluating results

In this example we will show how to display evaluation measures after clustering data using a
DSC object with the evaluate () function. To use the function simply pass in the DSC object
used for clustering as well as the DSD object to test the quality of the clustering algorithm (n
data points from DSD are used to compute the measures).

library("stream")

dsd <- DSD_GaussianStatic(k=3, d=2, mu=rbind(c(1.5,1.3),c(1,1),c(1.2,1)))
tnn <- DSC_tNN(, r=.1, macro=FALSE)

cluster (tnn, dsd, 500)

evaluate(tnn, dsd, n = 500)

vV VvV Vv Vv Vv
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Figure 7: Plotting the micro-clusters on top of data points

Evaluation results for micro-clusters.
Points were assigned to micro-clusters.

numClusters numClasses  precision recall F1 purity
14.0000000  3.0000000  1.0000000  0.2202643 0.3610108 1.0000000
fpr SSQ  Euclidean Manhattan Rand cRand
0.2202643 19.9454542  0.2358011  0.4160000 0.7814589  0.4148000
NMI KP angle diag FM Jaccard
0.6838036 0.5143831  0.4160000 0.4160000 0.5896320 0.3476659
PS classPurity
0.1471861  0.2202643

Individual measures can be calculated using the method argument.

> evaluate(tnn, dsd, method = c("purity", "crand"), n = 500)

Evaluation results for micro-clusters.
Points were assigned to micro-clusters.

purity cRand
0.9940000 0.3968661

For evolving streams it is important to evaluate how well the clustering algorithm is able to
adapt to the changing cluster structure over time. Several algorithms were evaluated with
the scheme presented by Aggarwal et al. (2003b), Tu and Chen (2009) and Wan et al. (2009).
In this approach a horizon is defined as a number of data points which are first clustered
and then the evaluation measure is calculated using the same data. Algorithms which can

21
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better adapt to the changing stream will achieve a better value. This evaluation strategy
is implemented in stream as function evaluate_cluster. The following examples evaluate
DenStream and DenStream plus weighted k-means reclustering on an evolving stream.

> dsd <- DSD_GaussianMoving()

> micro <- DSC_DenStream(initPoints=100)

> evaluate_cluster(micro, dsd, method=c("purity","crand"), n=600, horizon= 100,
+ assign="micro")

purity cRand
100  0.67 0.5628322
200 0.67 0.5628322
300 0.67 0.4708696
400 0.67 0.5737903
500 0.94 0.6132992
600 0.80 0.4424282

> reset_stream(dsd)

> micro <- DSC_DenStream(initPoints=100)

> macro <- DSC_KmeansW(3)

> evaluate_cluster(micro, dsd, macro, method=c("purity","crand"), n=600,

+ horizon=100, assign="micro")
purity cRand

100 0.67 0.5628322

200 0.67 0.5628322

300 0.67 0.4708696

400 0.67 0.5737903

500 0.94 0.8319220

600 0.80 0.5862409

5.6. Reclustering DSC objects with another DSC

This examples show how to recluster a DSC object after creating it. To begin, first create a
DSC object and run the clustering algorithm.

library("stream")

dsd <- DSD_GaussianStatic(k=3, d=2, mu=rbind(c(1.5,1.3),c(1,1),c(1.2,1)))
tnn <- DSC_tNN(r=.04, macro=FALSE)

cluster(tnn, dsd, 1000)

tnn

vV V Vv Vv Vv

tNN (DSC_tNN, DSC_Micro, DSC_R, DSC)
Number of micro-clusters: 62
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Figure 8: A data stream clustered with tNN and then reclustered with weighted k-means and
k=3.

This will produce micro-clusters which can then be reclustered. To achieve this, simply use
the recluster () method with a macro cluster. The supported macro clustering models that
are typically used for reclustering are k-means, weighted k-means, hierarchical clustering, and
DBSCAN. Here we use weighted k-means.

> km <- DSC_KmeansW(3)

> recluster (km, tnn)
> km

Weighted k-Means (DSC_KmeansW, DSC_Macro, DSC_R, DSC)

Number of micro-clusters: 62

Number of macro-clusters: 3

Now the macro clusters can be used for example for evaluation or plotted.

> evaluate(km, dsd,"purity")

Evaluation results for macro-clusters.
Points were assigned to micro-clusters.

purity
0.938

> plot (km, dsd)

5.7. Full experimental comparison

This example shows the stream framework being used from start to finish. It encompasses the
creation of data streams, data clusterers, the online clustering of data points as micro-clusters,
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and then the comparison of the offline clustering of 2 data stream clustering algorithms by
applying the weighted k-means algorithm. As such, less detail will be given in the topics
already covered in the previous examples and more detail will be given on the comparison of
the 2 data stream clustering algorithms.

First, we set up the data. We extract 1000 data points and put them in a DSD_Wrapper to
make sure that we provide both algorithms with exactly the same data.

library("stream")

set.seed (1000)

d <- get_points(DSD_GaussianStatic(k=3, d=2, noise=0.01), n=1000,
assignment=TRUE)

head (d)

vV + VvV Vv Vv

Vi V2
.64111587 0.4704272
.17924327 0.2921518
.08830749 0.2186050
.81291725 0.5317657
.31715474 0.2536838
.62280912 0.6041445

Ok WN -
O O O O O O

> dsd <- DSD_Wrapper(d, k=3)
> dsd

Data Frame/Matrix Stream Wrapper (DSD_Wrapper, DSD_R, DSD)
With 3 clusters in 2 dimensions
Contains 1000 data points - currently at position 1 - loop is FALSE

Next, we create the two clustering algorithms and cluster the same 1000 data points with
both. Note that we have to reset the stream before we cluster the data points for the second
clustering algorithm.

> denstream <- DSC_DenStream()
> clustream <- DSC_CluStream()

> cluster(denstream, dsd, 1000)
> reset_stream(dsd)
> cluster(clustream, dsd, 1000)

> denstream

DenStream (DSC_DenStream, DSC_Micro, DSC_MOA, DSC)
Number of micro-clusters: 33

> clustream
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Figure 9: Plotting 2 sets of different micro-clusters against the generated data

CluStream (DSC_CluStream, DSC_Micro, DSC_MOA, DSC)
Number of micro-clusters: 100

After the clustering operations, we plot the calculated micro-clusters and the original data.

> reset_stream(dsd)
> plot(denstream,dsd)

> reset_stream(dsd)
> plot(clustream,dsd)

Next, we will see how well the micro-clusters generated by DenStream and CluStream reclus-
ter, which is typically an off-line process. We use weighted k-means for reclustering where we
use k = 3, the true number of clusters.

km_denstream <- DSC_KmeansW(3)
recluster (km_denstream, denstream)
km_clustream <- DSC_KmeansW(3)
recluster (km_clustream, clustream)

vV VvV Vv Vv

v

reset_stream(dsd)
> plot (km_denstream,dsd)

> reset_stream(dsd)
> plot (km_clustream, dsd)

The clusters are shown in Figure 10. We see that the move even distribution of micro-clusters
from CluStream helps to recover the original structure of the data while the large micro-
cluster dominates the results for DenStream. Given more data, DenStream will eventually
also find the correct clustering.

Finally, we can compare the clusterings using evaluate.
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Figure 10: Plotting the results of a k-means operation on each stream clustering algorithm

> sapply(list (DenStream=km_denstream, CluStream=km_clustream),
+ FUN=function(x){

+ reset_stream(dsd)

+ evaluate(x, dsd, c("purity","rand", "crand"))

+ })

DenStream CluStream
purity 0.6680162 0.9757085
Rand 0.7186707 0.9683415
cRand 0.4391640 0.9287125

Here we also see that the reclustered micro-clusters from CluStream perform better.

6. Conclusion and Future Work

stream is a data stream modeling framework in R that has both a variety of data stream
generation tools as well as a component for performing data stream mining tasks. The flex-
ibility offered by our framework allows the user to create a multitude of easily reproducible
experiments to compare the performance of these tasks.

Furthermore, the presented infrastructure can be easily extended by adding new data sources
and algorithms. We have abstracted each component to only require a small set of functions
that are defined in each base class. Writing the framework in R means that developers have the
ability to design components either directly in R, or design components in Java or C/C++,
and then write a R light weight wrapper as we did for the MOA algorithms. This allows
experimenting with a multitude of algorithms in a consistent way.

Currently, stream focuses on the data stream clustering task. In the future we plan to also
incorporate classification and frequent pattern mining algorithms as an extension of the base
DST class.
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