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ABSTRACT. Interval-censored time-to-event data occur in many medical areas with den-

tistry or AIDS research being typical representatives. This article reviews methods for the

analysis of such data with an emphasis on the use of the accelerated failure time (AFT)

model. A flexible AFT model (avoiding parametric assumptions on the distribution of the

error term) is described more in detail and used to solve typical dental in a longitudinal

oral health study.
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1. Introduction

Standard survival methods assume that individuals are followed over time for the oc-

currence of a specific event. The time to the event is referred to as duration time. If at

the end of the observation period the event has not been observed, the time to the event

is called “right-censored”. However, in many areas of medical research, the occurrence of

the event of interest can only be recorded at planned or unplanned visits which gives rise

to “interval-censored data”. Such a situation arises when e.g. a laboratory assessment or

a medical check-up is necessary to determine whether the event happened or not. In oral

health, duration times are often interval-censored. A typical example is the time to caries

or to emergence of a tooth. Indeed, in case of a cavity or of emergence the event is often

observed after some delay, say at planned (or even unplanned) visits.

To proceed, some notation is needed. Let Ti (i = 1, . . . , n) be the random variable

recording the duration time of the ith individual in the sample. With interval-censored

data, instead of Ti we only observe intervals [Li, Ri], where Li ≤ Ti ≤ Ri. Note that

this does not rule out exactly observed, right-censored and left-censored data for which

Li = Ri = Ti, Ri = ∞ and Li = 0, respectively. Often, additionally a vector xi of

covariates (i = 1, . . . , n) is recorded. A typical question is then whether the distribution of

Ti depends on the covariates.

To illustrate our analyses, we consider the Signal Tandmobielr study. It is a longitudinal

dental study performed in Flanders in 1996–2001 involving 4 468 schoolchildren (2 315 boys

and 2 153 girls) born in 1989 who were annually examined by one of 16 dentists. More

on the design of the study can be found in Vanobbergen et al. (2000). In this paper, we

focus on the distribution of emergence times of permanent maxillary right premolars (teeth

14 and 15 in European dental notation). Adequate knowledge of timing and patterns of
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tooth emergence is useful for diagnosis and treatment planning in paediatric dentistry and

orthodontics.

Obviously, the distribution of emergence times of a particular tooth is different for boys

and girls. For that reason, we used the covariate gender (0 for boys and 1 for girls) in

our models. Additionally, it was of dental interest to check whether the distribution of

the emergence time of a permanent tooth changes when the primary predecessor of the

permanent tooth was caried or not. For this, we included a binarised dmf score pertaining

to the predecessor as a covariate, dmf = 1 if the primary predecessor of that permanent

tooth was decayed, or missing due to caries, or filled and 0 otherwise. Due to the design

of the study (annual planned examinations), the response variable – time to the emergence

of a particular tooth – is interval-censored with intervals of length equal to approximately

1 year.

For each tooth separately, the following typical goals in survival analysis are of interest:

(1) Estimate the survival function S(t|x) = P (T > t|x) or equivalently the cumulative

distribution function (cdf) F (t|x) = 1 − S(t|x). In the context of tooth emergence the cdf

is known as the emergence curve; (2) Compare the distributions of emergence times of two

populations specified by two different covariate vectors (e.g. compare children with sound

and decayed primary teeth, or boys and girls); (3) Set up a regression model to describe

the distribution of emergence times for populations with different values of covariates.

In Section 2, we review some methods that address the above questions in the context

of interval-censoring. In this aspect we focus on the accelerated failure time (AFT) model

which is the competitor of the more widely used proportional hazards (PH) model. The

third section briefly describes the flexible AFT model of Komárek, Lesaffre and Hilton

(2004) which can be used for the analysis of the interval-censored data without making
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strong distributional assumptions. In Section 4, the use of this model will be illustrated

using the Signal Tandmobielr data. In the final section future research is indicated.

2. Review of methods for interval-censored data

A variety of methods (non-, semi- and fully parametric) for right-censored data have

been developed. Further, commercial software is available to support the techniques. In

contrast, for interval-censored data commercial software seems to be available only for non-

parametric estimation of survivor curves and for parametric modelling, besides of course

the user-written programs. Further, until recently only few methods were available. That

is why, in practice, modelling with interval-censored data is often mimicked by methods

developed for right-censored data. For this, the interval needs to be replaced by an exact

time. The most common assumption is that the event occurred at the midpoint of the

interval. However, this applying methods for right-censored data on this artificial fixed

points can lead to biased and misleading results, see e.g., Rücker and Messerer (1988), Law

and Brookmeyer (1992), Odell et al. (1992), and Dorey et al. (1993). In this paper, we

will overview appropriate methods to deal with interval-censored data and link them to the

corresponding (classical) method for right-censored data.

2.1. Estimation of survival/cumulative distribution function. The classical non-

parametric method is given by Kaplan and Meier (1958). Its interval-censored data counter-

part was first proposed by Peto (1973). Turnbull (1976) improved the numerical algorithm

to estimate the survival function using his so called iterative self-consistency algorithm,

which is, in fact, an EM type (Dempster, Laird, Rubin, 1977) of algorithm. Nowadays, it

is implemented in the S-plus function kaplanMeier.

A valuable alternative to non-parametric procedures is obtained by smoothing the sur-

vival or equivalently the density function. In situations where it can be assumed that the
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event-times are continuously distributed, we even get more realistic, not step-wise, esti-

mates. One such method, applicable directly to both right- and interval-censored data is

given by Kooperberg and Stone (1992) who also provide software in the form of the S-plus

library splinelib downloadable from StatLib.

2.2. Comparison of two survival distributions. For right-censored data, many non-

parametric tests for comparing two survival curves are available, e.g. the log-rank test

(Mantel, 1966), the Gehan generalization of the Wilcoxon test (Gehan, 1965), the Peto-

Prentice generalization of the Wilcoxon test (Peto and Peto, 1972; Prentice, 1978) and the

weighted Kaplan-Meier statistic (Pepe and Fleming, 1989).

The Gehan-Wilcoxon test has been adopted to interval-censored data by Mantel (1967),

while the interval-censored version of the Peto-Prentice-Wilcoxon test is presented by Self

and Grossmann (1986). The log-rank test for interval-censored data is given by Finkelstein

(1986). Further, Petroni and Wolfe (1994) discuss the weighted Kaplan-Meier statistic in

the context of interval-censoring. Finally, Fay (1996) derives a general class of linear-rank

tests for interval-censored data which covers, as special cases, the Wilcoxon-based tests.

Regrettably, the asymptotic properties of the above methods assume the grouped contin-

uous model, which implies that the status of each subject is checked at the same timepoints

(in the study time scale) whose number is fixed or that observed intervals are grouped in

such a way. For our dental application, it would mean that the emergence status of the

teeth were checked at prespecified ages, the same for all children. Obviously, such setting is

too restrictive in many practical situations. E.g., in our case, a particular child was checked

by a dentist on a prespecified day of the year, irrespective of his or her age.

The grouped continuous model assumption is necessary to be able to apply standard max-

imum likelihood theory to interval-censored data measured on a continuous scale without

making any parametric assumptions. Only recently, Fang, Sun and Lee (2002) developed
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a test statistic, based on the weighted Kaplan-Meier statistic of Pepe and Fleming (1989)

that does not require the grouped continuous model assumption. Finally, Pan (2000b) of-

fers two-sample test procedures obtained by combining standard right-censored tests and

multiple imputation that allows, in contrast to single (e.g. midpoint) imputation mentioned

at the beginning of this section, to draw appropriately the statistical inference.

Unfortunately, none of the described approaches here is available in any commercial

statistical package.

2.3. Proportional hazards regression model. The proportional hazards (PH) model

(Cox, 1972) is the most popular regression model for right-censored data. For a given

covariate vector x, the hazard function h(t|x) = limdt→0+
P (t ≤ T < t + dt|T ≥ t,x)/dt is

expressed as the product of an unspecified baseline hazard function h0(t) and the exponential

of a linear function of the covariates, i.e.

h(t|x) = h0(t) exp(β′x). (1)

The regression parameter vector β is estimated using maximal partial likelihood (Cox, 1975)

which treats h0 as a nuisance and does not estimate it. However, when the baseline hazard

h0 is of interest as well, e.g. for prediction purposes, its non-parametric estimate can be

obtained using a method of Breslow (1974).

To extend the PH model to interval-censored data, basically four types of approaches can

be found in the literature. Firstly, the baseline hazard h0 can be parametrically specified

and standard maximum likelihood theory applied to estimate the regression parameters.

However, the parametric assumptions can cause the bias in the inference if incorrectly

specified.

A second class of methods makes use of a combination of multiple imputation and meth-

ods for right-censored data (Satten, 1996; Satten, Data, Williamson, 1998; Goggins et al.,
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1998; Pan, 2000a). A disadvantage of these methods is, however, that they are highly com-

putationally demanding and the fact that procedures they use to impute missing data have

relatively ad hoc nature.

A third approach, suggested Finkelstein (1986) and Goetghebeur and Ryan (2000) re-

sembles most the method of Cox (1972) combined with that of Breslow (1974). Indeed,

in both papers the baseline hazard h0 is estimated non-parametrically on top of estimat-

ing the regression coefficients. Whereas the method of Finkelstein relies on the grouped

data assumption, Goetghebeur and Ryan developed an EM-type procedure that relaxes

that assumption. Moreover, the second approach seems to be the only one that reduces to

a standard Cox model when interval-censoring reduces to right-censoring (Ri = ∞).

Finally, methods that smoothly estimate h0 are a trade-off between parametric modelling

that allows for a straightforward maximum likelihood estimation of the parameters and

semi-parametric models with a completely unspecified baseline hazard h0. Kooperberg and

Clarkson (1997) suggest regression splines, while Betensky et al. (1999) use local likelihood

smoothing to model the baseline hazard. A nice feature of these methods is that predictive

survival and hazard curves are directly available and moreover, they are smooth rather than

step-wise as in the case of semi-parametric estimation. The software for the approach of

Kooperberg and Clarkson is included in previously mentioned S-plus library splinelib.

2.4. Accelerated failure time model. A useful, however less frequently used alternative

to the PH model is the accelerated failure time (AFT) model. In this case, the effect of

a covariate is an acceleration or deceleration of the event time. For a vector of covariates x

the effect is expressed by the parameter vector β in the following way:

T = exp(β′x)τ, (2)
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where τ is a baseline survival time. On the logarithmic scale, this model becomes a simple

linear regression model

log(T ) = β′x + ε, (3)

with ε = log(τ). Usually one assumes that the random variable ε has a density f ∗(e) from

the location-scale family, i.e. f ∗(e) = σ−1f
{

σ−1(e−α)
}

, where f(·) has location parameter

= 0 and scale parameter = 1, α is a location parameter and σ a scale parameter.

A parametric AFT model assumes that f(e) is a density of a specific type (e.g. normal,

logistic or Gumbel). In that case, the parameters α, σ and β can be estimated easily

using maximum likelihood techniques even with interval-censored data, see, e.g., survreg

in R, SurvReg in S-plus or lifereg in SAS. Evidently, the parametric assumptions affect

the shape and character of the resultant survival or hazard curves which, in the case of

an incorrect specification, is undesirable, especially when prediction is of interest.

On the other hand, semi-parametric procedures for the AFT model leave the density

f∗(e) unspecified and provide only the estimate of the regression parameter vector β. The

whole class of these methods for right-censored data, based on linear-rank tests is described

comprehensively by Kalbfleisch and Prentice (2002, Chapter 7). Their extension to interval-

censoring was studied by Rabinowitz, Tsiatis and Aragon (1995) and Betensky, Rabinowitz

and Tsiatis (2001). Though, both approaches are practically applicable only with low-

dimensional covariate vectors x. Furthermore, in contrast to the PH model where for right-

censored data the baseline hazard can be estimated non-parametrically (Breslow, 1974)

no similar approach is available for the AFT model which implies that semi-parametric

procedures cannot be used when prediction is of interest.

Approaches based either on multiple imputation (Pan and Louis, 2000; Pan and Con-

nett, 2001) or its combination with smoothing (Pan and Kooperberg, 1999) constitute more

promising alternatives. The methods of the mentioned papers are applied in the context of
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multivariate survival data, however their application to the univariate data is straightfor-

ward.

Recently, Komárek et al. (2004) suggested and implemented a maximum-likelihood based

approach for the AFT model that exploits the penalized smoothing of the baseline density

f∗(e). As such, the method offers both estimates of regression parameters and the baseline

density without making any strong parametric assumptions concerning this density. As

a consequence, realistic estimates of survival or hazard curves can be easily obtained. In

Section 3, we describe this method briefly and in Section 4 the method is applied to the

Signal Tandmobielr data.

2.5. Accelerated failure time model versus proportional hazards model. Both the

PH as well as the AFT model make explicit assumption about the effect of covariates on the

hazard function. The effect of covariates on the hazard function in the PH model is given

by (1). For the AFT model, the hazard function of the random variable T = exp(β ′x)τ is

h(t | x) = exp(−β′x)h0

{

exp(−β′x) t
}

. (4)

The assumed different effect of a covariate on the baseline hazard for the PH and AFT

model is exemplified in Figure 1. It is seen that in the AFT model the effect of covariates

on the baseline hazard function is multiplicative, like in the PH model, and on top of that

an acceleration or deceleration of the time scale. Secondly, in the AFT model the hazard is

increased for β < 0 whereas in the PH model for β > 0.

Further, it is generally true that it is not always possible (e.g. due to lack of knowledge)

to include all relevant covariates in the model. One of the advantages of the AFT model

is that the regression parameters of the included covariates do not change when other,

important, covariates are omitted. Of course, the neglected covariates have an impact on

the distribution of the error term ε which is typically changed into one with larger variability.
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Such change, however, is of no importance (except that it influences the precision with which

the regression parameters of the included covariates are estimated) when semi-parametric

or smoothing methods are used. Unfortunately, a similar property does not hold for the

PH model (see Hougaard, 1999 for more discussion to this point).

3. Penalized AFT model

It seems that, in contrast to the PH model, it is much more difficult to develop methods

for the AFT model with censored data which leave the baseline distribution completely

unspecified, at the same time allow for inclusion of a high number of covariates and offer

tools to compute predictive survival or hazard curves. On the other hand, it is obvious

that parametric methods do not offer enough flexibility to model correctly survival data.

However, penalized smoothing forms a trade-off between the above two approaches. Indeed,

a density or hazard of the baseline distribution using a large basis of parametric functions

profits from the advantages of parametric methods while leaving the baseline distribution

in practice largely unspecified. Among other things, this implies that prediction is easily

accomplished.

The penalized AFT model of Komárek et al. (2004) was motivated by the P-spline

smoothing approach of Eilers and Marx (1996) applied to the error density f(e) in model (3).

However, for reasons given in Komárek et al. (2004) it was decided to replace P-splines by

normal densities which results in a model (3) with

f(u) =

k
∑

j=1

cj ϕµj ,σ2
0
(u), (5)

where ϕµj ,σ2
0
(·) is the normal density with mean µj and variance σ2

0. The number of com-

ponents k in expression (5) is fixed, however high (say around 30) to offer enough flexibility

in the resulting density f(e). The means µ1, . . . , µk are fixed and play the role of knots

in P-spline smoothing. These knots are assumed equidistant and to constitute a fine grid.
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The last fixed parameter of the model is the so called basis standard deviation σ0. Further

technical details can be found in Komárek et al. (2004). The model (3) with (5) will be

called the mean penalized AFT model.

The regression parameters β, the intercept α, the scale σ and the weights cj , j = 1, . . . , k

are estimated by maximizing the penalized log-likelihood equal to the log-likelihood plus

a penalty term to control the smoothness of the estimate of the error density f(u). Asymp-

totic properties of the resulting estimates that serve as a basis for the inference are given

in Komárek et al. (2004). Finally, different models can be compared by the mean of the

Akaike’s information criterion (AIC, Akaike, 1974) with higher values indicating a better

fitted model.

In most regression models, it is conventionally assumed that the covariates influence the

evolution of the mean, but it is presumed that it will not influence the scale parameter.

With hindsight, this is simply one model choice and in many cases it may be untenable.

Recently, there is interest in joint mean-covariance models in the context of longitudinal

studies (Pourahmadi, 1999; Pan and MacKenzie, 2003). The original penalized AFT model

of Komárek et al. (2004) can be generalized in the same direction yielding the mean-scale

penalized AFT model. With this generalization, we allow the scale parameter σ depend on

a vector of covariates, say z, as

σ = σ(z) = exp(γ0 + γ ′z), (6)

For estimation of parameters γ0 and γ, the method of penalized maximum-likelihood used

for the original mean penalized AFT model had to be adjusted only slightly.

Finally, we point out that the software to fit both mean and mean-scale penalized AFT

models is available as a contributed package smoothSurv of the statistical package R (free

clone of S-plus) and is downloadable from its web page http://www.R-project.org.
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4. Analysis of the Signal Tandmobielr data

The penalized AFT models can be used to tackle the questions posed in Section 1 for

the Signal Tandmobielr data. For the sake of illustration, only teeth 14 and 15 will be

considered. Further, we will tackle the question for these teeth separately, i.e. ignoring

their correlation.

As response, for a particular child, we consider the age of the emergence of a particular

permanent tooth (14 or 15), recorded in years. For a better fit, we shifted the time origin

of the AFT model to 5 years of age, i.e. by replacing T by T − 5 in the AFT model

specification (3). Four mean penalized AFT models and two mean-scale penalized AFT

models described in Table 1 were fitted. AIC’s for these models are given in Table 2.

Firstly, the model with the interaction term gender ∗ dmf seems to fit the data best and

the interaction term cannot be omitted. Secondly, the models where the scale parameter σ

depends on covariates give a better fit, but for this only dmf seems to be necessary. These

findings lead us to conclude that the model that describes satisfactory well the data while

being kept as simple as possible is the model gender ∗ dmf/scale(dmf). The estimates for

this model are given in Table 3. It is seen that dmf = 1 accelerates the emergence for both

genders and also increases the variability of the emergence distribution.

4.1. Predictive curves. The penalized AFT model is actually of a parametric nature

given the weights c1, . . . , ck in (5) are known. This makes it easy to compute predictive

emergence curves or predictive hazards or densities for a given combination of covariates,

say x∗ and z∗. E.g. the predictive emergence curve is given by the relationship

F̂ (t | x∗, z∗) =
k

∑

j=1

ĉjΦµj ,σ2
0

(

log(t) − α̂ − β̂
′

x∗

σ̂(z∗)

)

, (7)

where Φµj ,σ2
0
(·) denotes a cumulative distribution function of N(µj, σ

2
0). Predictive hazards

or densities can be derived from (7).
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For our data, predictive emergence curves based on the model gender ∗ dmf/scale(dmf)

are shown in Figure 2 and predictive hazards in Figure 3. Further, Figure 2 shows also the

non-parameric estimates of Turnbull (1976) computed separately for each combination of

covariates. It is seen that model-based emergence curves agrees with the non-parametric

estimates indicating the goodness-of-fit of our model. Further, the figures show that the

difference between children with dmf = 0 and dmf = 1 is higher for boys than for girls

and that the emergence process for boys is indeed postponed compared to girls.

Non-decreasing predictive hazard curves reflect the nature of the problem at hand. In-

deed, it can be expected that, provided the tooth of a child has not emerged yet, the

probability that the tooth will emerge increases with age.

4.2. Comparison of emergence distributions between different groups. While the

model gender∗dmf/scale(dmf) gives a parsimonious description of emergence distributions

for different groups of children and serves as a solid basis for prediction as was shown

in the previous section, it is not suitable to provide simple p-values for a comparison of

emergence distributions between e.g. boys and girls. Due to the fact, that an interaction

term gender ∗ dmf appeared to be significantly important, we could only provide a p-value

for a multiple comparison of four groups (girls with dmf = 1 and 0 and boys with dmf = 1

and 0).

To simply compare two distributions, while averaging the effect of other covariates the

mean AFT model with a univariate covariate x (i.e. either the model gender or the model

dmf) can be used together with a significance test for the group parameter. Additionally,

it is possible to perform a test that compares two groups while controling for additional

confounding variables (e.g. comparison of boys and girls while controling for dmf or vice

versa). To do that, we perform the significance tests of β parameters in the model gender+

dmf .
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The estimates of regression parameters β together with their standard errors in mentioned

models are given in Table 4. The Wald tests of significance of each β parameter yield all

p-values lower than 0.0001 which confirm the findings obtained previously that there is

indeed the significance difference in emergence distributions of studied teeth between boys

and girls and also between the group of children with dmf = 0 and dmf = 1. The difference

remains both marginally and while controling for the other covariate.

The issue of the robustness of the AFT model against the omitted covariates is further

illustrated in Table 4. The effect of gender remains almost unchanged in both models

gender and gender + dmf and analogous conclusion holds also for the effect of dmf .

4.3. Conclusions. It has been shown that the emergence processes of teeth 14 and 15 are

significantly different between boys and girls and that the caries status of a primary prede-

cessor expressed by the dmf score has a significant effect on the emergence of permanent

successors.

Predictive emergence curves have been drawn that can be used for diagnosis and treat-

ment planning in paediatric dentistry. Further, it was found that the acceleration effect

of caries on a primary predecessor on the emergence of its successor was stronger for boys

than for girls.

Finally, R scripts used to perform the analysis using the library smoothSurv can be found

in the downloadable distribution of this library.

5. Discussion

Interval-censored data are not rare in medicine, yet they are often not analysed with the

proper techniques. Our article tried to give an overview of available approaches in a hope

that their use will increase. Unfortunately, we have to admit that the daily use of relevant

techniques is still complicated by insufficient ready-to-use software support.
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Further, we should mention that Bayesian methods convey many attractive properties

useful in the analysis of interval-censored data. Due to the fact that all unknown quan-

tities are treated in the same manner by Bayesian techniques one can include (unknown

since censored) true event-times in the model as additional parameters while focusing the

inference only on parameters of interest (e.g. regression parameters). Necessarily, there is

no additional complexity when analysing interval-censored data compared to right-censored

data. However, the review of Bayesian techniques for the survival analysis would go beyond

the scope of this text.

Finally, we have shown how the accelerated failure time model with a flexible error dis-

tribution estimated using the penalized maximum-likelihood could be used for the analysis

of the interval-censored data.
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Table 1. Description of fitted models.

Model Covariate x Covariate z

gender (gender) —

dmf (dmf) —

gender + dmf (gender, dmf)′ —

gender ∗ dmf (gender, dmf, gender × dmf)′ —

gender ∗ dmf/scale(dmf) (gender, dmf, gender × dmf)′ (dmf)

gender ∗ dmf/scale(gender ∗ dmf) (gender, dmf, gender × dmf)′ (gender, dmf,

gender × dmf)′

Table 2. Akaike’s information criteria for different models.

Model Tooth 14 Tooth 15

gender -5532.59 -4551.57

dmf -5538.03 -4549.93

gender + dmf -5494.51 -4526.85

gender ∗ dmf -5491.47 -4522.76

gender ∗ dmf/scale(dmf) -5468.61 -4506.66

gender ∗ dmf/scale(gender ∗ dmf) -5467.67 -4507.59

Table 3. Estimates (standard errors) for the model gender ∗

dmf/scale(dmf).

Parameter Tooth 14 Tooth 15

α 1.7734 (0.0073) 1.9143 (0.0091)

β(gender) -0.0931 (0.0099) -0.0803 (0.0110)

β(dmf) -0.0990 (0.0116) -0.0773 (0.0125)

β(gender ∗ dmf) 0.0401 (0.0166) 0.0473 (0.0172)

γ0 -1.5613 (0.0219) -1.6121 (0.0351)

γ(dmf) 0.2144 (0.0307) 0.2415 (0.0399)
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Table 4. Estimates (standard errors) for models gender, dmf and gender+

dmf .

Parameter Model gender or dmf Model gender + dmf

Tooth 14

β(gender) -0.0740 (0.0080) -0.0766 (0.0081)

β(dmf) -0.0729 (0.0086) -0.0741 (0.0085)

Tooth 15

β(gender) -0.0564 (0.0085) -0.0594 (0.0087)

β(dmf) -0.0613 (0.0089) -0.0628 (0.0090)
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Figure 1. Effect of PH and AFT assumption on a hypothetical baseline

hazard function (solid line) for a univariate covariate x taking a value of 0.6

(dashed line) and 1.2 (dotted line) with regression parameter β = −0.5 for

the PH model and β = 0.5 for the AFT model.
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Figure 2. Predictive emergence curves: solid lines for curves based on the

model gender ∗dmf/scale(dmf) (on each plot: left curve for dmf = 1, right

curve for dmf = 0), dashed line for a non-parametric estimate of Turnbull.
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Figure 3. Predictive hazard curves of emergence based on the model

gender ∗ dmf/scale(dmf): solid line for dmf = 1, dotted-dashed line for

dmf = 0.


