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Abstract

Heteroskedasticity in financial and economic datasets is a commonly observed feature,
and the need to model this feature properly has for a long time been of great interest
to researchers and practitioners alike. The R package stochvol provides a fully Bayesian
implementation of heteroskedasticity modelling by means of the stochastic volatility (SV)
framework. Being a state-space formulation, it describes contemporaneous volatilities as
latent random variables as opposed to deterministic values. The software described in
this paper utilizes Markov chain Monte Carlo (MCMC) samplers to conduct inference by
obtaining draws from the posterior distribution of parameters and latent variables, which
can then be used for predicting future volatilities. The package can straightforwardly
be employed as a stand-alone tool; moreover, it allows for easy incorporation into other
MCMC samplers. Main focus of the paper is to show the functionality of stochvol, never-
theless it also provides a brief mathematical description of the model, an overview of the
sampling schemes used, and an in-depth example using exchange rate data.

Keywords: Bayesian inference, Markov chain Monte Carlo (MCMC), auxiliary mixture sam-
pling, ancillarity-sufficiency interweaving strategy (ASIS), state-space model, heteroskedas-
ticity, financial time series.

1. Introduction

When analyzing (financial) returns, focus is often laid on estimating and predicting potentially
time varying volatilities. This interest has a long history, dating at least back to Markowitz
(1952), who investigated portfolio construction with optimal expected return-variance trade-
off. In his article, he proposes rolling-window-type estimates for the instantaneous volatilities,
but already then recognizes the potential for “better methods, which take into account more
information”.

One way of doing so is to model the evolution of volatility deterministically, i.e. through the
(G)ARCH class of models. After the groundbreaking papers of Engle (1982) and Bollerslev
(1986), these models have been generalized in numerous ways and were applied to a vast
amount of real-world problems. As an alternative, Taylor (1982) proposes in his seminal work
to model the volatility probabilistically, i.e. through a state-space model where the logarithm
of the squared volatilities – the latent states – follow an autoregressive process of order one.
Over time, this specification became known as the stochastic volatility (SV) model. Even
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though several papers (e.g. Jacquier, Polson, and Rossi 1994; Ghysels, Harvey, and Renault
1996; Kim, Shephard, and Chib 1998) find early evidence in favor of using SV, these models
have found comparably little use in applied work. In this regard, Bos (2012) states:

While there are literally thousands of applications of GARCH, for SV, this num-
ber is far lower. Two reasons for this relative lack of applied work using SV are
apparent. First, there are as of yet no standard packages for estimating SV mod-
els, whereas for GARCH, most statistical packages have a wealth of options for
incorporating GARCH effects. A second difference seems to be that GARCH has
many variants of the model (Bollerslev 2008), with basically a single estimation
method for all of them. For SV, there are few variants of the model, but a full
series of estimation methods.

In Kastner and Frühwirth-Schnatter (forthcoming), the latter issue has been thoroughly in-
vestigated, and an efficient MCMC estimation scheme has been proposed. The paper at hand
and the corresponding package stochvol (Kastner 2013) for R (R Development Core Team
2013) were crafted to cope with the first problem: the lack of standard packages for efficiently
estimating SV.

2. Model specification and estimation

In this section, we briefly introduce the model and specify the notation used in the remainder
of the paper. Furthermore, a quick overview over Bayesian parameter estimation via Markov
chain Monte Carlo (MCMC) methods is given.

2.1. The SV model

Let y = (y1, y2, . . . , yT )′ be a vector of returns with mean zero. The intrinsic feature of the
SV model is that each observation yt is assumed to have its “own” contemporaneous variance
eht , thus relaxing the usual assumption of homoskedasticity. In order to make estimation of
such a model feasible (note that there are just as many data points as there are variances!),
this variance is not allowed to vary unrestrictedly with time. Rather, its logarithm is assumed
to follow a parametric stochastic process, more specifically: an autoregressive process of order
one. Note that feature is fundamentally different to GARCH-type models, where the time-
varying volatility is assumed to follow a deterministic rather than stochastic evolution.

The SV model (in its centered parameterization) is thus given through

yt|ht ∼ N (0, expht) , (1)

ht|ht−1, µ, φ, ση ∼ N
(
µ+ φ(ht−1 − µ), ση

2
)
, (2)

h0|µ, φ, ση ∼ N
(
µ, ση

2/(1− φ2)
)
, (3)

where N
(
µ, ση

2
)

denotes the normal distribution with mean µ and variance ση
2. We will refer

to θ = (µ, φ, ση)
′ as the vector of parameters: the level µ, the persistence φ, and the volatility

ση of log-variance. The process h = (h0, h1, . . . , hT ) appearing in state equations (2) and
(3) is unobserved and usually interpreted as the latent time-varying volatility process (more
precisely: the log-variance process). Note that the initial state h0 is distributed according to
the stationary distribution of the autoregressive process of order one.
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2.2. Prior distributions

To complete the model setup, a prior distribution for the parameter vector θ needs to be
specified. Following Kim et al. (1998), we choose independent components for each parameter,
i.e. p(θ) = p(µ)p(φ)p(ση).

The level µ ∈ R is equipped with the usual normal prior µ ∼ N (bµ, Bµ). In practical
applications, this prior is usually chosen to be rather uninformative, e.g. through setting
bµ = 0 and Bµ ≥ 100 for daily log-returns. Our experience with empirical data is that the
exact choice is usually not very influential; see also Subsection 3.2.

For the persistence parameter φ ∈ (−1, 1), we choose (φ+ 1)/2 ∼ B (a0, b0), implying

p(φ) =
1

2B(a0, b0)

(
1 + φ

2

)a0−1(1− φ
2

)b0−1
, (4)

where a0 and b0 are positive hyperparameters and B(x, y) =
∫ 1
0 t

x−1(1 − t)y−1 dt denotes
the beta function. Clearly, the support of this distribution is the unit interval (−1, 1); thus,
stationarity of the autoregressive volatility process is guaranteed. Its expected value and
variance are given through the expressions

E(φ) =
2a0

a0 + b0
− 1,

V (φ) =
4a0b0

(a0 + b0)2(a0 + b0 + 1)
.

This obviously implies that the prior expectation of φ depends only on the ratio a0 : b0. It is
greater than zero if and only if a0 > b0 and smaller than zero if and only if a0 < b0. For a
fixed ratio a0 : b0, the prior variance decreases with larger values of a0 and b0. The uniform
distribution on the unit interval arises as a special case when a0 = b0 = 1. For financial
datasets with not too many observations (i.e. T . 1000), the choice of the hyperparameters
a0 and b0 can be quite influential on the shape of the posterior distribution of φ. In fact, note
that in the case when the underlying data-generating process is (near-)homoskedastic, the
volatility of log-variance ση will be (very close to) zero and thus the likelihood will contain
little to no information about φ. Consequently, the posterior distribution of φ will be (almost)
equal to its prior, no matter how many data points are observed. For some discussion about
this issue, see e.g. Kim et al. (1998), who choose a0 = 20 and b0 = 1.5, implying a prior mean
of 0.86 with a prior standard deviation of 0.11 and thus very little mass for nonpositive values
of φ.

For the volatility of log-variance ση ∈ R+, we choose ση
2 ∼ Bση ·χ2

1 = G
(
1/2, 1/2Bση

)
, which

is motivated by Frühwirth-Schnatter and Wagner (2010), who equivalently stipulate the prior
for ±

√
ση2 to follow a centered normal distribution, i.e. ±

√
ση2 ∼ N

(
0, Bση

)
. As opposed

to the usual Inverse-Gamma prior, this prior is not conjugate in the usual sampling scheme,
however, does not bound ση away from zero a priori. The choice of the hyperparameter Bση
turns out to be of minor influence in empirical applications, as long as it is not picked to be
too small.

2.3. MCMC Sampling

An MCMC algorithm such as the one implemented in the package stochvol will provide its
user with draws from the posterior distribution of the desired random variables: in our case
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the latent log-variances h and the parameter vector θ. Because these draws are usually
dependent, Bayesian inference via MCMC may require careful design of the algorithm and
attentive investigation of the draws obtained.

One key feature of the algorithm used in this package is the joint sampling of all instanta-
neous volatilities “all without a loop” (AWOL), a technique going back at least to Rue (2001)
and discussed in more detail in McCausland, Miller, and Pelletier (2011). Doing so reduces
correlation of the draws significantly and requires auxiliary finite mixture approximation of
the errors as in Kim et al. (1998) or Omori, Chib, Shephard, and Nakajima (2007).

In order to avoid the cost of code interpretation within each MCMC iteration, the core
computations of the sampler are implemented in C, interfaced to R via the Rcpp package
(Eddelbuettel and François 2011), where the convenience functions and the user-interface
are implemented. This combination allows to make use of the well-established and widely
accepted ease-of-use of R and its underlying functional programming paradigm. Moreover,
existing frameworks for analyzing MCMC output such as coda (Plummer, Best, Cowles, and
Vines 2006) as well as high-level visualization tools can easily be used. Last but not least,
users with a basic knowledge of R can use the package in a familiar surrounding with a very
small entry cost. Nevertheless, despite all these convenience features, the package profits from
highly optimized machine code generated by a compiler at package build time, thus providing
acceptable runtime even for larger datasets.

A novel and crucial feature of the algorithm implemented in stochvol is the usage of an
“ancillarity-sufficiency interweaving strategy” (ASIS), which has been brought forward in the
general context of state-space models by Yu and Meng (2011). ASIS exploits the fact that for
certain parameter constellations, sampling efficiency improves substantially when considering
a non-centered version of a state-space model. This fact is commonly known as a reparame-
terization issue with an entire body of literature attached to it; for an early reference see e.g.
Hills and Smith (1992). In the case of the SV model, a move of this kind can be achieved
by moving the level µ and/or the volatility ση of log-variance from the state equation (2)
to the observation equation (1) through a simple reparameterization of the latent process h.
However, in the case of the SV model, it turns out that no single superior parameterization
exists. Rather, for some underlying processes, the standard parameterization yields superior
results, while for other processes non-centered versions are better. To overcome this issue, the
parameter vector θ is sampled twice: once in the centered, and once in a noncentered param-
eterization. This method of “combining best of different worlds” allows for efficient inference
regardless of the underlying process with one algorithm. For details about the algorithm
and empirical results concerning sampling efficiency, see Kastner and Frühwirth-Schnatter
(forthcoming).

3. The stochvol package

The usual stand-alone approach to fitting SV models with stochvol follows the following work-
flow: (1) Prepare the data, (2) specify the prior distributions and configuration parameters,
(3) run the sampler, (4) assess the output and display the results. All these steps will be
described in more detail in this Section, along with a worked example. For a stepwise incor-
poration of SV effects into other MCMC samplers, please see Section 4.
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Figure 1: Visualization of EUR-USD exchange rates included in the stochvol package.

3.1. Preparing the data

The core sampling function svsample expects its input data y to be a numeric vector of
returns without any missing values (NAs), and will throw an error if provided with anything
else. In case that y contains zeros, a warning will be issued and a small offset constant of
size sd(y)/10000 will be added to the squared returns before doing the auxiliary mixture
sampling (cf. Omori et al. 2007). A common and recommended way of avoiding zero returns
is to de-mean the returns beforehand. Below is an example how to prepare data, illustrated
with the exrates data set1 which is included in the package. A visualization of one of these
time series is displayed in Figure 1.

> library(stochvol)

> data(exrates)

> ret <- logret(exrates$USD, demean=TRUE)

> plot(exrates$date, exrates$USD, type = 'l', main = "Price of 1 EUR in USD")

> plot(exrates$date[-1], ret, type = 'l', main = "De-meaned log-returns")

Additionally to real-world data, stochvol has also a built-in data generator svsim. This
function simply produces realizations of an SV process and returns an object of class svsim,

1The data set, which as been obtained from the European Central Bank’s Statistical Data Warehouse,
contains the daily bilateral prices of one Euro in 23 currencies from January 3, 2000, until April 4, 2012.
Conversions to New Turkish Lira and Fourth Romanian Leu have been incorporated. See ?exrates for more
information.
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Figure 2: Visualization of a simulated time series as provided by the default plot method.

which has its own print, summary, and plot methods. Exemplary code using svsim is given
below, and the particular instance of this simulated series is displayed in Figure 2.

> sim <- svsim(500, mu = -10, phi = 0.99, sigma = 0.1)

> plot(sim)

3.2. Specifying prior distributions and configuration parameters

After preparing the data vector y, the user needs to specify the prior hyperparameters for
the parameter vector θ = (µ, φ, ση)

′ – see also Subsection 2.2 – and some configuration
parameters. The appropriate values are passed to the main sampling function svsample as
arguments, which are described below.

The argument priormu is a vector of length 2, containing mean and standard deviation of
the normal prior for the level of the log-variance µ. A common strategy is to choose a vague
prior here, e.g. c(0, 100), because the likelihood usually carries enough information about
this parameter. If one prefers to use (slightly) informative priors, e.g. to avoid outlier draws
of µ, care must be taken whether actual log-returns or percentage log-returns are analyzed.
Assuming daily data, the former commonly have an unconditional variance of 0.0001 or less
and thus the level on the log-scale µ lies around log(0.0001) ≈ −9, while the latter have the
1002-fold unconditional variance (around 1), which implies a level of log(1) = 0. Choices in
the literature include c(0, 10) (Jacquier, Polson, and Rossi 2004), c(0, 5) (Yu 2005), c(0,
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sqrt(10)) (Kim et al. 1998; Meyer and Yu 2000) or c(0, 1) (Omori et al. 2007). Note that
most of these choices are quite informative and clearly designed for percentage log-returns!

For specifying the prior hyperparameters for the persistence of log-variance, φ, the argument
priorphi may be used. It is again a vector of length 2, containing a0 and b0 specified in
Equation (4). As elaborated in Subsection 2.2, these values can possibly be quite influential,
thus we advise to put some thought into choosing them and study the effect of different choices
carefully. The default is currently given through c(5, 1.5), implying a prior mean of 0.54
and a prior standard deviation of 0.31.

The prior variance of log-variance hyperparameterBση may be controlled through priorsigma.
This argument defaults to 1 if not provided by the user. As elaborated in Subsection 2.2, the
exact choice of this value is usually not very influential in typical applications. In general, it
should not be picked too small unless there is a very good reason to do so.

For specifying the size of the burn-in, the parameter burnin is provided. It is the amount of
MCMC iterations that are run but discarded to ensure convergence to the stationary distri-
bution of the chain. The current default value for this parameter is 1000, which has proved to
suffice in most situations. Nevertheless, the user is encouraged to check convergence carefully,
see Subsection 3.4 for more details. The amount of iterations which are run after burn-in can
be specified through the parameter draws, currently defaulting to 10 000. Consequently, the
sampler will be run for a total of burnin + draws iterations.

Three thinning parameters are available, which all are 1 if not specified otherwise. The
first one, thinpara, specifies the denominator of the fraction of parameter draws (i.e. draws
of θ) that are stored. E.g., if thinpara equals 10, every 10th draw is kept. The default
parameter thinning value of 1 means that all draws are saved. The second thinning parameter,
thinlatent, acts in the same way for the latent variables h. The third thinning parameter,
thintime, refers to thinning with respect to the time dimension of the latent volatility. In
the case that thintime is greater than 1, not all elements of h are stored, e.g., for thintime
equaling 10, only the draws of h1, h11, h21, . . . (and h0) are kept.

Another configuration argument is quiet, which defaults to FALSE. If set to TRUE, all output
during sampling (progress bar, status messages) is omitted. The arguments startpara and
startlatent are optional starting values for the parameter vector θ and the latent variables
h, respectively. All other configuration parameters are summarized in the argument expert,
because it is not very likely that the end-user needs to mess with the defaults.2 Please
refer to the package documentation in combination with Kastner and Frühwirth-Schnatter
(forthcoming) for details.

Any further arguments (...) will be forwarded to updatesummary, controlling the type of
summary statistics that are calculated for the posterior draws.

3.3. Running the sampler

At the heart of the package stochvol lies the function svsample, which serves as an R-wrapper
for the actual sampler coded in C. Exemplary usage of this function is given in the code snipped
below, along with the default output.

2Examples of configurations that can be changed with the expert-argument include the specification of the
(baseline) parameterization (centered or noncentered) and the possibility to turn off interweaving. Moreover,
some algorithmic details such as the number of blocks used for the parameter updates or the possibility of using
a random walk Metropolis-Hastings proposal (instead of the default independence proposal) can be found here.
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> res <- svsample(ret, priormu = c(-10, 1), priorphi = c(20, 1.1),

priorsigma = .1)

Calling GIS_C MCMC sampler with 11000 iter. Series length T = 3139.

0% [+++++++++++++++++++++++++++++++++++++++++++++++++++] 100%

Timing (in seconds):

user system elapsed

17.536 0.388 17.935

613 iterations per second.

Converting results to coda objects... Done!

Summarizing posterior draws... Done!

As can be seen, this function calls the main MCMC sampler and converts its output to
coda-compatible objects. Moreover, some summary statistics for the posterior draws are
calculated. The return value of svsample is an object of type svdraws, which is a named list
with eight elements, holding (1) the parameter draws in para, (2) the latent log-volatilities
in latent, (3) the initial latent log-volatility draw in latent0, (4) the data provided in y, (5)
the sampling runtime in runtime, (6) the prior hyperparameters in priors, (7) the thinning
values in thinning, and (8) summary statistics of these draws, alongside some common
transformations thereof, in summary.

3.4. Assessing the output and displaying the results

Following common practice, print and summary methods are available for svdraws objects.
Each of these has two optional parameters, showpara and showlatent, specifying which
output should be displayed. If showpara is TRUE (the default), values/summaries of the
parameter draws are shown. If showlatent is TRUE (the default), values/summaries of the
latent variable draws are shown. In the example below, the summary for the parameter draws
only is displayed.

> summary(res, showlatent = FALSE)

Summary of 10000 MCMC draws after a burn-in of 1000.

Prior distributions:

mu ~ Normal(mean = -10, sd = 1)

(phi+1)/2 ~ Beta(a0 = 20, b0 = 1.1)

sigma^2 ~ 0.1 * Chisq(df = 1)

Posterior draws of parameters (thinning = 1):

mean sd 1% 10% 50% 90% 99% ESS

mu -10.1308 0.22806 -10.7032 -10.3820 -10.1345 -9.8798 -9.5118 4537

phi 0.9936 0.00282 0.9856 0.9898 0.9938 0.9969 0.9989 386

sigma 0.0654 0.01005 0.0465 0.0536 0.0646 0.0783 0.0952 142
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exp(mu/2) 0.0064 0.00076 0.0047 0.0056 0.0063 0.0072 0.0086 4537

sigma^2 0.0044 0.00139 0.0022 0.0029 0.0042 0.0061 0.0091 142

There are several plotting functions specifically designed for objects of class svsample, which
will be described in the following paragraphs.

(1) volplot: Plots posterior quantiles of the latent volatilities in percent, i.e. 100 exp(ht/2),
over time. Apart from the mandatory svsample-object itself, this function takes several
optional arguments. Only some will be mentioned here; for an exhaustive list please
see the corresponding help document accessible through ?volplot or help(volplot).
Selected optional arguments that are commonly used include forecast for n-step-ahead
volatility prediction, dates for date-labels on the x-axis, alongside some graphical pa-
rameters. The code snipped below shows a typical example and Figure 3 displays its
output.

> volplot(res, forecast = 100, dates = exrates$date[-1])

Estimated volatilities in percent (5% / 50% / 95% posterior quantiles)
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Figure 3: Visualization of estimated contamporaneous volatilities of EUR-USD exchange
rates, as provided by volplot. If not specified otherwise, posterior medians and 5%/95%
quantiles are plotted. The dotted lines at the right side indicate predicted future volatilities.

In case the user wants to display different posterior quantiles, the updatesummary func-
tion has to be called first. See the code below for an example and Figure 4 for the
corresponding plot.

> res <- updatesummary(res, quantiles = c(.01, .1, .5, .9, .99))

> volplot(res, forecast = 100, dates = exrates$date[-1])
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Estimated volatilities in percent (1% / 10% / 50% / 90% / 99% posterior quantiles)
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Figure 4: As above, now with medians (black line) and 1%/10%/90%/99% quantiles (gray
lines). This behaviour can be achieved through a preceding call of updatesummary.

(2) paratraceplot: Displays trace plots for the parameters contained in θ. Note that the
burn-in has already been discarded. Figure 5 shows an example.

> paratraceplot(res)

(3) paradensplot: Displays a kernel density estimate for the parameters contained in θ. If
the argument showobs is TRUE (which is the default), individual posterior draws are in-
dicated through a rug, i.e. short vertical lines at the x-axis. For quicker drawing of large
posterior samples, this argument should be set to FALSE. If the argument showprior is
TRUE (which is the default), the prior distribution is indicated through a dashed gray
line. Figure 6 shows an example output for the EUR-USD exchange rates obtained from
the exrates dataset.

> paradensplot(res)

The generic plot method for svdraws objects combines all above plots into one plot. All
arguments described above can be used. See ?plot.svsample for an exhaustive summary of
possible arguments and Figure 7 for an example.

> plot(res)

For extracting standardized residuals, the residuals/resid method can be used on a given
svdraws object. With the optional argument type, the type of summary statistic may be
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Figure 5: Trace plots of posterior draws for the parameters µ, φ, ση.
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Figure 6: Posterior density estimates (black solid lines) along with prior densities (dashed
gray lines). Individual posterior draws are indicated by the underlying rug.

specified. Currently, type is allowed to be either "mean" or "median", where the former
corresponds to the default value. This method returns a real vector of class svresid, which
contains the requested summary statistic of standardized residuals for each point in time.
There is also a plot method available, providing the option of comparing the standardized
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Figure 7: Illustration of the default plot method for svdraws-objects. This visualization
combines volplot (Figure 4), traceplot (Figure 5), and paradensplot (Figure 6) into one
single plot.

residuals to the original data when given through the argument origdata. See the code below
for an example and Figure 8 for the corresponding output.

> myresid <- resid(res)

> plot(myresid, ret)

4. Using stochvol within other samplers

Purpose of this section is to demonstrate how the stochvol package can be used to incorporate
stochastic volatility into any given MCMC sampler. For the sake of simplicity, we explain
this procedure with the help of the Bayesian normal linear model with T observations and
k = p− 1 predictors, given through

y|β,Σ ∼ N (Xβ,Σ) . (5)

Here, y denotes the T ×1 vector of responses, X is the T ×p design matrix containing ones in
the first column and the predictors in the others, and β stands for the p×1 vector of regression
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Residual plot

Time

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

1 524 1047 1570 2093 2616 3139
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Figure 8: Mean standardized residual plots for assessing the model fit, as provided by the cor-
responding plot method. The dashed lines in the bottom left panel indicate the 2.5%/97.5%
quantiles of the standard normal distribution.

coefficients. In the following sections, we will discuss two specifications of the T × T error
covariance matrix Σ.

4.1. The Bayesian normal linear model with homoskedastic errors

The arguably simplest specification of the error covariance matrix in Equation (5) is given by
Σ ≡ σ2ε I, where I denotes the T -dimensional unit matrix. This specification is used in many
applications and commonly referred to as the linear regression model with homoskedastic
errors. To keep things simple, let model parameters β and σ2ε be equipped with the usual
conjugate prior p(β, σ2ε ) = p(β|σ2ε )p(σ2ε ), where

β|σ2ε ∼ N
(
b0, σ

2
εB0

)
,

σ2ε ∼ G−1(c0, C0) .

A commonly used Gibbs-sampler for drawing from the posterior distribution of this model is
given by sampling in turn from the full conditional distributions β|y, σ2ε ∼ N (bT ,BT ) with

bT =
(
X>X +B−10

)−1 (
X>y +B−10 b0

)
, BT = σ2ε

(
X>X +B−10

)−1
,
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and σ2ε |y,β ∼ G−1(cT , CT ) with

cT = c0 +
T

2
+
p

2
, CT = C0 +

1

2

(
(y −Xβ)>(y −Xβ) + (β − b0)>B−10 (β − b0)

)
.

In R, this can straightforwardly be coded as follows:

� Set seed to make results reproducible and simulate some data:

> set.seed(123456)

> T <- 1000

> beta.true <- c(.1, .5)

> sigma.true <- 0.01

> X <- matrix(c(rep(1, T), rnorm(T, sd=sigma.true)), nrow = T)

> y <- rnorm(T, X %*% beta.true, sigma.true)

� Specify configuration parameters and prior values:

> draws <- 5000

> burnin <- 100

> b0 <- matrix(c(0, 0), nrow = ncol(X))

> B0inv <- diag(c(10^-10, 10^-10))

> c0 <- 0.001

> C0 <- 0.001

� Pre-calculate some values outside the main MCMC loop:

> p <- ncol(X)

> preCov <- solve(crossprod(X) + B0inv)

> preMean <- preCov %*% (crossprod(X, y) + B0inv %*% b0)

> preDf <- c0 + T/2 + p/2

� Assign some storage space for holding the draws and set an initial value for σ2ε :

> draws1 <- matrix(NA_real_, nrow = draws, ncol = p + 1)

> colnames(draws1) <- c(paste("beta", 0:(p-1), sep='_'), "sigma")

> sigma2draw <- 1

� Go for it!

> for (i in -(burnin-1):draws) {

+ betadraw <- as.numeric(mvtnorm::rmvnorm(1, preMean, sigma2draw*preCov))

+ tmp <- C0 + .5*(crossprod(y - X%*%betadraw) +

+ crossprod((betadraw-b0), B0inv) %*% (betadraw-b0))

+ sigma2draw <- 1/rgamma(1, preDf, rate=tmp)

+ if (i > 0) draws1[i,] <- c(betadraw, sqrt(sigma2draw))

+ }

� Finally, visualize the posterior draws:

> colMeans(draws1)



Gregor Kastner 15

beta0 beta1 sigma

0.09991649 0.50472433 0.01027775

> plot(coda::mcmc(draws1))
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Figure 9: Trace plots and kernel density estimates for some draws from the marginal posterior
distributions in the regression model with heteroskedastic errors. Underlying data is simulated
with βtrue = (0.1, 0.5)′, σtrueε = 0.01, T = 1000.

4.2. The Bayesian normal linear model with SV errors

Instead of homoskedastic errors, we now specify the error covariance matrix in Equation
(5) to be Σ ≡ diag(eh1/2, . . . , ehT /2), thus introducing nonlinear dependence between the
observations due to the AR(1)-nature of h. Instead of cooking up an entire new sampler,
we adapt the code from above utilizing the stochvol package. To do so, we simply replace
the sampling step of σ2ε from an Inverse-Gamma distribution by a sampling step of θ and
h through a call to .svsample. This “dotted” function is a minimal-overhead version of the
regular svsample. It provides the full sampling functionality of the “non-dotted” version, but
has slightly different default values, a simplified return value structure and does not perform
costly input checks. Thus, it is optimized for repeated calls but needs to be used with proper
care. Note that the current draws of the variables need to be passed to the function through
startpara and startlatent.
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� Simulate some data:

> library(stochvol)

> mu.true <- log(sigma.true^2)

> phi.true <- 0.97

> volvol.true <- 0.3

> simresid <- svsim(T, mu = mu.true, phi = phi.true, sigma = volvol.true)

> y <- X %*% beta.true + simresid$y

� Specify configuration parameters and prior values:

> draws <- 50000

> burnin <- 1000

> thinning <- 10

> priormu <- c(-10, 2)

> priorphi <- c(20, 1.5)

> priorsigma <- 1

� Assign some storage space for holding the draws and set initial values:

> draws2 <- matrix(NA_real_, nrow = floor(draws/thinning), ncol = 3 + T + p)

> colnames(draws2) <- c("mu", "phi", "sigma", paste("beta", 0:(p-1), sep='_'),

+ paste("h", 1:T, sep='_'))

> betadraw <- c(0, 0)

> svdraw <- list(para = c(mu = -10, phi = .9, sigma = .2), latent = rep(-10, T))

� Go for it!

> for (i in -(burnin-1):draws) {

+

+ # draw latent volatilities and AR-parameters:

+ ytilde <- y - X %*% betadraw

+ svdraw <- .svsample(ytilde, startpara=para(svdraw),

+ startlatent=latent(svdraw), priormu=priormu,

+ priorphi=priorphi, priorsigma=priorsigma)

+

+ # draw the betas:

+ normalizer <- as.numeric(exp(-latent(svdraw)/2))

+ Xnew <- X * normalizer

+ ynew <- y * normalizer

+ Sigma <- solve(crossprod(Xnew) + B0inv)

+ mu <- Sigma %*% (crossprod(Xnew, ynew) + B0inv %*% b0)

+ betadraw <- as.numeric(mvtnorm::rmvnorm(1, mu, Sigma))

+

+ # store the results:

+ if (i > 0 & i %% thinning == 0) {

+ draws2[i/thinning, 1:3] <- para(svdraw)

+ draws2[i/thinning, 4:5] <- betadraw

+ draws2[i/thinning, 6:(T+5)] <- latent(svdraw)
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+ }

+ }

� Finally, visualize (some) posterior draws:

> colMeans(draws2[,4:8])

beta_0 beta_1 h_1 h_2 h_3

0.1001254 0.4873015 -8.7512804 -8.9052584 -9.0276110

> plot(coda::mcmc(draws2[,4:7]))
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Figure 10: Trace plots and kernel density estimates for draws from the marginal posterior dis-
tributions of the parameters in the regression model with heteroskedastic errors. Underlying
data is simulated with βtrue = (0.1, 0.5)′, htrue1 = −8.28, htrue2 = −8.50, T = 1000.

5. Real-world example

Aim of this Section is the comparison of the performance of the Bayesian normal linear model
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with homoskedastic errors from Subsection 4.1 with the Bayesian normal linear model with
SV errors from Subsection 4.2 using the exrates data set introduced in Subsection 3.1.

5.1. Model setup

We again use the daily price of 1 EUR in USD from January 3, 2000, until April 4, 2012, de-
noted by p = (p1, p2, . . . , pT )′. This time however, instead of using log-returns, we investigate
the development of raw prices by regression: Let y contain all raw observations except the
very first one, and let X denote the design matrix containing ones in the first column and
lagged raw prices in the second, i.e.

y =


p2
p3
...
pT

 , X =


1 p1
1 p2
...

...
1 pT−1

 .

Clearly, we expect the posterior distribution of β to spread around (0, 1)′, which corresponds
to a random walk. A scatterplot of pt against pt+1, displayed in Figure 5.1, confirms this
picture.

0.8 1.0 1.2 1.4 1.6

0.
8

1.
0

1.
2

1.
4

1.
6

Scatterplot of lagged daily raw prices of 1 EUR in USD

pt

p t
+1

Figure 11: Scatterplot of daily raw prices at time t against daily raw prices at time t+1. The
solid line indicates the identity function f(x) = x.
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5.2. Posterior inference

We run both samplers for 100 000 iterations and discard the first 10 000 draws as burn-in. Prior
hyperparameters are chosen as follows: b0 = (0, 0)′, B0 = diag(1010, 1010), c0 = C0 = 0.001,
bµ = −10, Bµ = 2, a0 = 20, b0 = 1.5, Bση = 1. However, due to the length of the dataset
(and its obvious heteroskedasticity), the exact prior specification is not very influential. The
two samplers yield slightly different posteriors for β, visualized in Figure 12, where both the
marginal posterior densities p(β0|y) and p(β1|y) as well as a scatterplot of draws from the
joint posterior β|y are displayed.
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Figure 12: Visualization of the posterior distributions β|y for the model with SV residuals and
the model with homoskedastic errors. Top panels: kernel density estimate of the univariate
posterior marginal distributions. Bottom panel: bivariate scatterplot of posterior draws.

To assess the model fit, mean standardized resdiduals for both samplers are depicted in
Figure 13. It stands out that the model with homoskedastic errors shows deficiencies in terms
of heavy correlation amongst the residuals. This can clearly be seen in the top left panel,
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where mean standardized residuals are plotted against time. The bottom left panel shows
the same plot for the model with SV errors, where this effect practically vanishes. Moreover,
in the model with homoskedastic errors, the normality assumption about the unconditional
error distribution is clearly violated. This can be seen by inspecting the quantile-quantile
plot in the top right panel, where observed residuals show much heavier tails than one would
expect from a normal distribution. On the contrary, standardized residuals obtained from the
model with SV errors align almost perfectly.
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Figure 13: Visualization of mean standardized residuals. Top left panel shows a scatterplot
against time for the model with homoskedastic errors, bottom left panel shows this plot for
the model with SV errors. Quantile-Quantile plots of empirical quantiles against expected
quantiles from a N (0, 1)-distribution are displayed on the panels on the right-hand side.

5.3. Predictive performance and model fit

Within a Bayesian framework, a natural way of assessing the predictive performance of a
given model is through its predictive density (sometimes also referred to as posterior predictive
distribution). Collecting all unobservables, i.e. parameters and possible latent variables, in a
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single vector κ, it is given through

p(yt+1|yo[1:t]) =

∫
K

p(yt+1|yo[1:t],κ)× p(κ|yo[1:t]) dκ. (6)

Note that for the model with homoskedastic errors, κ = (β, σε)
′, while for the model with

SV errors, κ = (β,θ,h)′. By using the superscript o in yo[1:t], we follow Geweke and Amisano

(2010) and denote ex post realizations (observations) for the set of points in time {1, 2, . . . , t}
of the ex ante random values y[1:t] = (y1, y2, . . . , yt)

′. Integration is carried out over K, which
simply stands for the space of all possible values for κ. Equation (6) can be viewed as the
integral of the likelihood function over the joint posterior distribution of the unobservables κ.
Thus, it can be interpreted as the predictive density for a future value yt+1 after integrating
out the uncertainty about κ, conditional on the history yo[1:t].

In the SV errors case, Equation (6) is a (T + p + 3)-dimensional integral which cannot be
solved analytically. Nevertheless, it may be evaluated at an arbitrary point x through Monte
Carlo integration:

p(x|yo[1:t]) ≈
1

M

M∑
m=1

p(x|yo[1:t],κ
(m)
[1:t]), (7)

where κ
(m)
[1:t] stands for the mth draw from the respective posterior distribution up to time

t. If Equation (7) is evaluated at x = yot+1, we refer to it as the (one-step-ahead) predicitve
likelihood (at time t + 1) denoted PLt+1. Moreover, draws from (6) can be obtained by

simulating values y
(m)
t+1 from the distribution given through the density p(yt+1|yo[1:t],κ

(m)
[1:t]), the

summands of Equation (7).

For model at hand, the predictive density and likelihood can thus be computed through the
following

Algorithm 1 (Predictive density and likelihood evaluation at time t+ 1)

1. Reduce the data set to a training set yo[1:t] = (yo1, . . . , y
o
t )
′.

2. Run the posterior sampler using data from the training set only to obtain M posterior

draws κ
(m)
[1:t].

(3.) Needed for the SV model only: Simulate M values from the conditional distribution

ht+1,[1:t]|yo[1:t],κ[1:t] by drawing h
(m)
t+1,[1:t] from a normal distribution with mean µ

(m)
[1:t] +

φ
(m)
[1:t](h

(m)
t,[1:t] − µ

(m)
[1:t]) and standard deviation σ

(m)
η,[1:t] for m = 1, . . . ,M .

4a. To obtain PLt+1, average over M densities of normal distributions with mean (1, yot )×
β
(m)
[1:t] and standard deviation exp{h(m)

t+1,[1:t]/2} (SV model) or σ
(m)
ε,[1:t] (homoskedastic model),

each evaluated at yot+1.

4b. To obtain M draws from the predictive distribution, simulate from a normal distribution

with mean (1, yot )× β
(m)
[1:t] and standard deviation exp{h(m)

t+1,[1:t]/2} (SV model) or σ
(m)
ε,[1:t]

(homoskedastic model) for m = 1, . . . ,M .
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To avoid strong dependence on the prior, the first 1000 days are used as training set only and
the evaluation of the predictive distribution starts at t = 1001, corresponding to December 4,
2003. The results for both models are displayed in Figure 14. In the top panel, the observed
series along with the 98% one-day-ahead predictive intervals are displayed. The bottom panel
shows the log one-day-ahead predictive likelihood.

Figure 15 displays a zoomed-in version, depicting only the time span from January 2008 until
August 2009. Note that while at the beginning of 2008 both credible intervals are very similar,
there is a substantial difference one year later, where SV intervals become around twice as
large compared to the corresponding homoskedastic analogs. According to the values of
the log predictive likelihoods, SV errors can handle the inflated volatility during that time
substantially better. Throughout 2009, the width of the intervals as well as the predictive
likelihoods consolidate again.

It is worth pointing out that log predictive likelihoods also carry an intrinsic connection to
the log marginal likelihood, defined through

logML = log p(yo) = log

∫
K

p(yo|κ)× p(κ) dκ. (8)

This real number corresponds to the logarithm of the normalizing constant in the denominator
of Bayes’ law and is often used for evaluating model evidence. It can straightforwardly be
decomposed into the sum of the one-step-ahead logarithms of the predictive likelihoods:

logML = log p(yo) = log

T∏
t=1

p(yot |yo[1:t−1]) =

T∑
t=1

logPLt.

Thus, Algorithm 1 provides a conceptually simple way of computing the marginal likelihood.
However, these computations are quite costly in terms of CPU time, as they require an indi-
vidual model fit for each of the T points in time. On the other hand, due to the embarrassingly
parallel nature of the task and because of today’s comparably easy access to parallel com-
puting environments, this burden becomes easily manageable. E.g., the computations for the
analysis in this paper have been conducted in less than one hour, using 25 IBM dx360M3
nodes within a cluster of workstations.

Cumulative sums of logPLt also allow for model comparison through cumulative log predictive
Bayes factors. Letting PLt(A) denote the predictive likelihood of model A at time t, and
PLt(B) the corresponding value of model B, the cumulative log predictive Bayes factor at
time u (and starting point S) in favor of model A over model B is simply given through

log

[
pA(yo[S+1:u]|y

o
[1:S])

pB(yo[S+1:u]|y
o
[1:S])

]
=

u∑
t=S+1

log

[
PLt(A)

PLt(B)

]
=

u∑
t=S+1

[logPLt(A)− logPLt(B)]. (9)

If the cumulative log predictive Bayes factor is positive at a given point in time, we have
evidence in favor of model A, and vice versa. In this context, information up to time S is
regarded as prior information, while out-of-sample predictive evaluation starts at time S + 1.
Note that the usual log Bayes factor is a special case of Equation (9) for S = 0 and u = T .

The top panel of Figure 16 gives an overview of the model performance through visual inspec-
tion of observed residuals against their predicted distributions. For the purpose of this paper,
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Observed series and 98% one−day−ahead predictive intervals

P
ric

e 
of

 1
 E

U
R

 in
 U

S
D

0.8

1.0

1.2

1.4

1.6

2000−01−03 2001−07−17 2003−01−31 2004−08−13 2006−02−17 2007−09−04 2009−03−18 2010−09−29 2012−04−04

Observed values
Predictive quantiles: SV
Predictive quantiles: homoskedastic

−30

−20

−10

0

Log one−day−ahead predictive likelihoods

2000−01−03 2001−07−17 2003−01−31 2004−08−13 2006−02−17 2007−09−04 2009−03−18 2010−09−29 2012−04−04

SV
homoskedastic

Figure 14: Top panel: Observed series (green) and symmetrical 98% one-day-ahead predictive
intervals for the model with homoskedastic errors (red) and the model with SV errors (black).
Bottom panel: Log one-day-ahead predictive likelihoods for both models.
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Observed series and 98% one−day−ahead predictive intervals
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Figure 15: Zoomed version of Figure 14, showing only the period from January 2008 until
August 2009. This time span is chosen to includes the beginning of the financial crisis.
During that phase, predictive performance of the model with homoskedastic errors deteriorates
substantially, while SV errors can capture the inflated volatility much better.
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residuals are simply defined as the deviation from the median of the predicted distribution.
It stands out that predictive quantiles arising from the model with SV errors exhibit much
more flexibility to “adapt” to the “current state of the world”, while the simpler homoskedastic
model barely exhibits this feature. While there is little difference in predicted residuals until
the beginning of 2007, the model with SV residuals performs substantially better during the
pre-crisis era (less volatility) and during the actual crisis (more volatility). This picture is
confirmed through the cumulative log predictive Bayes factors displayed in the bottom panel.
Note that the last point plotted equals around 223, providing overwhelming overall evidence
in favor of the model with SV errors, clearly rejecting the assumption of homoskedastic error
terms.
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Figure 16: Top panel: Observed residuals with respect to the median of the one-day-ahead
predictive distribution along with 1% and 99% quantiles of the respective predictive distribu-
tions. It can clearly be seen that the variance of the predictive distribution in the SV model
adjusts to heteroskedasticity, while the model with homoskedastic errors is much more restric-
tive. Bottom panel: Cumulative log predictive Bayes factors in favor of the model with SV
residuals. Values greater than zero mean that the model with SV residuals performs better
out of sample up to this point in time.
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6. Conclusion

Aim of this paper was to introduce to the functionality of the R package stochvol, which pro-
vides a fully Bayesian simulation-based approach for inference in stochastic volatility models.
The typical workflow occurring when using stochvol was presented by analyzing exchange
rate data in the package’s exrates data set. Furthermore, it was shown how the package can
be used as a “plug-in” tool for other MCMC samplers. This was illustrated by estimating a
Bayesian linear model with SV errors.

In the real-world example, raw exchange rates from EUR to USD were analyzed. Out-of-
sample analysis through cumulative predictive Bayes factors clearly showed that already for
a simple linear autoregressive model for the raw exchange rates, SV residuals substantially
improve prediction performance, especially in turbulent times.
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