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Summary10

1. We present an R-package, stagePop, which can be used to model the11

deterministic dynamics and interactions of stage-structured populations12

(i.e. where the life cycle consists of distinct stages - e.g. eggs, juveniles13

and reproductive adults).14

2. The continuous time formulation enables stagePop to easily simulate15

time-varying stage durations and overlapping generations.16

3. The package can be used to model predator-prey interactions, host-parasitoid17

interactions, resource competition, intra-specific competition and the ef-18

fects of environmental change on stage-structured (and non-stage struc-19

tured) species.20
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4. Our code is based on the formulation by Nisbet and Gurney (1983) us-21

ing delay differential equations, which are solved using the R-packages22

deSolve or PBSddesolve.23

1 Introduction24

stagePop is an R package that can be used to model the deterministic dynamics25

and interactions of stage-structured populations. These are populations where26

the life cycle consists of distinct stages - e.g. eggs, juveniles and reproductive27

adults. Explicitly including stage structure when modelling the population dy-28

namics of stage-structured organisms can have an enormous effect on the result-29

ing dynamics. This may be because the organism is only predated upon when it30

is in certain life stages. Or that environmental variables, such as temperature,31

only influence the development rate of certain stages.32

stagePop has been specifically designed to investigate these sorts of eco-33

logical problems and can therefore simulate the dynamics of stage-structured34

populations that are involved in predator-prey interactions, host-parasitoid in-35

teractions, resource competition, environmental change and so on. It also has36

the ability to simulate the dynamics of any number of strains within a species37

and therefore can be used to test questions about diversity and intra-specific38

competition. This means it is ideally suited to investigate the timely issues of39

biological engineering and control, biodiversity and climate change.40

The package is based on the formulation by Bill Gurney and Roger Nisbet41

(Nisbet and Gurney (1983); Gurney et al. (1983); Gurney and Nisbet (1998)),42

described in detail in Appendix 1. Broadly speaking the model assumes that43

once an individual is born, unless it dies, it moves through its different life stages44

as if on a conveyor belt which may speed up and slow down as its development45

rate changes. Thus, an organism begins life by being born into the first stage46

and then, if it survives long enough, will mature into each successive stage.47

Within each stage it is assumed that each individual has the same vital rates48
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e.g. the same death rates, the same rate of maturation etc. The formulation is49

based on delay differential equations (which are solved within stagePop using50

the R-packages deSolve (Soetaert et al., 2010) or PBSddesolve (Schnute et al.,51

2013) and this continuous time formulation copes easily with time-varying stage52

durations. Non-stage-structured species (which don’t require delay equations)53

may also be modelled using stagePop which is useful when modelling the in-54

teractions of a number of species where not all have distinct life stages. In this55

paper we give a description of stagePop and provide a number of examples56

demonstrating how stagePop can be used for different modelling projects.57

2 Running stagePop58

To install the stagePop package, in R, type install.packages(‘stagePop’) fol-59

lowed by library(stagePop). To run the model the function popModel() is60

called. In this section we give a brief overview of this function (further details61

are given in Appendix 2). The output from popModel() is a matrix which62

contains the values of the state variables, the probabilities of surviving each63

stage, the durations of each stage (if time-varying) and the rates of change of64

each state variable at the times specified, via ‘timeVec’, in the input to pop-65

Model(). Each column of the output matrix is named using the ‘speciesNames’66

and ‘stageNames’ specified in the popModel inputs (see Section 1.2, Appendix67

2). Different species may be specified in any order (as long as the definition is68

consistent) but the life stages must be referred to in the same order as they are69

in the life cycle. Furthermore, the birth of new organisms is assumed to be into70

the first stage only.71

The input arguments to popModel() are used to completely define the72

model system and are described in detail in Appendix 2 (section 1.1). One73

of these inputs is a list containing all the rate functions (e.g. death rates,74

reproduction rates etc) for all entities in the model. Appendix 2 (section 1.1.1)75

gives a detailed description on how these functions must be defined.76
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Also included in the stagePop package are the following functions:77

• checkSolution() produces warnings if the solution contains any negative78

values79

• genericPlot() provides a basic plot of the results (most of the figures in80

this paper have been generated automatically by stagePop)81

• plotStrains() if there are multiple strains in a species, will plot them82

individually (genericPlot() only plots the sum of the strains).83

• runStagePopExample runs the examples shown in section 3, e.g. run-84

StagePopExample(‘BlowFlies’)85

• sumStrains if there are multiple strains in a species, sums the model86

output over the strains in each species.87

These functions are automatically called in the popModel() function, un-88

less the user specifies otherwise, but can also be used on a stand alone basis.89

In Appendix 2 we give some tips on how to check the solution generated from90

stagePop is accurate (Appendix 2, section 3) and some ideas on trouble shoot-91

ing typical problems that may occur with the delay differential equation solvers92

(Appendix 2, section 4).93

3 Example Applications94

In this section we demonstrate how stagePop can be used to simulate a wide95

range of problems involving stage-structured populations. Where possible, in96

order to verify our software is working correctly, we have reproduced published97

examples. The scripts for all of these examples are included in the stagePop98

package1, are reproduced in Appendix 3 and are also attached as supplementary99

files. They are intended to serve as a template for users when defining their own100

problems. The name of the appropriate script is given in square brackets in each101

1The location of these files can be found by ‘system.file("DemoFiles/ExampleFileName.R",

package = "stagePop")’

4



stagePop: stage-structured population modelling

example heading and they can be run in R (after (‘library(stagePop)’) using102

runStagePopExample(‘BlowFlies’) (for the BlowFlies.R example).103

3.1 Single Species with fixed death rates and stage dura-104

tions [BlowFlies.R]105

A classic example of a stage-structured population is Nicholson’s Blowflies (Gur-106

ney et al. (1983); Nicholson (1954, 1957)). Australian sheep blowflies, which107

have five distinct developmental stages, grown under controlled conditions in a108

laboratory experiment were found to exhibit sustained, large, quasi-cyclic fluc-109

tuations in their adult populations. To reproduce these experiments, the per110

capita death rates and duration of each stage are assumed to be constant (values111

are given in the caption for Fig. 1 and in Script 1, Appendix 3) and the repro-112

ductive rate (i.e. rate of egg production) is defined as 8.5 exp
(

−A(t)
600

)

where113

the A(t) is the reproductive adult stage (stage 5) and eggs are stage 1. The114

simulation is initiated with the immigration of 100 adults per day over the first115

day (this is fairly arbitrary however - the magnitude of the rate of immigration116

does not affect the equilibrium state results; similarly the immigration can be117

into any life stage). Script 1 (Appendix 3) shows how popModel can be used118

to simulate this situation. Fig 1 shows the plot automatically generated by119

stagePop (compare with Fig. 3 by Gurney et al. (1983)).120

3.2 A single species with density-dependent death rates:121

Larval Competition [LarvalComp.R]122

In this second example from Gurney et al. (1983), a two stage moth population123

(larvae and adults) is considered in which larval competition for resources re-124

sults in a density dependent per capita larval death rate given by αL(t) where125

α=5x10−5 moths−1 d−1 and L(t) is the density of larvae at time t. The larval126

stage duration is 28 d and reproduction (by adults) is given by qA(t) where127

q = 9.4 eggs/adult/d and A(t) is the density of adults at time t. Two different128
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cases are considered; in the first, the adult death rate is fixed at 0.2 d−1, in the129

second, the adults are assumed to die after 5 days. In this second case the adult130

death rate is set to zero and a third stage (corpses) is added to the model. We131

begin both of the simulations with the immigration of adults at a rate of 20 d−1
132

over the first day. The results are shown in Fig. 2 and Figs. 2c and 2d can be133

compared with Fig. 4 by Gurney et al. (1983). This example demonstrates the134

huge difference in population dynamics caused by different ways of modelling135

the death of adults. The code required to run either of these cases in stagePop136

is shown in Script 2, Appendix 3.137

3.3 A single species whose stage durations depend on tem-138

perature [VarDurEnv.R]139

Unfortunately we could not find a sufficiently simple published example of a140

continuous-time model of a stage-structured population affected by temperature141

change (although there are more complex ones, e.g. Beck-Johnson et al. (2013)),142

so we have formulated our own example.143

We consider a theoretical species with two stages (juvenile and adult) where

growth experiments conducted over a range of different but constant temper-

atures, Tc, have shown that the length of the juvenile stage, τ , is affected by

temperature according to:

τ(Tc) = τmin +

(

Tc − Topt

w

)2

(1)

where Topt = 20oC, w = 2oC d and τmin = 60 d (see Fig. 3a and tauFunc in

Script 3 in Appendix 3). We use this relationship to define the instantaneous

juvenile development rate,

g(T (t)) =
1

τ(T (t))
(2)

which we assume will also apply to time-varying temperatures, T (t). To inform144
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stagePop that we are dealing with a problem involving a time-varying stage145

duration we set ‘timeDependDuration’ equal to TRUE. Since in this example146

τ is now changing with time, we define develFunc using Eq. 2 and this is147

used to compute the rate of change of τ(T (t)) (Eq. 9 in Appendix 1. The148

durationFunc (which is used to define non-time-varying durations) is now only149

used to define the length of the stage duration at the begining of the simulation150

(see Script 3, Appendix 3).151

We then simulate the growth of the species over a number of years where

the temperature, T , varies over an annual cycle according to,

T (t) = Ta(1 − cos(2π(t + 80)/365)) (3)

where the yearly average temperature, Ta, is 15o C, t is in days and the time152

offset of 80 d is required to prevent the species dying out due to low temperatues153

when the population is small at the start of the simulation. This is defined in154

the function tempFunc in Script 3 (Appendix 3) and displayed in Fig. 3c.155

The simulation begins with the immigration of adults and reproduction is156

assumed to be density dependent. The definition of this model is described for157

stagePop using Script 3 (Appendix 3) and the results are shown in Fig. 3. The158

changes in the juvenile stage duration τ over time, computed from stagePop159

are shown in Fig. 3d and these are compared with the value of τ computed from160

Eq. 1 which is the stage duration if the current temperature, T (t), had been161

constant over the stage duration.162

3.4 Two interacting species: Predator-Prey System163

[PredPrey1.R] and [PredPrey2.R]164

In this example we show how stagePop can be used to model two species –165

a predator and its prey. We begin with the classic Lotka-Volterra predator-166

prey model where neither species has stage structure (PredPrey1.R) and then167

increase the complexity by adding in stage structure for the predator and then168
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density dependent death for the prey (PredPrey2.R) which is the system studied169

by Gourley and Kuang (2004).170

The classic Lotka-Volterra equations (Lotka, 1925) are given by

ẋ(t) = rx(t) − py(t)x(t) (4)

ẏ(t) = bpy(t)x(t) − Dy(t) (5)

where x(t) and y(t) are the prey and predator densities at time t respectively,171

rx(t) is the prey reproduction rate, py(t) is the per capita death rate of prey172

due to predation, bpy(t)x(t) is the predator reproduction rate and D is the per173

capita death rate of the predator.174

This system is defined in stagePop as shown in Script 4 (Appendix 3).175

The results of the simulation are shown in Fig. 4. The analytical solution176

to Equations 4 and 5 is the closed loop shown in Fig. 4b. However, if the177

tolerances on the DDE solver are not strict enough, the solution will be subject178

to numerical errors and the predator-prey loop in Fig. 4b will not be closed. For179

example changing the value of ‘tol’ in ‘solverOptions’ from ‘1e-7’ to ‘1e-3’180

gives the result shown in Figs. 4c and 4d (see Appendix 2, Section 3, for further181

tips on how to check your solution is accurate).182

We now look at the case where the predator has juvenile and adult stages (yj

and y respectively) and only the adult stage consumes the prey. The equations

now become

ẋ(t) = rx(t) − py(t)x(t) (6)

ẏj(t) = bpy(t)x(t) − bpy(t − τj)x(t − τj) exp(−Djτj) − Djyj(t) (7)

ẏ(t) = bpy(t − τj)x(t − τj) exp(−Djτj) − Dy(t). (8)

where Dj is the juvenile predator per capita death rate (here set at 1 d−1) and183

τj is the length of the juvenile predator stage duration. The stagePop code for184

this new situation is in Script 5 (Appendix 3) (where ‘case=1’) and the results185
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of the simulation for τj=0.1 are shown in Fig. 5. It is clear that adding in186

a juvenile stage which does not predate causes large changes compared to the187

equilibrium situation shown in Fig. 4 (a and b).188

We now add in a density dependent death rate for the prey such that the

prey equation becomes

ẋ(t) = rx(t)(1 −
x(t)

K
) − py(t)x(t) (9)

which is the system investigated by Gourley and Kuang (2004) (Gourley and189

Kuang, 2004). To run this in stagePop we only need state a value for K and190

modify deathFunc as shown for cases>1 in Script 5 (Appendix 3) With K=1191

and the other parameters as before, Fig. 6 shows the results when the predator192

juvenile stage duration is 0.1 d and 1.8 d (cases 2 and 3 respectively in Script193

5 (Appendix 3). Note the length of the simulation has been increased so that194

these plots can be more easily compared with results in Gourley and Kuang195

(2004). The results from stagePop compare well with these until τj ≥ 15 after196

which there are large, unaccounted for discrepancies between the simulations197

(cases 6 and 7 in PredPrey2.R (Script 5, Appendix 3)).198

3.5 Multiple interacting species: Host-Parasitoid System199

[Briggs.R]200

This example considers three interacting species, all with stage structure, in the201

host-parasitoid system investigated by Briggs (1993). The host species has 3202

life stages (eggs, E; larvae, L and adult, A) and is attacked by two competing203

parasitoids: P , which attacks the host eggs and, Q, which attacks the host204

larvae. Both parasitoids have 2 life stages – juvenile (PJ and QJ) and adult205

(PA and QA). The egg and larval attack rates are denoted by aP and aQ206

resepctively. Each parasitised host becomes a single juvenile parasitoid, thus207

the death rates due to parasitoids are aP PA(t)E(t) and aQQA(t)L(t) for the208

host eggs and larvae respectively, and reproduction into the parasitoid juvenile209
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class is aP E(t)PA(t) for P and aQL(t)QA(t) for Q. Reproduction of the host210

is given by ρDAA(t) where ρ is host lifetime fecundity and DA is the adult211

death rate (see Briggs (1993) for the equations describing this system). In this212

example we use the steady solution (provided in Appendix B by Briggs (1993))213

to set the values for the immigration rates (these parameters are identified by214

the ‘star’ in their name - e.g. Qstar). The stagePop code for this system is215

shown in Script 6 (Appendix 3).216

Theory dictates (Briggs, 1993) that in this situation the two parasitoids can217

not co-exist. We use stagePop to simulate an invasion of P (after 20 time units)218

into a situation where only Q and the host are initially present. For the case219

in which the parasitoid Q has twice the attack rate of P (aP =1, aQ=2) and220

all their other parameters are identical, P still manages to displace Q since it221

attacks at an earlier stage (eggs rather than larvae) and the system settles at a222

new equilibrium with a higher adult host density (Fig. 7). These simulations223

are interesting from the point of view of biological control - if the adult host is a224

pest which causes damage e.g. to people or crops, the most desirable parasitoid225

to release is that which minimises the adult host density when in equilibrium.226

3.6 Consumer-Resource problem with variable stage du-227

ration [VarDurFood.R]228

Here we use stagePop to reproduce an example given by Nisbet and Gurney

(1983) in which the length of the larval stage of a 2-stage species (loosely based

on the damselfly) is determined by the availability of their food. Specifically, an

individual larva becomes an adult once it has assimilated enough food to raise

its body mass by m mass units. Thus, by definition the larval stage duration,

τL(t) is determined by the equation

∫ t

t−τL(t)

gL(x)dx = m, (10)
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where gL(t) is the larval development rate (see Appendix 1, Eq. 7). It is

assumed that gL(t), is proportional to the rate of food consumption per larva,

fL(t), such that

gL(t) = ǫfL(t), (11)

and

fL(t) = fmax
F (t)

K + F (t)
, (12)

where F (t) is the food density, K is the half saturation constant and fmax is229

the maximum food consumption rate. Thus the rate of food uptake by larvae230

is fLL(t). Food is supplied to the larvae at a constant rate fs and the adults231

have a fixed rate of reproduction, qA(t) where A(t) is the adult density at time232

t. Both larvae and adults are assumed to have fixed per capita death rates DL233

and DA respectively.234

To solve this problem in stagePop we define it as a two species problem

where food is one species and the damselfly is the other. The ‘reproduction’ of

food is the constant rate of food supply, fs, and its ‘death’ is modelled by the

per capita rate uptake rate, fLL(t)/F (t), i.e.

fmax

K + F (t)
L(t). (13)

A time dependent death rate is specified for the food species and a time depen-

dent duration for the ‘damselfly’ using the popModel() arguments ‘timeDependLoss’

and ‘timeDependDuration’ respectively. Since the length of the stage duration

is changing in time, the durationFunc is only required at t=0, and the devel-

opment rate is set in develFunc using Eqs. 11 and 12. To set the initial value

of τL it is assumed that for t < 0 the development rate is constant, thus Eq. 10

implies gL(0)τL(0) = m. At the beginning of the simulation the larvae have an

initial amount of food, F (0) and thus gL(0) can be computed from Eqs. 11 and

12 to give

τL(0) = m
(K + F (0))

ǫfmaxF (0)
. (14)
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The instructions for stagePop are given in Script 7 (Appendix 3) and the results235

are shown in Fig. 8.236

This example shows the flexibility of using the Nisbet-Gurney formulation –237

the stage duration can be controlled by any model variable, allowing size, age,238

weight etc to determine the time of transition into the next life stage.239

3.7 Consumer-Resource model with multiple strains in240

one species [MultipleStrains.R]241

In this example we demonstrate how a species with multiple strains can be

modelled in stagePop. We begin with looking at a simplified model of bacteria

in the human colon. The bacteria feed on a resource R (e.g. food that has not

been digested further up the gut) and are subject to transport through the gut

at a rate of V . Assuming Monod-equation type growth, the rate of change in

concentration (or density) of bacterial strain i, is given by

dBi(t)

dt
= Gi R(t)

R(t) + K
Bi(t) − V Bi(t) (15)

(e.g. Kettle et al. (2014)) where Gi is the maximum specific growth rate of strain

i and K is the half saturation constant (assumed constant over all strains). The

rate of change of resource is given by

dR(t)

dt
= V Rin −

R(t)

R(t) + K

N
∑

i=1

GiBi(t)

Y
− V R(t) (16)

where N is the number of strains, Y is the yield (i.e. the number of grams of242

B produced from one gram of R) and Rin is the concentration of the incoming243

resource. This is modelled in stagePop as two species – species one is the244

resource and species 2 is the bacteria (Script 8, Appendix 3). With no stage245

structure the system rapidly reaches steady state with one strain dominating246

the system (competitive exclusion; Fig. 9a and b).247

However, bacteria may have a lag phase during which time there is little or
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no cell growth but the cells are busy replicating various proteins and DNA in

preparation for the reproductive phase. For demonstration purposes, we assume

the length of this phase, τi, varies slightly between strains, and whilst in this

stage the bacteria are not subject to the usual transport through the system.

Thus for the lagged stage, B1,

dBi
1(t)

dt
= Gi R(t)

R(t) + K
Bi

2(t) − mi(t) (17)

where mi(t) is the maturation rate of strain i from stage one at time t; and for

the reproductive stage, B2,

dBi
2(t)

dt
= mi(t) − V Bi

2(t). (18)

The rate of change of resource is now given by

dR(t)

dt
= V Rin −

R(t)

R(t) + K

N
∑

i=1

GiBi
2(t)

Y
− V R(t). (19)

When assigning the strain traits (Gm and τi), we assume a trade-off such that a248

longer lag time leads to faster growth. We incorporate this second case (Script249

8, Appendix 3) and see that this has a significant effect on the results (Fig.250

9c-e). The system now does not reach steady state even over the extended time251

period shown and multiple strains are still co-existing after 100 time units.252

4 Conclusion253

The preceding sections demonstrate only a small range of the possible problems254

stagePop can be used to investigate. However, we hope that these demonstrate255

its flexibility and potential, and that other researchers will find stagePop useful256

in their own fields.257
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Supporting Information258

• Appendix 1 Mathematical Formulation259

• Appendix 2 Detailed descriptions of stagePop functions260

• Appendix 3 PDF of R scripts for the Example Applications (Blowflies.R,261

LarvalComp.R, VarDurEnv.R, PredPrey1.R, PredPrey2.R, Briggs.R, VarDurFood.R,262

MultipleStrains.R)263
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Figure 1: Simulation of the five life stages of Nicholson’s blow flies (Section 3.1).
The per capita death rates for stages 1-5 are 0.07, 0.004, 0.003, 0.0025, 0.27 d−1

and the durations of stages 1-4 are 0.6, 5.0, 5.9, 4.1 d. Compare with Fig. 3 by
Gurney et al. (1983).
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Figure 2: Modelling larval competition. a) the adult death rate is constant at
0.2 d−1; b) the adults have a fixed lifetime of 5 d; c) and d) are the same as a)
and b) but show only adults for comparison with Fig. 4 a and b, by Gurney
et al. (1983).
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Figure 3: Simulation of a single species with a juvenile and adult stage where
the juvenile development rate is temperature dependent (Section 3.3). a) Re-
lationship between juvenile stage duration and temperature (Section 3.3 (Eq.
1)); b) Results from stagePop; c) temperature time series; d) comparison of
calculations of τ . Note the lower two plots are shown for a shorter time period
(2 years rather than 6 years) for clarity.
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Figure 4: a) Predator-prey dynamics with no stage structure. The closed
loop in b) indicates the solution is numerically accurate (‘tol’=1e-7 in
‘solverOptions’); d) when ‘tol’=1e-3 in ‘solverOptions’, numerical accuracy
has not been achieved (and plot c) is incorrect) as the predator-prey graph is
no longer a closed loop.
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Figure 5: Predator-prey dynamics where the predator has a juvenile stage of
duration 0.1 d.
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Figure 6: Predator-prey dynamic where the prey has density dependent death
and the predator has a juvenile stage of duration 0.1 d (top row) and 1.8 d
(bottom row). Compare with Fig. 3 by Gourley and Kuang (2004).
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Figure 7: Competition between two parasitoids attacking different life stages of
one host (compare with Fig.3 (Briggs, 1993)). See Script 6 (Appendix 3) for
parameter values.
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Figure 8: Example where length of larval maturation time is determined by
food availability (Section 3.6). The simulation begins with L(0) = A(0) = 0,
F (0) = 0.1 with immigration into the larval stage at rate 1 per unit time for the
first 0.1 time units. The parameters used to achieve these plots (which compare
well with Fig. 3 (Nisbet and Gurney, 1983)) are fs = m = ǫ = K = 1, DA=2,
q=5, DL = ln( q

DA
) and fmax = 3.
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Figure 9: Example using multiple strains in one species. Model with no stage
structure: a) where ‘Bacteria’ is the sum over all strains, and b) time evolution of
the 6 invidual strains. Model with stage-structure: Time evolution of resource
(c), the two stages of bacteria (d), and the individual strains for the lagged
stage (e) and the reproductive stage (f). Note extended time period for the
stage-structured model.
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