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Abstract

An important step of modeling spatially-referenced data is appropri-
ately specifying the second order properties of the random field. A scien-
tist developing a model for spatial data has a number of options regarding
the nature of the dependence between observations. One of these options
is deciding whether or not the dependence between observations depends
on direction, or, in other words, whether or not the spatial covariance
function is isotropic. Isotropy implies that spatial dependence is a func-
tion of only the distance and not the direction of the spatial separation
between sampling locations. A researcher may use graphical techniques,
such as directional sample semivariograms, to determine whether an as-
sumption of isotropy holds. These graphical diagnostics can be difficult
to assess, subject to personal interpretation, and potentially misleading
as they typically do not include a measure of uncertainty. In order to es-
cape these issues, a hypothesis test of the assumption of isotropy may be
more desirable. To avoid specification of the covariance function, a num-
ber of nonparametric tests of isotropy have been developed using both
the spatial and spectral representations of random fields. Several of these
nonparametric tests are implemented in the R package spTest, available
on CRAN. We demonstrate how graphical techniques and the hypothesis
tests programmed in spTest can be used in practice to assess isotropy
properties.

1 Introduction

An important step in modeling a spatial process is choosing the form of the
covariance function. The form of the covariance function will have an effect on
kriging as well as parameter estimates and the associated uncertainty (Cressie,
1993, pg. 127-135). A common simplifying assumption about the spatial co-
variance function is that it is isotropic, that is, the dependence between sam-
pling locations depends only on the distance between locations and not on their
relative orientation. This assumption may not always be reasonable; for ex-
ample, wind may lead to directional dependence in environmental monitoring
data. Misspecification of the second order properties can lead to misleading
inference. Sherman (2011, pg. 87-90) and Guan et al. (2004) summarize the
effects of incorrectly specifying isotropy properties on kriging estimates through
numerical examples. In order to choose an appropriate model, a statistician
must first assess the nature of the spatial variation of his or her data. To check
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for anisotropy (directional dependence) in spatially-referenced data, a number of
graphical techniques are available, such as directional sample variograms or rose
diagrams (Matheron, 1961; Isaaks and Srivastava, 1989, pg. 149-154). Spatial
statisticians may have intuition about the interpretation and reliability of these
diagnostics, but a less experienced user may desire evaluation of assumptions
via a hypothesis test. In this paper, we use two real data examples to illus-
trate how the nonparametric hypothesis tests available in the R package spTest
(Weller, 2015) can be used to assess isotropy properties in spatially-referenced
data. The examples also demonstrate how graphical techniques and hypothe-
sis tests can be used in a complementary role. The remainder of the paper is
organized as follows: Section 2 establishes notation and definitions; Section 3
describes the functionality of the spTest package; Section 4 demonstrates how
to use the functions in spTest in conjunction with graphical techniques on two
different data sets; Section 5 concludes the paper with a discussion.

2 Notation

2.1 Spatial statistics

In Section 2.1 we briefly review key definitions required for describing and per-
forming tests of isotropy. For additional background, see Weller and Hoeting
(2015) or Schabenberger and Gotway (2004). Let {Y (s) : s ∈ D ⊆ <2} be a
second order stationary random field (RF). Let {s1, . . . , sn} ⊂ D be the finite
set of locations at which the random process is observed, providing the random
vector Y = (Y (s1), . . . , Y (sn))>. The sampling locations may follow one of
several spatial sampling designs, for example, gridded locations, randomly and
uniformly distributed locations, a cluster design, or any other general design.
Note that there is a distinction between a lattice process and a geostatistical
process observed on a grid (e.g., Fuentes and Reich, 2010; Schabenberger and
Gotway, 2004, pg. 6-10), but we do not explore this distinction and will use the
term grid throughout.

For a spatial lag h = (h1, h2)>, the semivariogram function describes depen-
dence between observations, Y, at spatial locations separated by lag h and is
defined as

γ(h) =
1

2
Var(Y (s + h)− Y (s)). (2.1)

The classical moment-based estimator of the semivariogram (Matheron, 1962)
is

γ̂(h) =
1

2|D(h)|
∑

[Y (s)− Y (s + h)]2, (2.2)

where the sum is over D(h) = {s : s, s + h ∈ D} and |D(h)| is the number of
elements in D(h). The set D(h) is the set of sampling location pairs that are
separated by spatial lag h. The covariance function is defined by

C(h) = Cov(Y (s), Y (s + h)) (2.3)

and is an alternative to the semivariogram for describing spatial dependence.
When it exists, the covariance function, C(h), is related to the semivariogram
by C(h) = lim||v||→∞γ(v)− γ(h) if the limit exists.
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It is often of interest to infer the effect of covariates on the process, deduce
dependence structure, and/or predict Y with associated uncertainty at new
locations. To achieve these goals, the practitioner must specify the distributional
properties of the spatial process. A common assumption is that the finite-
dimensional joint distribution is multivariate normal (MVN), in which case we
call the RF a Gaussian random field (GRF).

A common simplifying assumption about the spatial dependence structure
is that it is isotropic.

Definition 2.1.1. A second-order stationary spatial process is isotropic if the
semivariogram, γ(h), [or equivalently, the covariance function C(h)] of the spa-
tial process depends on the lag vector h only through its Euclidean length, ||h||,
i.e., γ(h) = γ0(||h||) for some function γ0(·) of a univariate argument.

Isotropy implies that the dependence between any two observations depends only
on the Euclidean distance between their sampling locations and not on their rel-
ative orientation. A spatial process that is not isotropic is called anisotropic.
The methods in spTest are designed to assist in determining whether or not the
assumption of isotropy holds. Namely, the functions in spTest implement non-
parametric hypothesis tests of isotropy, which avoid the choice of a parametric
form for the covariance (semivariogram) function.

There are two important modifications to the estimator in Equation 2.2 that
are pertinent to the methods described in this paper. First, for non-gridded sam-
pling locations, the estimator needs to be modified to account for the fact that
very few or no pairs of locations will be separated by a specific spatial lag, h.
One solution to this challenge is to specify a distance tolerance, ε, such that
lags having length ||h|| ± ε are included in estimating the semivariance at lag
h. Second, directional sample semivariograms can be estimated by only using
observations that are separated by spatial lags in a specific direction. For exam-
ple, to investigate potential anisotropy, we can compare sample semivariograms
between the horizontal and vertical directions. For non-gridded sampling loca-
tions, very few pairs of locations will lie at a specific distance and directional lag,
so we need to allow for both a distance and a directional tolerance when estimat-
ing the semivariance. A common method for doing this is by using a product
kernel smoother that smoothes over both the horizontal (h1) and vertical (h2)
components of the spatial lag h = (h1, h2)>.

Spatial RFs and their second order properties can also be expressed in the
spectral (or frequency) domain using Fourier transforms. The spectral repre-
sentation of RFs and their second order properties provides alternative methods
for testing second order properties. For brevity we focus only on the methods in
the spatial domain and refer the interested reader to Weller and Hoeting (2015)
or Fuentes and Reich (2010). We note that that, in addition to the methods
from the spatial domain, the spectral methods from Lu and Zimmerman (2005)
are also implemented in spTest.

2.2 Nonparametric tests of isotropy

Lu (1994) and Lu and Zimmerman (2001) pioneered a popular approach to test-
ing second-order properties when they used the asymptotic joint normality of the
sample semivariogram computed at different spatial lags to evaluate symmetry
and isotropy properties. The subsequent works of Guan et al. (2004, 2007) and
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Maity and Sherman (2012) built upon these ideas and are the primary methods
programmed in spTest. Here we give an overview of the tests in Guan et al.
(2004) and Maity and Sherman (2012).

Under the null hypothesis that the RF is isotropic, it follows that the values
of γ(·) evaluated at any two spatial lags that have the same norm are equal,
independent of the direction of the lags. For example, under the assumption of
isotropy, γ((−6, 0)) = γ

((√
3,
√

3
))

. To completely specify the null hypothesis
of isotropy, theoretically, one would need to compare semivariogram values for
an infinite set of lags. In practice, a small number of lags are specified. Then it
is possible to test a hypothesis consisting of a set of linear contrasts of the form

H0 : Aγ(·) = 0 (2.4)

as a proxy for the null hypothesis of isotropy, where A is a full row rank matrix
(Lu and Zimmerman, 2001). For example, a set of lags, denoted Λ, commonly
used in practice on gridded sampling locations with unit spacing is

Λ = {h1 = (1, 0),h2 = (0, 1),h3 = (1, 1),h4 = (−1, 1)}, (2.5)

and the corresponding A matrix under H0 : Aγ(Λ) = 0 is

A =

[
1 −1 0 0
0 0 1 −1

]
. (2.6)

In other words, by using Equations 2.5 and 2.6 under the hypothesis 2.4,
we contrast the semivariogram values at lags h1 = (1, 0) and h2 = (0, 1), and
likewise, contrast semivariogram values at lags h3 = (1, 1) and h4 = (−1, 1).
An important step in detecting anisotropy is the choice of lags, Λ, as the test
results will only hold for the set of lags considered (Guan et al., 2004). While this
choice is somewhat subjective, there are several considerations for determining
the set of lags. First, in terms of Euclidean distance, short lags should be
chosen because estimates of the semivariance at long lags will be less reliable
than estimates at short lags because they are based on fewer pairs of observations
and hence more variable. Second, pairs of orthogonal lags should be contrasted
because, for an anisotropic process, the directions of strongest and weakest
spatial correlation will typically be orthogonal. For other considerations and
more detailed guidelines regarding the choice of lags, see Weller and Hoeting
(2015), Lu and Zimmerman (2001), and Guan et al. (2004).

The tests in Guan et al. (2004) and Maity and Sherman (2012) involve
estimating either the semivariogram 2.1 or covariogram 2.3 and evaluating the
estimator at the set of chosen lags. Denoting the set of point estimates of the
variogram/covariogram at the chosen lags as Ĝn, the true values as G, and
normalizing constant an, a central result for all three methods is that

an(Ĝn −G)
d−−−−→

n→∞
MVN(0,Σ), (2.7)

under increasing domain asymptotics and mild moment and mixing conditions
on the RF. The test statistic is a quadratic form

TS = b2n(AĜn)>(AΣ̂AT )−1(AĜn), (2.8)

where Σ̂ is an estimate of the asymptotic variance-covariance matrix and bn
is a normalizing constant. A p value can be obtained from the asymptotic χ2
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distribution with degrees of freedom given by the row rank of A. Important
differences in these works regard the distribution of sampling locations, shape
of the sampling domain, estimation of G and Σ, and assumptions on the de-
pendence structure of the random field (see Weller and Hoeting (2015) for more
details).

3 Nonparametric tests implemented in spTest

The R package spTest includes functions for implementing the tests devel-
oped in Guan et al. (2004), Lu and Zimmerman (2005), and Maity and Sher-
man (2012). The primary functions in spTest for implementing these tests
are LuTest, MaityTest, GuanTestGrid, and GuanTestUnif. For example, the
test from Guan et al. (2004) for data observed at non-gridded, but uniformly
distributed, sampling locations is implemented in the function GuanTestUnif,
which takes the following arguments:

GuanTestUnif(spdata, lagmat, A, df, h = 0.7, kernel = "norm",

truncation = 1.5, xlims, ylims, grid.spacing = c(1, 1),

window.dims = c(2, 2), subblock.h, sig.est.finite = T).

There are several necessary inputs. The matrix spdata includes the coordi-
nates of sampling locations and the corresponding data values. The spatial
lags that will be used to estimate the semivariance, denoted Λ, are specified in
the matrix lagmat. The matrix A provides the contrasts of the semivariance
estimates, and its row rank is indicated by the parameter df (the degrees of
freedom for the asymptotic χ2 distribution). The values h and kernel provide
the bandwidth (smoothing) parameter and form of the kernel smoother, respec-
tively, used to smooth over spatial lags when estimating the semivariance. If
a normal smoothing kernel is used, then the truncation parameter indicates
where to truncate the normal kernel (i.e., zero weight for values larger than
this value). The parameters xlims and ylims give the horizontal and verti-
cal limits of the sampling region (a rectangular sampling region is assumed).
A grid is laid over the sampling region according the width and height spec-
ified by grid.spacing. The dimensions of the moving windows, given in the
units of the underlying grid, are determined by the values in window.dims.
The bandwidth used to estimate the semivariance on the subblocks of data is
indicated by subblock.h and a finite sample adjustment to the estimate of
the asymptotic variance-covariance matrix is made by setting sig.est.finte

= T. For more information about the different arguments and guidelines on how
to choose them, see Weller and Hoeting (2015), the spTest manual (https:
//cran.r-project.org/web/packages/spTest/index.html, and the original
works.

4 Applications: Using spTest to check for anisotropy

We demonstrate the functions in spTest on two data sets: the first containing
gridded sampling locations, the second non-gridded sampling locations. For
more details on the functions and more examples using simulated data, see the
official spTest manual. The spTest package can be used independently of other
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packages built for analyzing spatial data, but it works nicely with two other
packages loaded into R : fields (Nychka et al., 2014) and geoR (Ribeiro Jr. and
Diggle, 2001). The package fields is automatically installed with spTest, while
geoR is not. We also load the splines package (R Core Team, 2015), which we
use to fit mean functions.

> library("spTest")

> library("fields")

> library("geoR")

> library("splines")

For the two examples given below, we use graphical diagnostics and the hy-
pothesis tests implemented in spTest to determine whether or not an assumption
of isotropy is reasonable for spatially-referenced data. The general strategy will
be to first do exploratory data analysis (EDA) of the original data and create
a model for the mean of the spatial process using appropriate covariates. After
estimating a model for the mean, we extract residuals and again use EDA to
check for remaining spatial dependence and utilize graphical diagnostics and
hypothesis tests to investigate potential anisotropy. For brevity, we have not
included the full version of EDA code and plots; instead, we include only the
most relevant to demonstrating the functionality of the spTest package. The
complete version of the code is available on github.

4.1 Gridded sampling locations

The gridded data used in this section come from the North American Regional
Climate Change Assessment Program [NARCCAP] (Mearns et al., 2009). The
data set WRFG in spTest includes coordinates and a 24-year average of yearly
average temperatures from runs of the Weather Research and Forecasting -
Grell configuration (WRFG) regional climate model (RCM) using boundary
conditions from the National Centers for Environmental Prediction (NCEP).
The original data and the R code used to create the yearly averages are available
online. The data set contains both latitude and longitude coordinates and map
projection coordinates that specify the regular grid for 14,606 grid boxes along
with average temperature at each grid box. We can display a heat map of all of
the data using the image.plot function from the fields package (see Figure 1a).
Due to computational considerations and because the methods in spTest assume
stationarity, for our analysis we use a 20× 20 subset of the grid boxes over the
central United States (see Figure 1b).

> data("WRFG")

> image.plot(WRFG$lon - 360, WRFG$lat, WRFG$WRFG.NCEP.tas, xlab = "Longitude",

+ ylab = "Latitude", main = "Mean WRFG-NCEP Temperatures")

> world(add = T)

> coords <- expand.grid(WRFG$xc, WRFG$yc)

> sub <- which(coords[, 1] > 2950000 & coords[, 1] < 4e+06 & coords[,

+ 2] > 1200000 & coords[, 2] < 2250000)

> image.plot(WRFG$xc, WRFG$yc, WRFG$WRFG.NCEP.tas, xlab = "Easting",

+ ylab = "Northing", main = "Map Projection Coordinates")

> points(coords[sub, ], pch = 16, cex = 0.35)
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Figure 1: Heat maps of average temperatures of WRFG-NCEP output from
NARCCAP. Figure 1a displays the average of WRFG-NCEP yearly average
temperature over 24 years with coordinates in latitude and longitude. Figure 1b
displays the same data but on the gridded map projection (easting/northing)
coordinates, and the black points indicate the subset of the data used for this
example.

> my.coords <- coords[sub, ]

> colnames(my.coords) <- c("xc", "yc")

> tas <- WRFG$WRFG.NCEP.tas

> tas <- c(tas)

> tas <- tas[sub]

> mydata <- cbind(my.coords[, 1], my.coords[, 2], tas)

To investigate potential anisotropy in the relevant subset of these data, we
can examine two graphical diagnostics: a heat map and directional sample semi-
variograms. We use the function variog4 from the geoR package to estimate
directional semivariograms to visually assess isotropy properties.

> x.coord <- unique(my.coords[, 1])

> y.coord <- unique(my.coords[, 2])

> nx <- length(x.coord)

> ny <- length(y.coord)

> tas.mat <- matrix(mydata[, 3], nrow = nx, ncol = ny, byrow = F)

> image.plot(x.coord, y.coord, tas.mat, ylab = "Northing", xlab = "Easting",

+ main = "Subset of Temperatures")

> geodat <- as.geodata(mydata)

> svar4 <- variog4(geodat)

> plot(svar4)

> title("Directional Sample Semivariograms")

The heat map in Figure 2a indicates that the spatial process is anisotropic,
having a stronger spatial dependence in the horizontal direction than the vertical
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Figure 2: Graphical assessments of isotropy in the 20×20 subset of WRFG tem-
perature data. Because northing (latitude) coordinates have not been accounted
for, the heat map (2a) indicates that the dependence between observations is
stronger in the east-west direction than the north-south direction. The direc-
tional dependence is also evidenced by the differences between the directional
sample semivariograms (2b).

direction. Intuitively, northing (latitude) is an important factor in determining
average temperature, and we need to include its effect in a model for these
data. We also notice non-linear trends in temperature as a function of easting
(longitude) in Figure 2a. Thus, the anisotropy can be attributed, at least in
part, to the fact that we have not modeled important covariates related to
the process. The directional sample semivariograms in Figure 2b reaffirm the
notion that the data exhibit anisotropy as the 90◦ sample semivariogram appears
much different than the other three. Before modeling the effects of northing and
easting coordinates, we use the GuanTestGrid function from spTest to affirm
our understanding that these data exhibit anisotropy.

While some of the nonparametric methods for testing isotropy do not require
Gaussian data, necessary conditions for the asymptotic properties of the test to
hold are typically met when the data are Gaussian. A histogram (not shown)
of the relevant subset of WRFG temperature data indicates that a Gaussian
assumption is not unreasonable. To implement the nonparametric test in Guan
et al. (2004) via the function GuanTestGrid, we need to specify the spatial
lags that will be used to test for differences in the semivariogram. Based on
the sample semivariograms in Figure 2b, we begin to see a difference in the
semivariograms at a distance of approximately 200,000. Because the distance
between sampling locations is 50,000, we should use spatial lags with lengths of
approximately 200, 000/50, 000 = 4 units. For this test we choose the lag set

Λ = {h1 = (4, 0),h2 = (0, 4),h3 = (3, 3),h4 = (−3, 3)},

and we use the matrix A in Equation 2.6. To create subblocks of data used to
estimate Σ, we choose a moving window with size 2 × 2. The moving window
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dimensions should be chosen so that the window has the same shape (i.e., square
or rectangle) and orientation as the entire data set. To maximize the amount
of data used to estimate Σ, the dimensions of the window should evenly divide
the number of columns and rows, respectively, of the entire region. For this
example there are 20 rows and columns; hence, window dimensions of 2× 2 or
4 × 4 are ideal choices. Using a window size of 2 × 2, we run the test via the
following code.

> my.delta <- 50000

> mylags <- rbind(c(4, 0), c(0, 4), c(3, 3), c(-3, 3))

> myA <- rbind(c(1, -1, 0, 0), c(0, 0, 1, -1))

> tr <- GuanTestGrid(spdata = mydata, delta = my.delta, lagmat = mylags,

+ A = myA, window.dims = c(2, 2), pt.est.edge = TRUE, sig.est.edge = TRUE,

+ sig.est.finite = TRUE, df = 2)

> tr$pvalue.finite

[1] 0

As expected, the results of the hypothesis test (p value < 0.05) indicate that
the data exhibit anisotropy. We note that the p value is given as exactly 0 due
to a finite sample correction (Guan et al., 2004). The function GuanTestGrid,
and other functions in spTest, return a p value for the test and information used
in computing the p value, such as the point estimates (Ĝn), estimates of the

asymptotic variance-covariance matrix (Σ̂), the number of subblocks used to
estimate Σ, and other information about the estimation process. Here we note
that the point estimates for the directional semivariance are slightly different
between the functions from the spTest and geoR packages due to different kernel
methods used in estimation.

As mentioned earlier, we need to model the effects of northing and easting
(latitude and longitude) coordinates on average temperature. We fit temper-
ature as a nonparametric additive function of both the northing and easting
coordinates via least-squares using cubic splines. The cubic splines can be spec-
ified using the function ns from the splines package and the least squares fit is
computed via the lm function.

> x1 <- my.coords[, 1]

> x2 <- my.coords[, 2]

> m1 <- lm(tas ~ ns(x1, df = 3) + ns(x2, df = 3))

> summary(m1)

After removing the mean effects of the coordinates, we can check for any
remaining (unaccounted for) spatial dependence and evidence of anisotropy in
the residuals using graphical diagnostics and a hypothesis test. A histogram of
the residuals (not shown) indicates that a Gaussian assumption is reasonable.

> resid <- m1$resid

> resid.mat <- matrix(resid, nrow = nx, ncol = ny, byrow = F)

> image.plot(x.coord, y.coord, resid.mat, xlab = "Easting", ylab = "Northing")

> title("Heat Map of Residuals")

> resid.dat <- cbind(mydata[, 1:2], resid)

> geodat.resid <- as.geodata(resid.dat)
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Figure 3: Graphical assessments of isotropy in the residuals. The appearance of
elongated areas of similar residual values in the heat map (3a) indicates that the
process may be anisotropic. The directional semivariograms (3b) do not appear
to exhibit differences, indicating that the process is isotropic.

> plot(variog4(geodat.resid))

> title("Directional Sample Semivariograms")

The clusters of similar values in the heat map of Figure 3a, and the increase,
followed by a leveling off, of the semivariance values as distance increases in
the directional sample semivariograms in Figure 3b indicate that the residuals
are still spatially dependent. However, the plots in Figure 3 do not clearly
illustrate whether or not the residuals exhibit anisotropy. There appears to
be directional dependence along the NW to SE direction in the northern parts
of the heatmap (Figure 3a). The directional sample semivariograms do not
appear to be different until the distance is greater than 200000. Semivariogram
estimates at large distances can be unreliable because there are fewer pairs
of sampling locations to estimate this value than at short distances. Likewise,
directional semivariograms are less reliable than a uni-directional semivariogram
because fewer pairs of sampling locations are used at each distance for directional
estimation. The unreliability of the semivariograms at the larger distances,
coupled with the lack of a measure of uncertainty, make it difficult to determine
whether or not an assumption of isotropy is reasonable. In hopes of gaining more
insight into the isotropy properties, we perform a nonparametric hypothesis test
of isotropy using the residuals with the same choices for Λ, A, and the window
dimensions.

> tr <- GuanTestGrid(spdata = resid.dat, delta = my.delta, lagmat = mylags,

+ A = myA, window.dims = c(2, 2), pt.est.edge = TRUE, sig.est.edge = TRUE,

+ sig.est.finite = TRUE, df = 2)

> tr$pvalue.finite

[1] 0.06111111
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Here the residuals do not provide evidence for anisotropy (p value > 0.05).
These results suggest that it may be appropriate to choose an isotropic covari-
ance function to model the residuals. However, it is important to note that we
have not included the effect of other potentially influential covariates such as
elevation or water cover in the model for temperature. Additionally, although
we examined a 20 × 20 subset of the data, the grid boxes still cover a large
geographic region of the U.S., and thus an assumption of stationarity, which is
needed for the asymptotic properties of the hypothesis test to hold, may not be
reasonable.

4.2 Non-gridded sampling locations

The non-gridded data set used in this section describes monthly surface meterol-
ogy for the state of Colorado and comes from the National Center for Atmo-
spheric Research (NCAR). The data are available in the package fields or online
(http://www.image.ucar.edu/GSP/Data/US.monthly.met/CO.html). For this
example, our variable of interest is the log of the 30-year average of average
yearly precipitation at 344 station locations during the time period 1968-1997.

Like the temperature data, our goal will be to model the mean effect of
covariates and check for spatial dependence and potential anisotropy in the
residuals. Because the sampling locations cover a much smaller region than
the subset of WRFG temperatures, we choose to use the latitude and longitude
coordinates for this example. We can create a heat map of the log precipitation
values and the elevation of the stations using the function quilt.plot from the
fields package.

> data(COmonthlyMet)

> sub30 <- CO.ppt[74:103, , ]

> nstations <- 376

> years <- 1968:1997

> nyears <- length(years)

> yr.avg <- matrix(data = NA, nrow = nstations, ncol = nyears)

> for (i in 1:nyears) {

+ yr.dat <- sub30[i, , ]

+ yr.avg[, i] <- apply(yr.dat, 2, mean, na.rm = T)

+ }

> avg30 <- apply(yr.avg, 1, mean, na.rm = T)

> quilt.plot(CO.loc, log(avg30), xlab = "Longitude", ylab = "Latitude",

+ main = "Quilt Plot of log(precip)")

> US(add = T)

> quilt.plot(CO.loc, CO.elev, xlab = "Longitude", ylab = "Latitude",

+ main = "Quilt Plot of Elevation")

> US(add = T)

Colorado has two distinct geographic regions: the mountainous region in the
west and the plains region in the east. Figure 4b illustrates these two regions,
and we can begin to notice a possible relationship between elevation and average
precipitation. We explore the potential relationship between precipitation and
elevation using scatter plots (see Figure 5a).
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Figure 4: Heat maps showing the locations of the stations in a region of Col-
orado along with the log of average precipitation (4a) and elevation (4b) at each
station.

> plot(CO.elev, log(avg30), xlab = "Elevation", ylab = "log(precip)",

+ main = "Scatter of log(precip) vs. Elevation")

> m1 <- lm(log(avg30) ~ ns(CO.elev, df = 3))

> summary(m1)

> fits <- m1$fitted.values

> bad <- is.na(avg30)

> x <- CO.elev[which(!bad)]

> ord <- order(x)

> x <- sort(x)

> fits <- fits[ord]

> lines(x, fits, lwd = 3, col = "red")

> resid <- m1$resid

> hist(resid, freq = F, main = "Histogram of Residuals")

> lines(density(resid), lwd = 2)

We fit a cubic smoothing spline via least squares to model the relationship
between log(precipitation) and elevation. The estimate is shown in Figure 5a,
and the histogram of residuals in Figure 5b indicates that a Gaussian assumption
is reasonable. We will use the residuals from this model to check for remain-
ing spatial dependence and potential anisotropy. We use variog4 to estimate
directional sample semivariograms.

> precip.resid <- cbind(CO.loc[which(!bad), ][, 1], CO.loc[which(!bad),

+ ][, 2], resid)

> geodat <- as.geodata(precip.resid)

> svar4 <- variog4(geodat)

> plot(svar4, legend = F)

> legend("bottomright", legend = c(expression(0 * degree), expression(45 *
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Figure 5: The plot in Figure 5a displays the scatter plot and the estimate of the
nonparametric relationship between log(precipitation) and elevation. Figure 5b
displays a histogram of the residuals from the model relating log(precipitation)
to elevation.

+ degree), expression(90 * degree), expression(135 * degree)),

+ col = 1:4, lty = 1:4)

> title("Directional Sample Semivariograms")

The increase, followed by a leveling off, of the semivariance values as distance
increases in Figure 6 indicates that there is spatial dependence remaining in the
data. We notice that the 0◦ semivariogram appears to be slightly different than
the other three, but there is no attached measure of uncertainty. We again turn
to a nonparametric hypothesis test of isotropy to assist in determining if an
assumption of isotropy is reasonable.

There are two testing procedures for non-gridded available in spTest: Guan
et al. (2004) and Maity and Sherman (2012). To choose between these two, we
need to decide whether or not it is reasonable to assume that sampling locations
are uniformly distributed on the sampling domain. The methods for non-gridded
data from Guan et al. (2004) rely on the assumption that sampling locations
are uniformly distributed while the Maity and Sherman (2012) methods can be
used on any general sampling design. To check this assumption, we can turn to
methods from the spatial point process literature to perform a test of complete
spatial randomness (CSR) (i.e., a uniform spatial distribution) for the sampling
locations. Methods for testing CSR are available in the R package spatstat
(Baddeley and Turner, 2004). For brevity, we do not include those results here,
and we will proceed assuming that CSR holds for these sampling locations.

For both Guan et al. (2004) and Maity and Sherman (2012), we need to
choose the lag set, Λ, and the contrast matrix, A. The large jumps and decrease
in the semivariance values in Figure 6 indicate that semivariogram estimates
become unreliable beyond a distance of 2; thus, we should choose lags having
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Figure 6: Directional sample semivariograms using residuals from the model
relating log(precipitation) to elevation.

Euclidean distance less than this distance. We choose the lag set

Λ = {h1 = (3/4, 0),h2 = (0, 3/4),h3 = (3/4, 3/4),h4 = (−3/4, 3/4)},

and again we use the matrix A in Equation 2.6.

> mylags <- 0.75 * rbind(c(1, 0), c(0, 1), c(1, 1), c(-1, 1))

> myA <- rbind(c(1, -1, 0, 0), c(0, 0, 1, -1))

The next step is to implement the methods from Guan et al. (2004) and
Maity and Sherman (2012) is to determine the size of the moving windows
and the block size, respectively, that will be used in estimating the asymptotic
variance-covariance matrix. To make this determination, we need to place a
grid over the sampling region. The choice of grid will depend on the density
and design of the sampling locations, but, ideally, should divide the region so
that uniformly distributed sampling locations are approximately evenly divided
between the cells. We recommend using visualizations of different grid choices
to assist in choosing a grid. For our example, we set the limits of the sampling
region to be slightly wider than the observed minimum and maximum coordi-
nates in both the x and y directions, and we divide both the x-axis and y-axis
into 12 parts. The result of this grid is plotted in Figure 7.

> quilt.plot(precip.resid[, 1:2], precip.resid[, 3], xlab = "Longitude",

+ ylab = "Latitude")

> title("Quilt Plot of Residuals and Grid Used for Subsampling")

> min(precip.resid[, 1])
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Figure 7: The grid placed on the sampling region used for spatial resampling.
Because the sampling locations are not gridded, it can be difficult to assess
isotropy properties via a heat map.

[1] -109.483

> max(precip.resid[, 1])

[1] -101.02

> min(precip.resid[, 2])

[1] 36.512

> max(precip.resid[, 2])

[1] 41.467

> my.xlims <- c(-109.5, -101)

> my.ylims <- c(36.5, 41.5)

> xlen <- my.xlims[2] - my.xlims[1]

> ylen <- my.ylims[2] - my.ylims[1]

> my.grid.spacing <- c(xlen/12, ylen/12)

> xgrid <- seq(my.xlims[1], my.xlims[2], by = my.grid.spacing[1])

> ygrid <- seq(my.ylims[1], my.ylims[2], by = my.grid.spacing[2])

> abline(v = xgrid, lty = 2)

> abline(h = ygrid, lty = 2)

Now that we have a grid on the sampling region, for the test in Guan et al.
(2004), we need to choose the dimensions of the moving window and the smooth-
ing (bandwidth) parameters. The p value of the hypothesis test will be sensitive
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to the choice of moving window dimensions. For this example, the dimensions
of the sampling region are 8.5◦ × 5◦ (width × height). Thus, we should cre-
ate a rectangular moving window having a slightly larger width than height.
Our window dimensions should also be compatible with the grid placed on the
sampling region. Recalling that we placed a 12× 12 grid on the region, a good
choice for window dimensions is 4 × 3 because these values both evenly divide
12 and create the desired rectangular orientation. Another potential choice for
window dimensions is 2×1, but this may not be a good choice because very few
sampling locations will be available in each subblock. The smoothing parameter
should be chosen based on the number and density of the sampling locations
with larger values inducing higher levels of smoothing, i.e., averaging over all
directions. In our experience, smoothing parameter values between 0.4 and 0.9
tend to produce reasonable results; however, the p value of the hypothesis test
will change with the bandwidth. For this example, we choose a bandwidth of
0.6 for smoothing over lags over the entire domain, and a bandwidth of 0.7 for
smoothing over lags on the subblocks of data created by the moving window.

Likewise, for the test in Maity and Sherman (2012), we need to choose the
block size used to implement the grid-based block bootstrap [GBBB] (Lahiri
and Zhu, 2006). Like the moving windows, we use a block size of 4× 3. Finally,
we need to choose the number of bootstrap resamples that will be used to
estimate Σ. We recommend using at least 50 bootstrap samples; however, the
bootstrapping procedure is computationally intensive. We choose 100 bootstrap
samples for our example, and we note that the number of bootstraps does not
affect the precision of the p value, which is computed via the asymptotic χ2

distribution.
When moving window or block dimensions are not compatible with the num-

ber of rows or columns of gridded sampling locations or the dimensions of grid
laid on the sampling region for non-gridded locations, the functions in spTest
will print a warning message because they do not currently handle partial (in-
complete) blocks. Likewise, if the window dimensions are too small, the function
GuanTestUnif will discard subblocks that do not have enough sampling loca-
tions and print a warning message. The problem of choosing an optimal band-
width and optimal window/block size remains an open question. See Weller and
Hoeting (2015) and the original works for guidelines on choosing these values.

Having determined values for the different options, we can now perform the
hypothesis tests.

> myh <- 0.6

> myh.sb <- 0.7

> tr.guan <- GuanTestUnif(spdata = precip.resid, lagmat = mylags,

+ A = myA, df = 2, h = myh, kernel = "norm", truncation = 1.5,

+ xlims = my.xlims, ylims = my.ylims, grid.spacing = my.grid.spacing,

+ window.dims = c(4, 3), subblock.h = myh.sb)

> tr.guan$pvalue.chisq

[1] 0.2267888

> tr.maity <- MaityTest(spdata = precip.resid, lagmat = mylags,

+ A = myA, df = 2, xlims = my.xlims, ylims = my.ylims, grid.spacing = my.grid.spacing,

+ block.dims = c(4, 3), nBoot = 100, kappa = 1)

> tr.maity$pvalue.chisq
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[1] 0.1817736

For both tests, the residuals do not provide evidence in favor of anisotropy.
Thus, in developing a spatial model for the residuals, it may be reasonable to
assume isotropy.

5 Discussion

Choosing a covariance function is an important step in modeling spatially-
referenced data and a variety of choices for the covariance function are available
(e.g., anisotropy, nonstationarity, parametric forms). The R package spTest
implements several nonparametric tests for checking isotropy properties which
avoid specifying a parametric form for the covariance function. One concern
regarding the methods in spTest is that they tend to have low power when the
anisotropy is weak (see, e.g., Weller and Hoeting, 2015).

After determining whether or not an assumption of isotropy is reasonable,
we can choose a parametric or nonparametric model for the covariance function.
Weller and Hoeting (2015) include an illustration of the process of determining
and modeling isotropy properties and how nonparametric tests of isotropy can
be used in this process. We have demonstrated how graphical techniques and the
functions in spTest can be used in a complementary role to check for anisotropy.
Future work includes extending the functionality of spTest to allow implement-
ing the tests on non-rectangular sampling domains. Additionally, computational
efficiency can be improved by programming functions in C++.
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