
Rdocumentation
of function sorcering()

from package ’sorcering’

June 24, 2021

Version 0.9.2
Title SORCERING:

Soil ORganic Carbon & CN Ratio drIven Nitrogen modelling Groundwork
Authors Marc Scherstjanoi∗ & René Dechow�

∗ Thünen Institute of Forest Ecosystems, Eberswalde, Germany
� Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany

Maintainer Marc Scherstjanoi <marc.scherstjanoi@thuenen.de>
LazyData true
Depends R (>= 3.5.0)
License GLP (>= 2)
Imports Rcpp (>= 1.0.6)
LinkingTo Rcpp, RcppArmadillo

Description

With SORCERING the fate of soil organic carbon, soil organic nitrogen and nitrogen mineralisation rates
can be assessed. It provides a groundwork for solving numerically differential equations of first-order
kinetics pool-based soil organic carbon models and adding nitrogen as a new component to them. Basic
inputs are parameters of a given soil organic carbon model and carbon and nitrogen input values. The
numerical method applied is a fourth-order Runge-Kutta algorithm.

2 sorcering

Usage

sorcering(A = NULL,
t_sim = 2,
tsteps = "monthly",
C0 = NULL,
N0 = NULL,
Cin = NULL,
Nin = NULL,
xi = NULL,
A = NULL,
calcN = FALSE,
calcNbalance = FALSE)

Arguments

A transfer matrix. Defines number of pools, decomposition and transfer rates. Must
be quadratic. n × n elements with n = number of pools. Diagonal values are
decomposition rates [yr−1]. Off-diagonals represent the transfer among pools
[yr−1].

t_sim integer. Number of simulation time steps. If NULL, set to 2. Must correspond to
the number of rows of Cin, Nin and xi.

tsteps character. Type of simulation time steps. valid options are annually, monthly
(recommended) or weekly.

C0 vector with a length equal to the number of pools. Contains initial soil organic
carbon per pool [tC ha−1]. If NULL, filled with zeros.

N0 vector with a length equal to the number of pools. Contains initial soil organic
nitrogen per pool [tN ha−1]. If NULL, filled with zeros.

Cin matrix with a number of columns equal to number of pools and a number of rows
corresponding to t_sim. Contains carbon input per pool and time step [tC ha−1].
If NULL, filled with zeros.

Nin matrix with a number of columns equal to number of pools and a number of
rows corresponding to t_sim Contains nitrogen input per pool and time step
[tN ha−1]. If NULL, filled with zeros. Must be >0 where Cin>0, if calcN = TRUE.

xi matrix with a number of columns equal to number of pools and a number of
rows corresponding to t_sim. Contains environmental factors. If NULL, filled
with ones.

calcN logical. Indicates whether the development of soil organic nitrogen should be
simulated.

calcNbalance logical. Indicates whether the balance of nitrogen cycling should be calculated.

sorcering 3

Details

SORCERING is a general model framework to describe soil carbon dynamics and soil nitrogen dynamics
based on models of first order kinetics. N mineralisation and immobilisation are described under the
assumption of unlimited mineral N availability. The approach has already been successfully tested to
describe soil carbon dynamics of Yasso (Tuomi et al. 2009), RothC (Coleman and Jenkinson 1996) and
C-Tool (Taghizadeh-Toosi et al. 2014). Those approaches were enhanced by an additional N minerali-
sation / N immobilisation module. SORCERING is a lightweight alternative to the widely developed and
multifunctional R package SoilR (Sierra et al. 2012, Sierra and Mueller 2014) but additionally offers
the possibility of modelling nitrogen immobilisation and mineralisation.

SORCERING produces a list of results. The list elements are:

• C

• N (if calcN = TRUE)
• Nmin, Nmin2, Nmin.sink.1, ..., Nmin.sink.n (if calcN = TRUE)
• Nbalance (if calcN = TRUE & calcNbalance = TRUE)

All list elements have a number of rows corresponding to t_sim. All list elements but Nbalance have
a number of columns equal to number of pools. Nbalance has three columns. All entries are in t ha−1.

C
Soil organic carbon models applied here are defined by a number of pools, each characterised by
specific decomposition kinetics. Decomposition kinetics and soil carbon fluxes among pools can be
described by a set of partial differential equations represented by the transfer matrix A. Boundary
conditions are specified by Cin. Initial conditions must be defined for every soil organic carbon pool
by the vector C0.

The underlying equation of first-order kinetics defines the change of carbon concentration in time as:

dC(t)
dt

=Cin(t)+Ae(t) ·C(t) (1)

This equation is valid for scalar values of Ae, C and Cin as well as for a square matrix Ae with side length
n and related one dimensional vectors C and Cin with length n, where n would be the number of soil
carbon pools. Analytical solutions of this equation are exponential functions and can be very complex
with Ae containing more off-diagonals, i.e. more types of carbon transfer among pools. Therefore,
numerical solutions are an efficient way to solve the resulting complex equation system. To account
for time dependency of Cin and Ae, Cin must be defined beforehand and Ae is influenced by the (model-
specifically generated) environmental factor xi in a way that

Ae(t) =
(
AT · xi(t)

)T

= A ·diag(xi(t)) (2)

with

xi(t) = (xi1,xi2, ...,xin)(t) (3)

In SORCERING, this equation system is solved by applying the fourth-order Runge-Kutta method:

C(t) =C(t−1)+
1
6
(K1 +2K2 +2K3 +K4) (4)

4 sorcering

with

K1 =Cin(t−1)+A ·diag(xi(t−1)) ·C(t−1)

K2 =Cin(t−1)+A ·diag
(

xi(t−1)+ xi(t)
2

)
·
(

C(t−1)+
K1

2

)
K3 =Cin(t−1)+A ·diag

(
xi(t−1)+ xi(t)

2

)
·
(

C(t−1)+
K2

2

)
K4 =Cin(t−1)+A ·diag(xi(t)) · (C(t−1)+K3) (5)

For more information on general functioning and other possibilities of solving first-order kinetics soil
carbon models see Sierra et al. (2012).

N
Additionally, SORCERING allows the modelling of soil organic nitrogen. It is based on the following
simplifying assumptions: (1) Nitrogen transfer and turnover rates are equal to carbon rates. (2) There
is no nitrogen limitation in the soil, i.e. mineral N is always available for N immobilisation processes.
(3) CN ratios of single pools are only affected by external inputs of N and C. Transfer of organic matter
between pools does not affect CN ratios. As for carbon, the development of nitrogen depends on initial
and side conditions: N0 and Nin.

Given the amount of carbon decomposed

Cdecomp =C1..n(t−1)+Cin1..n−C1..n(t) (6)

and the amount of nitrogen decomposed

Ndecomp = N1..n(t−1)+Nin1..n−N1..n(t) (7)

in each pool 1..n between time points t and t − 1, and assuming proportional carbon and nitrogen
changes

Cdecomp

C1..n(t)
=

Ndecomp

N1..n(t)
(8)

the amount of nitrogen at each simulation time step is calculated as

N1..n(t) =
N1..n(t−1)+Nin1..n(

Cdecomp
C1..n(t)

+1
) (9)

sorcering 5

Nmin, Nmin2, Nmin.sink.1, ..., Nmin.sink.n
This output contains mineralisation rates and information on the nitrogen cycling. It is generated auto-
matically when nitrogen has been modelled. The following explanations refer to a single output time
step, i.e. one row of the output.

• Nmin contains the amount of nitrogen mineralisation per pool. If values are negative, nitrogen
immobilisation exceeds mineralisation.

• Nmin2 represents the nitrogen balance of the single pools.

• Nmin.sink1..n contain the components p of each pool (=element) j = 1..n of Nmin, with n being
the total number of pools. If j is not equal to p, it describes the amount of nitrogen transferred
from pool j to pool p. If j equals p, it describes the amount of nitrogen degraded in that pool.
The sum of the elements of Nmin.sink j equals the jth element of Nmin

Using the fourth-order Runge-Kutta Method, Nmin and Nmin.sink1..n are calculated as follows:

Nmin(t) = (Nmin(t)(1), ...,Nmin(t)(n)) (10)

Nmin(t)(j) =

(
n

∑
i=1

Nminmat(t)(i, j)

)n

j=1

(11)

Nmin.sink j(t) = (Nmin.sink j(t)(1), ...,Nmin.sink j(t)(n)) (12)

Nmin.sink j(t)(p) = (Nminmat(t)(j, p))n
p=1 (13)

where

Nminmat(t) =−
1
6
(Kn1 +2Kn2 +2Kn3 +Kn4) (14)

and

Kn1 =(A ·diag(xi(t−1) ·C(t−1)))T ·diag
(

1
CN(t)

)
Kn2 =

(
A ·diag

(
xi(t−1)+ xi(t)

2
·
(

C(t−1)+
K1

2

)))T

·diag
(

1
CN(t)

)
Kn3 =

(
A ·diag

(
xi(t−1)+ xi(t)

2
·
(

C(t−1)+
K2

2

)))T

·diag
(

1
CN(t)

)
Kn4 =(A ·diag(xi(t) · (C(t−1)+K3)))

T ·diag
(

1
CN(t)

)
(15)

with

CN(t) =

{
C(t)
N(t) , ∀n ∈ N(t)> 0
n.c., otherwise

(16)

6 sorcering

and K1 - K3 taken from eq. system (5). Note that Kn1..4 are matrices and K1..3 are vectors.

Nmin2 is calculated as:

Nmin2(t) = N(t−1)+Nin(t−1)−N(t) (17)

As changes in nitrogen must match the sums of all mineralisation paths, the sums over soil pools of
Nmin and Nmin2, respectively, must be equal for all simulation time points:

∑
n
p=1 Nminp(t) = ∑

n
p=1 Nmin2p(t) ∀t ∈ tseq (18)

A verification of this relation is given by Nbalance (see below).

Nbalance
Nbalance is a verification output that is only calculated when calcNbalance = TRUE. It consists of
the columns ∆N, Nbal1 and Nbal2. The latter two are based on Nmin and Nmin2, respectively, and should
both be close to zero.

∆N(t) =
n

∑
p=1

Np(t)−
n

∑
p=1

Np(t−1) (19)

Nbal1(t) =
n

∑
p=1

Ninp(t−1)−∆N(t)−
n

∑
p=1

Nminp(t)≈ 0 (20)

Nbal2(t) =
n

∑
p=1

Ninp(t−1)−∆N(t)−
n

∑
p=1

Nmin2p(t)≈ 0 (21)

Package Building Information

We wrote the SORCERING code in C++ using the R packages Rcpp (Eddelbuettel et al. 2021a) and
RcppArmadillo (Eddelbuettel et al. 2021b).

sorcering 7

Example

#FICTIONAL 5 POOL SOIL CARBON MODEL

#1. Input

data(Cin_ex, Nin_ex, N0_ex, C0_ex, xi_ex) #fictional data
A_RothC<−fget_A_RothC(clay=30) #create transfer matrix for RothC

#2. simulation

out <− sorcering(A=A_RothC, t_sim=60, Cin=Cin_ex, Nin=Nin_ex,
N0=N0_ex, C0=C0_ex, xi=xi_ex, calcN=TRUE, tsteps="monthly")

#3. results

#output structure summary
summary(out)

#sample plot
par(mfrow=c(1,1),mar=c(4,4,1,4))
plot(rowSums(out$N),axes=FALSE, col=1, cex.lab=2,xlab="",ylab="",ylim=c(0,9),pch=20)
par(new=TRUE)
plot(rowSums(Cin_ex)/rowSums(Nin_ex),

axes=FALSE,col=2, cex.lab=2,xlab="",ylab="",ylim=c(0,60),pch=20)
axis(side=2, pos = 0,

labels = (0:6) 1.5, at=(0:6) 10, hadj=1, padj = 0.5, cex.axis=2,las=1,col.axis=1)
axis(side=4, pos = 60,

labels = (0:6) 10, at=(0:6) 10, hadj=0, padj = 0.5, cex.axis=2, las=1,col.axis=2)
axis(side=1, pos = 0,

labels = (0:6) 10 , at=(0:6) 10, hadj=0.5, padj = 0, cex.axis=2)
title(ylab="total N", line=2, cex.lab=2)
title(ylab="C input / N input", line=−30, cex.lab=2,col.lab=2)
title(xlab="time", line= 2, cex.lab=2)

8 sorcering

References

Coleman, K., Jenkinson, D.S., 1996. Rothc-26.3 - a model for the turnover of carbon in soil, in: Powlson,
D.S., Smith, P., Smith, J.U. (Eds.), Evaluation of Soil Organic Matter Models, Springer Berlin Heidelberg,
Berlin, Heidelberg. pp. 237–246.

Eddelbuettel, D., Francois, R., Allaire, J., Ushey, K., Kou, Q., Russell, N., Bates, D., Chambers, J., 2021a.
Rcpp: Seamless R and C++ Integration. R package version 1.0.6, https://cran.r-project.
org/web/packages/Rcpp/index.html.

Eddelbuettel, D., Francois, R., Bates, D., Ni, B., 2021b. RcppArmadillo: ’Rcpp’ Integration for the
’Armadillo’ Templated Linear Algebra Library. R package version 0.10.4.0.0, https://cran.
r-project.org/web/packages/RcppArmadillo/index.html.

Sierra, C.A., Mueller, M., 2014. SoilR: Models of Soil Organic Matter Decomposition. R package version
1.1-23, https://cran.r-project.org/web/packages/mathjaxr/index.html.

Sierra, C.A., Müller, M., Trumbore, S.E., 2012. Models of soil organic matter decomposition: the SoilR
package, version 1.0. Geoscientific Model Development 5, 1045–1060.

Taghizadeh-Toosi, A., Christensen, B.T., Hutchings, N.J., Vejlin, J., Kätterer, T., Glendining, M., Olesen,
J.E., 2014. C-TOOL: A simple model for simulating whole-profile carbon storage in temperate agricul-
tural soils. Ecological Modelling 292, 11 – 25.

Tuomi, M., Thum, T., Järvinen, H., Fronzek, S., Berg, B., Harmon, M., Trofymow, J., Sevanto, S., Liski, J.,
2009. Leaf litter decomposition—Estimates of global variability based on Yasso07 model. Ecological
Modelling 220, 3362 – 3371.

https://cran.r-project.org/web/packages/Rcpp/index.html
https://cran.r-project.org/web/packages/Rcpp/index.html
https://cran.r-project.org/web/packages/RcppArmadillo/index.html
https://cran.r-project.org/web/packages/RcppArmadillo/index.html
https://cran.r-project.org/web/packages/mathjaxr/index.html

