1 Inputs and Outputs for popModel()

1.1 The input arguments to popModel()

‘numSpecies’ (integer) is the number of different species to be modelled.

‘numStages’ is a vector containing the number of life stages in each species,
e.g. ‘numStages=c(2,1)’ if there are two species - one with two stages
and another with one.

‘numStrains’ is a vector containing the number of strains in each species, e.g.
‘numStrains=c(5,10)’ if there are two species - one with five strains and
another with ten.

‘timeVec’ is a vector describing the output times for the solution
e.g. ‘seq(0,10,0.5)".

‘speciesNames’ This is a vector of the strings containing the species’ names

e.g. ‘speciesNames=c(‘host’, ‘egg parasitoid’, ‘larval parasitoid’)

These can also be used in the user-defined rate functions to index the vari-
ables in the input argument ‘x’ (see Section 1.1.1) and will be used to name
the columns of the output matrix from popModel().

‘stageNames’ This is a list containing vectors of the stage names (strings) for
each species. E.g. for 2 species with one stage and three stages respectively
this could have the form
‘stageNames=1list(‘adults’,c(‘eggs’, ‘juvs’, ‘adults’))’.

‘rateFunctions’ is a list containing the user-defined rate functions — see Sec-
tion 1.1.1 for details.

‘ICs’ is a list of matrices containing the initial conditions for every stage and
strain of each species. Due to the model formulation these are very re-
strictive and must be zero for all stages apart from the reproductive stage
(usually the last stage). Thus it is recommended that the initial con-
ditions are defined through immigration rates in the immigrationFunc
(see section 1.1.1). However, the ICs can be set as follows: Each species
has a matrix with the number of columns equal to the number of strains
in that species and the number of rows equal to the number of stages
in that species. E.g. for 2 species, the first with 2 strains and 3 stages,
the second with 1 strain and 1 stage, then for zero starting conditions:
‘ICs=list(matrix(0,ncol=2,nrow=3) ,matrix(0,ncol=1,nrow=1))’.

‘timeDependLoss’ (optional; default is rep(TRUE,numSpecies)) is a vector
containing TRUE/FALSE for each species. It is TRUE if the per capita
loss rate varies with time for any stage of the species (e.g. TRUE for den-
sity dependent death and/or density dependent emigration) and FALSE
otherwise. E.g. ‘timeDependLoss=c(TRUE, FALSE)’ if there is no emigra-
tion and the first species has time dependent per capita death rates but
the second does not.

‘timeDependDuration’ (optional; default is rep(FALSE,numSpecies)) is a vec-
tor containing TRUE/FALSE for each species. It is TRUE if the stage

)

duration varies with time for any stage of the species and FALSE oth-
erwise. E.g. ‘timeDependDuration=c (TRUE, FALSE)’ if the first species
has any time dependent stage durations but the second does not.

‘solverOptions’ (optional; default is ‘list (DDEsolver=‘PBS’, tol=le-7,
hbsize=1e3, method=‘lsoda’, atol=le-7, dt=0.1))’ is a list of in-
structions for the DDE solver, containing: ‘DDEsolver’, ‘tol’, ’hbsize’,
‘method’ and ‘atol’. ‘DDEsolver’ must be either ‘deSolve’ or ‘PBS’ (these
are the R packages used to solve the DDEs). The ‘tol” option sets the
relative tolerances and ‘hbsize’ sets the size of the history buffer. The
remaining two items, ‘method’ and ‘atol’ set the numerical integration
scheme and the absolute tolerance if DDEsolver=‘deSolve’ (PBS does not
have these options).

‘checkForNegs’ (optional; default is TRUE) is TRUE if you would like to check
your solution for negative values using the function checkSolution().
Note checkSolution() can also be called separately using
‘checkSolution(output,numSpecies,numStages,numStrains,ntol)’.

‘ntol’ (optional; default is 0.01) is the tolerance on the magnitude of the
negative values detected by checkSolution() . For example if ntol=0.01
then a warning is triggered if a stage or strain of any species falls below
less than minus 1% of its maximum value at any time. If ntol is zero then
any values below zero will trigger a warning even if their magnitude is
insignificant (eg 10739).

‘plotFigs’ (optional; defalt is TRUE) is TRUE if you would like a basic plot of
the solution. The function that is called to do this is called genericPlot()
and can also be called separately using
‘genericPlot (modelOutput, numSpecies, numStages, varNames,
speciesNames, stageNames, saveFig, figType, figName)’

To create more sophisticated plots the user is recommended to use the
results in the matrix generated from popModel() with their own plotting
scripts.

‘saveFig’(optional; default is FALSE.) To save the figure generated by pop-
Model() make this TRUE.

‘figType’(optional; default is ‘eps’.) Format for the saved figure from pop-
Model(). This can be ‘eps’, ‘pdf’, ‘png’ or ‘tiff’.

‘figName’(optional; default name is ‘stagePopFig’ and it will be saved in your
working directory). A string containing the filepath for where the figure
file should be saved.

‘sumOverStrains’ (optional; default is TRUE). If there is more than one strain
in any species then the results for each strain are given in the model
output. If you are only interested in the results for the species as a whole
then change this to FALSE to simplify the model output.

‘plotStrainsFig’ (optional; default is TRUE (if max(numStrains)>1). This
will produce plots for each individual strain.

‘saveStrainsFig’ (optional; default is FALSE). Change to TRUE to save the
plot.

‘strainsFigType’ (optional; default is ‘eps’). Format for the saved figure.
This can be ‘eps’, ‘pdf’, ‘png’ or ‘tiff’.

‘strainsFigName’ (optional; default is ‘strainFig’ plus the species name). A
string containing the filepath describing where the strain plots should be
saved.

1.1.1 The Rate Functions (user-defined)

The user must define a list containing all the functions named below. These
must have the input arguments specified below in order for stagePop to run
(however, these arguments do not necessarily need to be used within the func-
tion). The output from each of them must be a single value which equals the
rate for the stage, species and time given in the input arguments. The input
arguments to these functions are all single values apart from ‘x’ which is a vector
of all the state variables at the input time. This is included to allow the user
to specify density-dependent rates and can be indexed using the names spec-
ified in the popModel() arguments ‘speciesNames’ and ‘stageNames’ using
x$speciesName|[‘stage’,strain]. For more details see Appendix 3 and/or use the
R help function for each of the functions below.

reproFunc(x,time,species,strain) The output from this is a value for the
rate at which new organisms enter the first stage through reproduction
of the species in the input argument at the given time. The units are:
organisms time unit~!. Note, unlike the other rate functions, this does not
have the ‘stage’ input argument (this is because new organisms produced
by reproduction are only allowed to enter the first stage).

deathFunc(stage,x,time,species,strain) The output from this is the per
capita death rate of organisms in the stage and species given in the input
arguments at the given time. The units are: time unit™'.

durationFunc(stage,x,time,species,strain) The output from this is the
length of the stage duration (in time units) for the stage and species given
in the input arguments. Note that if the stage durations vary in time then
this function will only be used to compute the initial values of the stage
durations; for future values the user must define develFunc.

develFunc(stage,x,time,species,strain) The output from this is the rate
of development rate of the stage and species given in the input arguments
at the given time. The units are: time unit~'. Note that if the stage
duration (and hence development rate) is constant in time then there is
no need to define this function e.g. if timeDependDuration is FALSE for
all species. The output from develFunc must always be strictly greater
than zero.

immigrationFunc(stage,x,time,species,strain) The output from this is
the rate of immigration (individuals per unit time) into the stage specified
in the input arguments for the input species at the given time. Since the

initial conditions for stagePop are quite restrictive, the user will generally
start the simulation by specifying immigration into a given stage over a
short interval at the start of the simulation. Note that if these rates are
set very high the DDE solvers may fail so the user should endeavour to
enter realistic (or at least low) values.

emigrationFunc(stage,x,time,species,strain) The output from this is the
per capita emigration rate of individuals in the stage and species given in
the input arguments. The units are: time unit=!.

1.2 Ouput from popModel()

The output from popModel() is a matrix which contains the values of the
state variables, the probabilities of survival, the durations of each stage (if time-
varying) and the rates of change of each state variable at the times specified in
the input time vector (‘timeVec’). Each column of the output matrix is named
according to the popModel() input option ‘variableNames’:

‘time’ is the time point ¢ at which the solution is output (specified by input
argument ‘timeVec’).

‘speciesName[i] .StageNames[[i]1]1 [j1’ is the density (or number) of stage j
of species i at time ¢t. For multiple strains, for strain k in species i, stage
j, this is ‘speciesName[i] . StageNames[[i]] [j].strain[k]’

‘prob.speciesName[i] . StageNames[[i]] [j]’ is the probability that stage j
of species i will survive the length of the stage duration at time ¢. Note
this is only present if species ¢ has time dependent per capita death rates
or has time dependent stage durations.

‘dur.speciesName[i] .StageNames[[i]][j]’ is the duration of stage j for
species 7 at time t. Note this is only present if the stage durations for
species ¢ are time dependent.

‘dot.speciesName[i] .StageNames[[i]] [j]’ is the rate of change of the den-
sity (or number) of stage j of species i at time ¢.

2 Assumptions made in stagePop

In stagePop the following assumptions are hard-coded

e The birth (via reproduction) of new individuals is always into the first life
stage.

e The simulation time always begins at zero.
e For all simulation times less than zero:

— there is no reproduction or immigration,

— the number or density of organisms in each stage is equal to those at
time zero,

the death rate is equal to that at time zero,

the development function is equal to that at time zero.

3 Checking the solution from stagePop is accu-
rate

As with any numerical integration the results from stagePop are subject to
error. Ideally, the user should check the results against an analytical solution
(e.g. at equilibrium conditions). However, since this is frequently not possi-
ble, the simplest way to check for inaccuracies is to use the checkSolution()
function (this is called if the popModel() input argument ‘checkForNegs’ is
TRUE (default)). This will find negative values in your solution within a limit
specified by ‘ntol’. If negative values do occur then the user can try reducing
the size of the tolerances in ‘solverOptions’ to improve the numerical accuracy.
For further confirmation of the solution this can be repeated with both DDE
solvers (i.e. deSolve and PBS). The user should be aware that the size of the tol-
erances needed may differ vastly between modelling projects and DDE solvers.
As the tolerance size decreases the run time for stagePop will increase, thus
if CPU time is important the user is recommended to find the largest toler-
ance size required for an accurate solution. To do this we recommend repeating
the simulation with increasingly smaller tolerances until the solution no longer
changes.

4 Trouble Shooting

If error messages or warnings appear in the console window that mention the
integration step size this generally means that the DDE solver can not solve the
problem without making the step size too small to compute (generally because
the problem is stiff). The default solver method for deSolve is ‘lsoda’ which
is designed to deal with stiff and non-stiff problems but the user can also try
different methods via the ‘method’ option. If time lags are long then errors may
occur saying the lag history is not long enough (or that the lag for a variable is
too long). To deal with this the history buffer size of the solver can be changed
in using ‘hbsize’. If both the DDE solvers (deSolve and PBS) fail to complete
the integration it is likely that the user has incorrectly specified the problem
or has generated extremely high rates in the user-defined rate functions. In
this case it is recommended that the rate functions be carefully checked for
internal consistency and/or the problem be non-dimensionalised or simply more
appropriately scaled. If an error says ‘The number of derivatives returned by
func() must equal the length of the initial conditions vector’ then the vector of
initial conditions is incorrect (e.g. perhaps an entry is missing).

