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Abstract

This vignette demonstrates how to use the Structural Topic Model, stm, R package.
The Structural Topic Model (STM) allows researchers to estimate a topic model using in-
formation, metadata, about the documents. The stm package provides a range of features
from model selection to extensive plotting and visualization options.
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1. Introduction

1.1. Method Overview

In this vignette we demonstrate how to use the Structural Topic Model, stm, R package.1

Building off of the tradition of generative topic models, such as the Latent Dirichlet Alloca-

tion (Blei, Ng, and Jordan 2003) and Correlated Topic Model (Blei and Lafferty 2007), the

Structural Topic Model’s key innovation is that it permits users to incorporate metadata,

defined as information about each document, into the topic model.

The goal of the Structural Topic Model is to enable the discovery of topics and the estimation

of their relationship to document metadata. Outputs of the model can be used to conduct

hypothesis testing about these relationships. Previous uses of the model span from the analysis

of newspaper articles and their relationship to time and open ended responses in survey data.

This vignette illustrates use of the various components of the package. The design of the

package is such that users have a broad array of options to analyze the data and present

findings utilizing a range of plotting tools.

1We thank Jetson Leder-Luis, Christopher Lucas, and Alex Storer for various assistance in the construction

of this package. Additional details and development version at structuraltopicmodel.com
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2. Estimation

Like other topic models the STM is a generative model. That means we define a data gener-

ating process for each document and then use the data to find the most likely values for the

parameters within the model. The generative process for each document (indexed by d) can

be summarized as:

1. Draw the document-level attention to each topic from a logistic-normal GLM based on

document covariates Xd.

~θd|Xdγ,Σ ∼ LogisticNormal(µ = Xdγ,Σ)

2. Form the document-specific distribution over words representing each topic (k) using

the baseline word distribution (m), the topic specific deviation κk, the covariate group

deviation κg and the interaction between the two κi.

βd,k ∝ exp(m+ κk + κgd + κi=(kgd))

3. For each word in the document, (n ∈ 1, . . . , Nd):

• Draw word’s topic assignment based on the document-specific distribution over

topics.

zd,n|~θd ∼ Multinomial(~θ)

• Conditional on the topic chosen, draw an observed word from that topic.

wd,n|zd,n, βd, k = z ∼ Multinomial(βd,k=z)

Regularizing prior distributions are used for γ, κ and Σ which help enhance interpretation

and prevent overfitting. To fit the model, the Expectation-Maximization algorithm is used,

given that we are estimating a set of latent variables. Further details are provided elsewhere

(Roberts, Stewart, Tingley, and Airoldi 2013; Roberts, Stewart, and Airoldi 2014a; Roberts,

Stewart, Tingley, Lucas, Leder-Luis, Gadarian, Albertson, and Rand 2014b; Lucas, Nielsen,

Roberts, Stewart, Storer, and Tingley 2013).2 In this vignette, we do not engage in interpre-

tation of specific substantive results, and instead direct readers to the companion papers for

discussion.

2Available here, here, and here.

http://scholar.harvard.edu/files/dtingley/files/topicmodelsopenendedexperiments.pdf
http://scholar.harvard.edu/files/bstewart/files/stmnips2013.pdf
http://scholar.harvard.edu/files/dtingley/files/comparativepoliticstext.pdf
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3. Using the Structural Topic Model

In this section we demonstrate the basics of using the package. Use of the STM typically

proceeds in three key steps:

1. Tools for reading in and processing text data

(textProcessor, readCorpus, prepDocuments)

2. Fitting the Structural Topic Model (stm, selectModel, manyTopics)

3. Plotting and inspecting results (plotModels,plot.STM,labelTopics, estimateEffect,

plot.estimateEffect,findThoughts, plotQuote)

Next we walk through each of these steps to show users how to use the above functions. All

of the functions come with help files, and examples, that can be accessed by typing ? and

then the function’s name.

3.1. Reading in textual data

The first step is to load data into R. Unlike standard quantitative text analysis techniques,

textual analysis requires more preparation prior to analysis. In this section, we describe

several different methods for loading data into R depending on the format of the textual data.

These functions are provided in order to make the structural topic model as accessible as

possible. A key aspect of this step for the STM, as compared to textual analysis using other

techniques, is the need to make sure documents and their vocabularies are properly associated

with their metadata.

Reading in data from a “spreadsheet”

For purposes of example within the vignette, we will use a collection of blogposts about

American politics that were written in 2008, from the CMU 2008 Political Blog Corpus

(Eisenstein and Xing 2010).3 The blogposts were gathered from six different blogs, American

Thinker, Digby, Hot Air, Michelle Malkin, Think Progress, and Talking Points Memo. Each

blog has its own particular political bent. The day within 2008 when each blog was written

3The set of blogs is available at http://sailing.cs.cmu.edu/socialmedia/blog2008.html and documen-

tation on the blogs is available at http://www.sailing.cs.cmu.edu/socialmedia/blog2008.pdf.

http://sailing.cs.cmu.edu/socialmedia/blog2008.html
http://www.sailing.cs.cmu.edu/socialmedia/blog2008.pdf
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was also recorded. Thus for each blogpost, there is metadata on the day written and the

political ideology of the blog in which it was written.

A common way that researchers store textual data alongside covariates related to the text

is by having all the data within one spreadsheet, with each row a separate observation and

one of the column variables the “textual” data field. The stm packages comes with a special

function, textProcessor, that conveniently reads in data stored in this format and processes

the data to ready it for analysis in the stm package. For example, users would first read in

a csv file using native R functions, or load a pre-prepared dataframe as we do below. Next,

they would pass this object through the textProcessor function. This function uses a range

of features from the tm package, such as stemming and stop word removal.

> data <- read.csv("poliblogs2008.csv")

> data <- data[,-1] #removing row numbers

> processed <- textProcessor(data$documents, metadata=data)

> out <- prepDocuments(processed$documents, processed$vocab, processed$meta)

> meta<-out$meta

After reading in the data we suggest using the utility function prepDocuments() to process

the loaded data to make sure it is in the right format. In particular, the prepDocuments()

function properly associates metadata with textual data, re-indexes this relationship when

textual data fields are blank, or become blank following pre-processing (such as with stop

word removal). Please see the help file for this function for more details. It also removes

infrequent terms, or too frequent terms, depending on user-set parameters. Importantly,

prepDocuments() also will re-index all metadata/document relationships if any changes occur

due to processing.

Reading in data from other text processing programs

The readCorpus function is helpful for reading in data produced in other text process-

ing/analysis programs. The structure of these data sets are not the simple “spreadsheet”

format like in the previous example.

For example, a program that is helpful for setting up and processing textual data, alongside

document metadata, is txtorg (Lucas et al. 2013). When using txtorg, three separate files are

www.txtorg.org
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generated. A metadata file, a vocabulary file, and a file with the original documents. The

function readCorpus() function can be called to help import this type of data, in order to

import the vocabulary file from txtorg and set it up for analysis by the stm model. Please

see the help file for this function for more details and additional options such as reading in

data in Blei’s LDA-C format.

Another way to load in data is to use data structured for use in other packages, like the

popular LDA package.

Here we load the political Blog Corpus from the LDA Package. Note that the LDA package

only contains a subset of these blogs, and therefore the code below is just for showing how

to load from Blei’s LDA-C format. We will be using the entire blog set for the rest of the

examples.

> library(lda)

> data(poliblog.documents)

> data(poliblog.vocab)

> data(poliblog.ratings)

The LDA package uses a slightly different format for the vocabulary. Specifically it indexes

words from 0 using the convention in C. We can convert this over to a more R-like 1-index

using prepDocuments(), as well as perform other recoding options of metadata. Once again,

the next step is to reassign the documents object from the output of prepDocuments() to its

own object.

> poliblog.ratings <- as.factor(ifelse(poliblog.ratings == -100,

+ "Liberal", "Conservative"))

> out <- prepDocuments(poliblog.documents, poliblog.vocab, poliblog.ratings)

> poliblog.documents <- out$documents

> poliblog.ratings <- out$meta

> poliblog.vocab <- out$vocab

After reading in and processing the textual data, it is important to inspect features of the

documents and the associated vocabulary list. If users encounter problems with estimation,

http://cran.r-project.org/web/packages/lda/


6 Structural Topic Models

they should always inspect features such as these, and if using metadata, make sure the

metadata has the same number of rows as there are documents. Furthermore, the model does

not permit estimation when there are variables used in the model that have missing values.

Matt Taddy’s textir package uses a corpus in another format which is drawn from Gentzkow

and Shapiro (2010). This corpus contains 1000 phrases from the 2005 Congressional record.

Each “document” is a different legislator’s transcript for that year. To read in the data we

use the readCorpus() function specifying the type as Matrix because the data is stored as a

sparse matrix from the Matrix package. This gives us our document-term matrix, vocabulary,

and metadata.

> library(textir)

> data(congress109)

> temp <- readCorpus(congress109Counts, type="Matrix")

> documents.gs <- temp$documents

> vocab.gs <- temp$vocab

> metadata.gs <- congress109Ideology #this is our metadata.

> out <-prepDocuments(documents.gs, vocab.gs, metadata.gs)

> documents.gs <- temp$documents

> vocab.gs <- temp$vocab

> metadata.gs <- out$meta

> rm(temp)

3.2. Estimating the STM

Once data is properly imported there will be documents, vocabulary and metadata that can

be used for an analysis. In this subsection we illustrate how to estimate the STM.4

Ways to use metadata

Typically, metadata about documents has not been incorporated into the topic model. The

key innovation of the STM is to incorporate metadata in the the analysis. In the STM there

4We note that all the examples here have a very small number of maximum iterations of the EM algorithm

to reduce run time, and so no substantive conclusions should be drawn.
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are two ways metadata about each document can be included in the model: topical prevalence

and topical content. Metadata covariates for topical prevalence allow the observed metadata

to affect the frequency with which a topic is discussed. Covariates in topical content allow the

observed metadata to affect the word rate use within a given topic, that is, how a particular

topic is discussed. We first show how to leverage metadata for understanding topical content.

Estimation with topical prevalence parameter

In this example, we use the ratings variable (blog ideology) as a covariate in the topic

prevalence portion of the model with the CMU Poliblog data described above. Each doc-

ument can be a mixture of multiple topics. Topical prevalence captures how much each topic

contributes to a document. Because different documents come from different sources, it is

natural then to want to allow this prevalence to vary with metadata that we have about

document sources.

In this example we simply let prevalence be a function of the“ratings”variable, which is coded

as either “Liberal” or “Conservative.” Here a five topic STM is estimated. The output from

the model, poliblogPrevFit, could then be passed through the various functions we discuss

below for inspecting the results. If a user wishes to specify additional prevalence covariates,

they would do so using the standard formula notation common in R which we discuss at

greater length below.

> poliblogPrevFit <- stm(out$documents,out$vocab,K=20,

+ prevalence =~ rating, max.em.its=75, data=meta)

>

For example purposes only, the model is set to run for a maximum of 74 EM iterations.

Typically, convergence of the model will be monitored by the change in the approximate

bound between EM iterations. Once the bound has a small enough change between iterations,

the model is considered converged. To reduce compiling time, in this vignette we do not run

the models and instead load a workspace with the models already estimated.

> load(url("http://dl.dropboxusercontent.com/u/12848660/ModelObjectsSTMFinal.RData"))
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3.3. Model Selection

As with all mixed-membership topic models the posterior is intractable and non-convex,

resulting in a multimodal estimation problem which can be sensitive to initialization. Hence

users may wish to estimate a many models, each from randomly generated starting values, and

then evaluate each model according to some separate standard. The function selectModel

automates this process to facilitate finding a model with good properties.

Users specify the number of “runs”, which in the example below is set to 10. selectModel

first first casts a net where “run” (below 10) models are run for two EM steps, and then

models with low likelihoods are discarded. Next the default returns the 20% of models with

the highest likelihoods which are then run until convergence or the EM iteration maximum is

reached. Notice how that options for the stm() function can be passed, such as max.em.its.

If users would like to select a larger number of models to be run completely, this can also be

set with an option specified in the help file for this function.

> poliblogSelect <- selectModel(out$documents,out$vocab,K=20,

+ prevalence =~ rating, max.em.its=j, data=meta,runs=10)

>

In order to select a model for further investigation, users must choose from one of the candidate

models output from selectModel(). To do this plotModel() can be used to plot the average

semantic coherence and exclusivity scores for each topic (represented by topic numbers) as

well as the semantic coherence and exclusivity for each topic.5 Each of these criteria are

calculated for each topic within a model run. The plotModel() function calculates the

average across all topics for each run of the model and plots these by labeling the model

run with a numeral. Often times users will select a model with desirable properties in both

dimensions (i.e., models with average scores towards the upper right side of the plot). As

shown in Figure 1, the plotModel() function also plots each topic’s values which helps give

a sense of the variation in these parameters.6

5See Roberts et al. (2014a,b) for a discussion of these criteria.
6The utility function manyTopics() allows the user to specify a range of topic numbers that they would like

to run selectModel on. Please consult the help file for information on this function. Especially note that the

process of extracting results differs from selectModel.
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> plotModels(poliblogSelect)
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Figure 1: Plot of selectModel results.

3.4. Interpreting the STM: Plotting and inspecting results

After estimating a choosing a model based on ex-ante criteria, the task of interpretation

comes next which is especially crucial for any unsupervised procedure. There are many ways

to investigate the output, ranging from inspecting the words associated with topics to the

relationship between metadata and topics. To investigate the output of the model the stm

package provides a number of options.

1. Displaying words associated with topics (labelTopics,plot.stm(,type="labels")) or

documents highly associated with particular topics (findThoughts,plotQuote)

2. Plotting relationships between metadata and topics/topical content (estimateEffect,
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plot.estimateEffect)

3. Corpus level summaries (plot.topicCorr,plot.stm(,type="summary"))

Exploring Topics

We next describe two ways that users can explore the topics that have been estimated. The

first way is to look at collections of words that are associated with topics. In the second way

is to read actual documents that are estimated to be highly associated with each topic. Both

of these ways should be used.

To explore the words associated with each topic we can use the labelTopics() function. This

will print to the monitor words associated with each topic. The function by default prints

several different types of word profiles, including highest probability words and FREX words.7

In order to translate these results to a format that can easily be used within a paper, the

plot.stm(,type="labels") function will print topic words to a graphic device. Notice that

in this case, the labels option is specified as the plot.stm function has several functionalities.

> labelTopics(poliblogPrevFit,topics=c(1,3))

Topic 1 Top Words:

Highest Prob: will, women, one, school, life, live, year

FREX: school, women, film, children, men, life, young

Lift: film, girl, music, hollywood, mother, daughter, father

Score: film, women, school, children, famili, student, parent

Topic 3 Top Words:

Highest Prob: senat, democrat, bill, republican, vote, hous, legisl

FREX: legisl, bill, congression, committe, pelosi, senat, reid

Lift: reid, pelosi, legisl, nanci, congression, veto, bipartisan

Score: senat, legisl, republican, vote, democrat, bill, congress

7For more information on FREX and high probability rankings, see Roberts et al. (2013, 2014a,b); Lucas

et al. (2013). For more information on score, see the LDA R package, http://cran.r-project.org/web/

packages/lda/lda.pdf. For more information on lift, see Taddy (2013).

http://cran.r-project.org/web/packages/lda/lda.pdf
http://cran.r-project.org/web/packages/lda/lda.pdf
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> plotQuote(k, width=60, main="Topic 5")

Topic 5

I don't think the muddle over habeas corpus would be
resolved if Guantanamo Bay (Gitmo)Â were closed, as

LindaÂ Greenhouse asserts in today's artice on the Supreme
Court decision granting habeas corpus rights to prisoners

detained in the war on terro

In what has to be a good development for the defendants in
the case against two former AIPAC staffers, the government

has substantially lost its appeals in the U.S Court of
Appeals for the Fourth Circuit. of the pre−trial rulings of

the trial judge,J

Figure 2: Example documents highly associated with topic 5.

To read documents that are highly associated with topics the findThoughts function can be

used. This function will print to the user the documents highly associated with each topic.8

In this example, for expositional purposes, we restrict the length of the documents to just plot

the first 250 characters. When users would like longer examples, native R graphics commands

can be used to enlarge the graphic device. To print example documents to a graphics device

plotQuote can be used. The results are displayed in Figure 2).

> k<-findThoughts(poliblogPrevFit, texts=shortdoc, n=2, topics=5)$docs[[1]]

8The theta parameter in the stm object output has the posterior probability that this function uses.
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Plotting Topic/Metadata relationships

The STM package comes with a rich suite of plotting functions that lets users explore the

relationship between their metadata and topical prevalence or content.

Before plotting, we have to run estimateEffect in order to simulate a set of parameters

which can then be plotted. estimateEffect uses the method of composition to calculate

uncertainty in the parameters fitted by the linear model of the topic proportions on the

covariates. In the below example this is run on topics 1 and 2. estimateEffect should

be run and saved before plotting because it can be time intensive to calculate uncertainty

estimates and/or because users might wish to plot different quantities of interest using the

same simulated parameters.9 The output can then be plotted. In this example we use a

string variable and it is required that for this function we that we first convert it into a factor

variable.

> meta$rating<-as.factor(meta$rating)

> prep <- estimateEffect(1:2 ~ rating,poliblogPrevFit, meta=meta)

The syntax of the estimateEffect function is designed so users specify the set of topics

they wish for estimation to be done on, and then a formula for metadata of interest. After

the necessary method of composition simulations are done particular estimate strategies and

standard plot design features can be used by calling the plot.estimateEffect function.

First, users must specify the variable that they wish to use for calculating an effect. If there

were multiple variables specified in estimateEffect, then all other variables are held at their

sample median. In this example we only have one variable, ”rating”. Users must also select

the type of quantity that is to be plotted. When the covariate of interest is binary, or users

are interested in a particular contrast, the method=”difference” option will plot the change

in topic proportion shifting from one value to the other. Figure 3 gives an example. For

factor variables, users may which to plot the marginal topic proportion for each of the levels

(”pointestimate”).

Notice how the function makes use of standard labeling options available in the native plot()

function. This allows the user to customize labels and other features of their plots. We note

9The help file for this function describes several different ways for uncertainty estimate calculation, some

of which are much faster than others.
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> plot.estimateEffect(prep, "rating", model="poliblogPrevFit", method="difference",

+ cov.value1="Liberal",cov.value2="Conservative",

+ xlab="Liberal-Conservative",

+ main="Effect of Liberal vs. Conservative"

+ )

−0.02 −0.01 0.00 0.01 0.02

Effect of Liberal vs. Conservative

Liberal−Conservative

Topic 2 (Covariate Level
Liberal Compared to

Conservative)

Topic 1 (Covariate Level
Liberal Compared to

Conservative)

Figure 3: Graphical Display of Topical Prevalence Contrast.

that in the package we leverage generics for the plot functions. As such, one can simply use

plot instead of writing out the full extension (e.g., in Figure 3 one could use plot() instead

of plot.estimateEffect). For expositional purposes in this vignette, we include the entire

extension.

We can also plot the influence of covariates included in topical content. A topical content
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variable allows for the vocabulary used to talk about a particular topic to vary. First, the

STM must be fit with a variable specified in the content option. In the below example, ratings

serves this purpose.

> poliblogContent <- stm(out$documents,out$vocab,K=20, prevalence =~ rating,

+ content=~rating, max.em.its=75, data=meta)

Next, the results can be plotted using the plot.STM(,type="perspectives") function. This

functions shows which words within a topic are more associated with one covariate value

versus another. In Figure 4, vocabulary differences by ratings is plotted for topic 5.1011

This function can also be used to plot the contrast in words across two topics, as is shown in

Figure 5.

In the previous example we had a single binary variable. A feature of the stm() function is

that “prevalence” can be expressed as a formula which can include multiple covariates and

factorial or continuous covariates. For example, by using the formula setup we can enter

other covariates additively. Additionally users can include more flexible functional forms of

continuous covariates, including standard transforms like log() etc., as well as ns() or bs()

from the splines package. The stm package also includes a convenience function s(x) which

selects a fairly flexible b-spline basis. Interactions between covariates can also be added

using the standard notation for R formulas. In the below example, we enter in the variables

additively, but allowing for the day variable, an integer variable measuring which day the blog

was posted, to have a non-linear relationship in the topic estimation stage.

> poliblogSmoothing <- stm(out$documents,out$vocab,K=20,

+ prevalence =~ rating + s(day), max.em.its=75, data=meta)

>

> prep <- estimateEffect(c(17,18) ~ rating + s(day),

10As described in the help file for plot.stm, the perspectives option also can be used to contrast two separate

topics even when no content covariate is specified.
11At this point you can only have a single variable as a content covariate, although that variable can have

any number of groups. It cannot be continuous. Note that the computational cost of this type of model rises

quickly with the number of groups and so it may be advisable to keep it small.
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> plot.STM(poliblogContent,type="perspectives", topics=5)
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(Topic 5)
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(Topic 5)

Figure 4: Graphical Display of Topical Perspectives.

+ poliblogSmoothing, metadata=meta,

+ uncertainty="None")

After estimating the STM, researchers can investigate the relationship between topics and a

particular covariate. When users have variables that they want to treat continuously, users

can choose between assuming a linear fit or using splines. In the previous example, we allowed

for the day variable to have a non-linear relationship in the topic estimation stage. Here we

restrict effect estimation to two topics (topic 17 and 18) as well as do not propagate the full

amount uncertainty which simply speeds up computational time but results in too narrow

confidence intervals (uncertainty="None"). We can then plot its effect on topics in Figure 6.
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> plot.STM(poliblogPrevFit,type="perspectives", topics=c(5,6))
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Figure 5: Graphical Display of Topical Perspectives.

Another modification that is possible in this framework is to allow for interactions between

covariates. In this example, we re-estimated the STM to allow for an interaction between day

and ratings. Then in estimateEffect() we include the same interaction. This allows us in

plot.estimateEffect to have this interaction plotted. We display the results in Figure 7.

Note that the ability to plot interactions is somewhat limited and only supports interactions

with a binary effect modification covariate, and continuous variable of interest. This will

change in the near future.

> poliblogInteraction <- stm(out$documents,out$vocab,K=20,

+ prevalence =~ rating*day, max.em.its=j, data=meta)
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> plot.estimateEffect(prep, "day", method="continuous", topics=17,

+ model=poliblogSmoothing,printlegend=FALSE)
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00
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10
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15

Figure 6: Graphical Display of Topical Content. Topic 17 prevalence is plotted as a smooth

function of day, holding rating at sample median.

>

More details are available in the help file for this function.12.

Corpus level plotting

Corpus level visualization can be done in several different ways. The first relates to the

12An additional option is the use of local local regression (loess). In this case, because multiple covariates

are not possible a separate function is required, plotTopicLoess, which contains a help file for interested users.
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> prep <- estimateEffect(c(7) ~ rating*day,

+ poliblogInteraction, metadata=meta, uncertainty="None")

> plot.estimateEffect(prep, covariate="day", model=poliblogInteraction,

+ method="continuous")
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0.
05

0.
06
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07

Topic 7 rating = 0
Topic 7 rating = 1

Figure 7: Graphical Display of Topical Content allowing for interaction between day of blog

post and liberal versus conservative interaction. Topic 7 prevalence is plotted as linear function

of day, holding the rating at either 0 (Liberal) or 1 (Conservative). Were other variables

included in the model, they would be held at their sample medians.

expected proportion of the corpus that belongs to each topic. This can be be plotted using

plot.stm(,type="summary"). An example from the political blogs data is given in Figure 8.

Users can also plot features of the corpus as a whole. First, the Structural Topic Model permits
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> plot.STM(poliblogPrevFit,type="summary")

0.00 0.05 0.10 0.15

Top Topics

Expected Topic Proportions

Topic 16: palin, biden, joe
Topic 9: oil, energi, global

Topic 11: financi, money, crisi
Topic 2: senat, democrat, bill
Topic 19: â€œ, bush, said

Topic 17: will, tax, american
Topic 4: american, conserv, right
Topic 20: clinton, hillari, obama
Topic 18: mccain, campaign, john
Topic 12: iran, israel, will
Topic 15: obama, barack, campaign
Topic 1: will, women, one
Topic 7: said, group, report

Topic 5: law, court, investig
Topic 6: iraq, war, militari
Topic 13: voter, poll, vote

Topic 3: media, report, time
Topic 14: â€”, itâ€™, heâ€™

Topic 10: think, peopl, know
Topic 8: one, like, get

Figure 8: Graphical Display of Estimated Topic Proportions.

correlations between topics. Positive correlations between topics indicate that both topics are

likely to be discussed within a document. These can be visualized using plot.topicCorr().

The user can specify a correlation threshold. If two topics are correlated above that thresh-

old, than those two topics are considered linked. After calculating the links between topics,

plot.topicCorr produces a layout of topic correlations using a force-directed layout algo-

rithm. plot.topicCorr has several options that are described in the help file.

> mod.out.corr<-topicCorr(poliblogPrevFit)
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> plot.topicCorr(mod.out.corr)

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

Topic 6

Topic 7

Topic 8

Topic 9

Topic 10

Topic 11

Topic 12

Topic 13

Topic 14

Topic 15

Topic 16

Topic 17

Topic 18

Topic 19

Topic 20

Figure 9: Graphical Display of Topic Correlations.

4. Changing Basic Estimation Defaults

In this section we briefly overview how to change details of estimation that may be of interest

to advanced users.

4.1. Convergence Criteria

Estimation in the STM proceeds by variational EM. Convergence is controlled by relative

change in the variational objective. Denoting by `t the approximate variational object at

time t, convergence is declared when the quantity `t − `t−1/abs(`t−1) drops below tolerance.

The default tolerance is 1e-5 by default and can be changed using the emtol argument.
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> plot(poliblogPrevFit$convergence$bound,type="l", ylab="Approximate Objective",

+ main="Convergence")
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Figure 10: Graphical Display of Convergence.

The argument max.em.its sets the maximum number of iterations. If this threshold is reached

before convergence is assessed a message will be printed to the screen. The default of 100

iterations is simply a general guideline.

Once a model has been fit, convergence can easily be assessed by plotting the variational

bound as in Figure 10.

Additionally convergence can be specified in terms of the number of iterations without change

in the most probable words. See the documentation for stm for more information.
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4.2. Initialization

As with any EM based estimation strategy, starting values are required. In order to change

how starting values are chosen, the argument init.type has several different options including

LDA, DMR (Dirichlet Multinomial Regression Topic Model), and Random). LDA is the default and

uses a few passes of collapsed Gibbs sampling for the standard LDA model as an initializer.

This tends to provide a fairly good starting region. Random initializations often start with a

dramatic lower value of the objective function but also recover quite quickly.

4.3. Reporting

The default is to have the status of iterations print to the screen. The verbose option turns

printing to the screen on and off.

DUring the E-step the algorithm prints one dot for every 1% of the corpus it completes and

announces completion along with timing information. Printing for the M-Step depends on

the algorithm being used. For models without content covariates M-step estimation should be

nearly instantaneous. For models with content covariates and the Jeffreys prior, the algorithm

prints one dot for each parameter vector update (thus for K=10 topics, and a 2-level covariate

with interactions you will see 32 dots per M-step pass).

By default every 5th iteration will print a report of top topic and covariate words. The

reportevery option sets how often these reports are printed.

Finally the keepHistory option can be used to save the entire parameter history at each EM

iteration. This can be useful for diagnostic purposes but note that when the number of words

in the vocabulary, the number of documents or the number of topics is large, the history can

quickly overwhelm available active memory. Thus we recommend leaving the default of FALSE

in most cases.

4.4. SAGE

The Sparse Additive Generative (SAGE) model conceptualizes topics as sparse deviations

from a corpus-wide baseline (Eisenstein, Ahmed, and Xing 2011). While computationally

more expensive this can sometimes produce higher quality topics . Whereas LDA will tend

to assign rare words exclusively to one topic, the regularization of the SAGE model ensures
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that words only load onto topics when they have sufficient counts to overwhelm the prior.

In general this means that SAGE topics will tend to have fewer words that distinguish them

from other topics, but those words are more likely to be meaningful. Importantly for our

purposes the SAGE framework makes it straightforward to add covariate effects into the

content portion of the model.

Covariate-Free SAGE While SAGE topics are enabled automatically when using a co-

variate in the content model they can also be used even without covariates. To activate SAGE

topics simply set the option LDAbeta=FALSE.

Covariate-Topic Interactions By default when a content covariate is included in the

model, we also include covariate-topic interactions. In our political blog corpus for example

this means that the probability of observing a word from a Conservative blog in Topic 1

is formed by combining the baseline probability, the Topic 1 component, the Conservative

component and the Topic 1 - Conservative interaction component.

Users can turn off interactions by specififying the option interactions=FALSE. This can be

helpful in settings where there isn’t sufficient data to make reasonably inferences about all

the interaction parameters. It also reduces the computational intensity of the model.

5. Alternate Priors

In this section we overview options for altering the prior structure in the stm function. We

highlight the major alternatives and refer interested users to the documentation for additional

details.

5.1. Changing Estimation of Prevalence Covariate coefficients

The user can choose between two options: ”Pooled” is the default and estimates a model

where the coefficients on topic prevalence have a zero-mean Normal prior with variance given

a broad inverse-gamma hyperprior.

You can also choose gamma.prior="L1" which uses the glmnet package (Friedman, Hastie,

and Tibshirani 2010) to allow for grouped penalties between the L1 and L2 norm. In these
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settings we estimate a regularization path and then select the optimal shrinkage param-

eter using a user-tuneable information criterion. By default selecting the L1 option will

apply the L1 penalty selecting the optimal shrinkage parameter using AIC. The defaults

have been specifically tuned for the STM but almost all the relevant arguments can be

changed through the control argument. Changing the gamma.enet parameter by speci-

fying control=list(gamma.enet=.5) allows the user to choose a mix between the L1 and

L2 norms. When set to 1 (as by default) this is the lasso penalty, when set to 0 its the ridge

penalty. Any value in between is a mixture called the elastic net.

Because the penalties are grouped covariates will tend to influence all topics are none. Thus

this option is best employed in settings where the analyst has a large number of covariates

but expects most of them to have no effect.

5.2. Changing Covariance Matrix Prior

The sigma.prior argument is a value between 0 and 1 defaulting to 0. The update for the

covariance matrix is formed by taking the convex combination of the diagonalized covariance

and the MLE with weight given by the prior. Thus by default we are simply maximizing the

likelihood. When sigma.prior=1 this amounts to setting a diagonal covariance matrix. This

argument can be useful in settings where topics are at risk of becoming too highly correlated.

However, in extensive testing we have come across very few cases where this was needed.

5.3. Changing the Content Covariate Prior

The kappa.prior option provides two sparsity promoting prios for the content covariates.

The default is kappa.prior="Jeffreys" and uses a scale mixture of Normals where the

precisions τ are given improper Jeffreys priors 1/τ .

Specifying the option kappa.prior="L1" uses glmnet to impose a penalty between the L1

and L2 norm (as controlled by the control parameter kappa.enet). In general we strongly

recommend keeping close to the L1 norm as sparsity is important for estimation.

When choosing the L1 option, the user can also choose whether to fix the word probability

intercept to the empirical log probability or estimate it freely. It is fixed by default but can

be changed by setting the control option control=list(fixedintercept=FALSE).
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There are over a dozen additional options documented in stm for altering additional compo-

nents of the prior, most of them focusing on the content covariate model.

6. Conclusion

The stm package provides a flexible integration of document metadata and topic modeling.

This vignette provides an overview of use and features. We encourage users to consult the

extensive help files for more details, as well as read the companion papers that illustrate the

application of this method.
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