
The smint package
Computing details

2015-06-10

Yves Deville

Yves Deville Ingénieur-conseil. Siret 424 966 091 00011
37 rue Lamartine 73000 Chambéry
Maill. deville.yves@alpestat.com Tél. 04 79 96 95 50

Contents

1 Grid interpolation 2
1.1 Linear interpolation and interpolation factors . 2
1.2 Cubic spline interpolation . 3

2 Grid interpolation: R and C functions 5
2.1 General grid interpolation . 5

2.1.1 General 1D interpolation function . 5
2.1.2 Vectors and arrays in R . 5
2.1.3 Algorithm . 6
2.1.4 R implementation . 7

2.2 Linear grid interpolation . 7
2.2.1 Context . 7
2.2.2 Algorithm . 8
2.2.3 R implementation . 8

1

Chapter 1

Grid interpolation

1.1 Linear interpolation and interpolation factors

Consider the interpolation problem with n distinct nodes xi ∈ Rd. Recall that for a linear
interpolation method we can find a cardinal basis ψj for j = 1, 2, . . . , n such that ψj(xi) =
δi,j . In other words, the Gramian matrix [ψj(xi)]i,j boils down to the identity matrix. The
interpolation operator P (Cheney W. and Light W. 2009, chap. 2) can then be written as

P.f(x) =
∑
i

f(xi)ψi(x).

If nnew locations xnewi ∈ Rd are given, a matrix of interpolation factors Hébert (2013) can be
defined as

H =


ψ1(x

new
1) ψ2(x

new
1) . . . ψn(xnew

1)
ψ1(x

new
2) ψ2(x

new
2) . . . ψn(xnew

2)
...

ψ1(x
new
nnew) ψ2(x

new
nnew) . . . ψn(xnew

nnew)

 ,
with nnew rows and n columns. The case where nnew = 1 will often be used in tensor product
interpolation. This matrix H can be used to obtain the vector f̃new of the nnew interpolated
values (with length nnew) by

f̃new = Hf

where f is the vector of length n containing the values f(xi).
The j-th column of the matrix H can be obtained by using as response vector f the j-th

column of the identity matrix In, and then by computing the interpolated value at each new
value xnew

i .
When d = 1, we can as well define a matrix H(r) of derivated interpolation factors at

order r by simply replacing each basis function ψj by its derivative ψ
(r)
j . Of course, this is

possible only when the derivative exists for each basis function. With obvious notations, then

{f̃new}
(r)

= H(r)f . Note that the true derivative is generally not interpolated at the nodes: the
derivatives values obtained there can be considered as estimation of the derivatives.

2

smint computing details 2015-06-10

1.2 Cubic spline interpolation

Determination of the spline

We consider n distinct nodes x1 < x2 < · · · < xn and the corresponding values fi := f(xi).
Recall that the natural cubic spline is the only spline of order 4 (degree 3) which interpolates
the values fi with the two border conditions

f (2)(x1) = 0, f (2)(xn) = 0.

The general cubic spline f with knots xi has n + 2 degree of freedom and 2 conditions must
be given to uniquely determine f . Other conditions are sometimes preferred to the natural
spline (de Boor 2001, chap. IV). Up to changes in the notations, the determination of the
natural interpolatin spline described here can be found in a number of books including de
Boor’s, Lange (2010, chap. 10) or Press W.H. and Teukolsky S.A. and Vetterling W.T. and
Flannery B.P. (1993, chap. 3) among many others.

Let hi the forward difference hi := xi+1−xi for i = 1, 2, . . . , n−1. The natural cubic spline
is obtained by solving a tridiagonal system c with elements second order derivative ci := f (2)(xi)
at inner nodes xi for i = 2, 3, . . . , n− 1. The system writes as

Ac = Bf (1.1)

where A is a (n− 2)× (n− 2) tridiagonal matrix

A =
1

6


2 [h1 + h2] h2

h2 2 [h2 + h3] h3

hn−2
hn−2 2 [hn−2 + hn−1]


and B is a (n− 2)× n matrix

B =


h−11 −

[
h−11 + h−12

]
h−12

h−12 −
[
h−12 + h−13

]
h−13

h−1n−2 −
[
h−1n−2 + h−1n−1

]
h−1n−1

 .
Since A is tridiagonal symmetric and strictly diagonal dominant, a system Ac = b can be
solved by Gauss elimination without pivoting, thus in O(n) operations.

Spline values

Here we consider a single new value xnew with x1 6 xnew 6 xn and compute the interpo-
lated value, see Press W.H. and Teukolsky S.A. and Vetterling W.T. and Flannery B.P. (1993,
chap. 3). The formulas are easily stated by integrating the second order derivative, taking into
account the interpolation conditions.

The value of the natural spline is given by

f(xnew) = ∆Rfi + ∆Lfi+1 +
{
f
(2)
i

[
∆3

R −∆R

]
+ f

(2)
i+1

[
∆3

L −∆L

]} h2i
6

3

smint computing details 2015-06-10

where the index i is such that xi 6 x 6 xi+1 and

∆L :=
xnew − xi
xi+1 − xi

, ∆R :=
xi+1 − xnew

xi+1 − xi
.

Similarly the first order derivative is given by

f ′(xnew) =
fi+1 − fi

hi
+
{
f
(2)
i

[
−3∆2

R + 1
]

+ f
(2)
i+1

[
3∆2

L − 1
]} hi

6
,

while the second order derivative simply results from a linear Lagrange interpolation

f (2)(xnew) = f
(2)
i ∆R + f

(2)
i+1∆L.

Note that extrapolation formulas could be given as well for xnew < x1 or xnew > xn.

Interpolation factors

The interpolation factors matrix for xnew is obtained by solving the n linear systems (1.1) of size
n− 2 with f taken as the n columns of the identity matrix In. The solution c can be completed
by zeros to give the vector f (2) of the second order derivatives

f (2) = [0, c2, c3 . . . , cn−2, 0]>

which is required for the evaluation at xnew. The n vectors f (2) are the columns of the n × n
matrix  0>

A−1B
0>


where 0 stand for a zero vector of length n.

Minimal number of points

Some codes dedicated to the natural interpolation spline impose n > 4, and so does the package
splines. Yet n = 3 is possible.

4

Chapter 2

Grid interpolation: R and C
functions

2.1 General grid interpolation

2.1.1 General 1D interpolation function

The grid interpolation is an interpolation method for grid data which relies on an arbitrary
one-dimensional interpolation function. This function will be provided as a R function having
the following signature

interpFun1d <- function(x, y, xout)

where x and y are numeric vectors with the same length, and xout is a numeric vector. This
function returns a vector of the same length as xout. This R function will be called from within
a C function for speed considerations.

We will see that the vectorisation w.r.t. the argument xout will not be used from within
the C function, so we can nearly assume that xout is a scalar i.e. a vector with length 1. The
vectorisation can be used only during a preliminary step as explained later.

2.1.2 Vectors and arrays in R

We assume in that section that array indices are in C-style i.e. that they begin at zero. The
number of nodes for dimensions 1 to d are thus n0, n2, . . . , nd−1.

Define

Nj :=

j−1∏
i=0

ni 0 6 j 6 d

where the empty product for j = 0 is by convention N0 = 1. The total number of nodes is
thus Nd.

In R, a numeric array F̃ is simply a numeric “atomic” vector with a dimension attribute.
The dimension allows the use of a multi-index [i0, i1, . . . , id−1] with

0 6 i0 < n0, 0 6 i1 < n2, . . . 0 6 id−1 < nd−1.

5

smint computing details 2015-06-10

Yet the standard vector indexation can be used as well, so there is a correspondance

F̃ [i0, i1, . . . , id−1] ↔ F̃ [i].

The index i in the vector representation and the multi-index [i0, i1, . . . , id−1] in the array
representation are such that

i = N0i0 +N1i1 + · · ·+Nd−1id−1

Given a vector index i with 0 6 i < Nd, the corresponding value of ij can be found using an
integer division and a modulo operation

ij = i/Nj (mod nj)

for j = 0, 1, . . . , d− 1.

Remark 1. Although these operators are not used here, recall that the integer division operator
in R is %/%, while the modulo operator simply writes %/%.

2.1.3 Algorithm

Algorithm 1 Grid interpolation. The array F̃ initially has dimension n0×n1× · · · ×nd−1. At each of
the d− 1 steps of the j-loop, the array “morally” loses its last dimension, i.e. it is “flattened”. For j = 0
the array is simply a scalar (with length 1).

1: # Initialisation

2: F̃← F

3: for (j = d− 1, d− 2, . . . , 0) do

4: x? ← xLevels[[j]]

5: xnew ← xnew[j]

6: for (i = 0, 1, . . . Nj − 1) do

7: # Fill the vector f of length nj

8: for (` = 0, 1, . . . nj − 1) do

9: f [`]← F̃ [i+Nj `]

10: end for

11: # Compute g, a scalar

12: g ← interpFun1d(x = x?, y = f, xout = xnew)

13: # F̃ will now have dimension n0 × n1 × · · · × nj−1

14: F̃ [i]← g

15: end for

16: end for

17: return fnew ← F̃

The algorithm 1 describles the general grid interpolation. The loop on i begining on line 6
may be thought of as a loop for indices i0, i2, . . . , ij−1, while the loop on ` begining on line 8
is a loop over ij .

6

smint computing details 2015-06-10

Note that the number of calls to interpFun1d is

(nd−2 × nd−3 × · · · × n0) + (nd−3 × nd−4 × · · · × n0) + · · ·+ (n1 × n0) + n0

which will generally be very large for d > 5. Fortunately, each interpolation involves a vector
of length 6 max06i<d ni, which will usually be small in practice. Depending on the cost of
the interpolation, the ordering of the dimensions can have a non-negligible impact on the total
computation time. The number of calls to interFun will be smaller if the numbers ni are in
decreasing order, since we then get rid sooner of the largest ni.

2.1.4 R implementation

Several adaptations can be done. Firstly, with the interface .Call we have to make a copy
F̃ of the original array F since this is passed as an input argument. Secondly, in practice we
may have several vectors xnew provided as the nnew rows of a matrix Xnew having d columns.
Obviously it will be enough to within a loop for k (say) running from 0 to nnew − 1.

Although the interpolation function could allow xout to be a numeric vector and take
advantage of this, it not possible to use such a vectorised call throughout the loop on j because
the vector f passed to the y argument depends on the output index k, excepted for the first
interpolation (for j = d−1), since we use then a “fresh” array F̃ equal to F. A possibility is thus
to vectorise on xout for the first interpolation only by simply using apply in R before calling
the C function

Fout <- apply(Fout, MARGIN = 1L:(d - 1L), FUN = interpFun1d,

x = xLevels[[d]], xout = Xnew[, d])

As a result, the array object Fout will loose one“interpolation”dimension, and gain one“output”
first dimension

before n0 × n1 × · · · × nd−2 ×nd−1
after nnew× n0 × n1 × · · · × nd−2

Note that for d = 1, no call to a C function is required, but no gain can be expected from
using a C function in that case since the function interpFun1d can be expected to be efficiently
vetorised w.r.t. xout.

2.2 Linear grid interpolation

2.2.1 Context

Let us now assume that the interpolation method is linear, meaning that the interpolated value
is linear w.r.t. the vector f of n known values.

f̃new = h(xnew) f

where h(xnew) is a row vector the elements of which are the interpolation factors, i.e. the values
at xnew of the Cardinal Basis functions.

We will assume that the interpolation factors are provided as a R function having the
following signature

cardinalBasis1d <- function(x, xout)

7

smint computing details 2015-06-10

where x is a numeric vector and xout is a numeric vector. This function returns a matrix with
length(xout) rows and length(x) columns, i.e. with nnew rows and n columns in the math
notations. This R function will be called from within a C function for speed considerations.

If nnew > 1 interpolated values have to be computed instead of one, we can proceed as
follows.

• We can wrap the whole algorithm 2 within a loop for k = 0, 1, . . . , nnew − 1. The step
k will compute fnew[k]. The drawback of this approach is that we will have to compute
nnew vectors in

cardinalBasis1d(x = x?, xout = xnew[k])

for k = 0 to k = nnew − 1. These computations having much in common could gain to be
done simultaneously, at least when nnew is large.

• Therefore, a variant would consist in computing a list of d matrices H(xnew
j) for the

dimension indices j = 0, 1, . . . d− 1. Each of these matrices has nnew rows and a varying
number of columns: n0, n1, . . . , nd−1 equal to the number of nodes.

Finally, a possible improvement concerns the case the interpolation method is local, meaning
the the interpolated value at xnew depends only of the function values at neighbouring abscissas.
The loop on ` begining at line 10 in the algorithm 2 could be made shorted because we can
know that hnew[`] is zero except when x?[`] is a neighbour of xnew. However, the method seems
very fast without these improvements.

2.2.2 Algorithm

The algorithm 2 describles the general grid interpolation. Note that the number of calls to
cardinalBasis1d is d, making this method considerably faster than the general grid interpo-
lation.

2.2.3 R implementation

The R implementation is very similar to that of the general grid interpolation. No preliminary
apply step seems useful, and the code can be kept very close to the pseudo-code.

8

smint computing details 2015-06-10

Algorithm 2 Linear Grid interpolation using Cardinal Basis function for nnew = 1. This is a slight
modification of algorithm 1.

1: # Initialisation

2: F̃← F

3: for (j = d− 1, d− 2, . . . , 0) do

4: x? ← xLevels[[j]]

5: xnew ← xnew[j]

6: # Compute hnew, a row vector of length nj

7: hnew ← cardinalBasis1d(x = x?, xout = xnew)

8: for (i = 0, 1, . . . Nj − 1) do

9: g ← 0

10: for (` = 0, 1, . . . nj − 1) do

11: g ← g + hnew[`]× F̃ [i+Nj `]

12: end for

13: # F̃ will now have dimension n0 × n1 × · · · × nj−1

14: F̃ [i]← g

15: end for

16: end for

17: return fnew ← F̃

9

Bibliography

Cheney W and Light W (2009). A course in approximation theory. Providence, RI: American
Mathematical Society (AMS). ISBN 978-0-8218-4798-5/hbk.

de Boor C (2001). A Practical Guide to Splines, Revised Rdition. Springer-Verlag.

Hébert A (2013). “Revisiting the Ceschino Interpolation Method.” http://www.intechopen.

com/download/pdf/21941.

Lange K (2010). Numerical Analysis for Statisticians. 2nd edition. Springer-Verlag.

Press WH and Teukolsky SA and Vetterling WT and Flannery BP (1993). Numerical Recipes
in FORTRAN; The Art of Scientific Computing. 2nd edition. Cambridge University Press,
New York, NY, USA. ISBN 0521437164.

10

http://www.intechopen.com/download/pdf/21941
http://www.intechopen.com/download/pdf/21941

	Grid interpolation
	Linear interpolation and interpolation factors
	Cubic spline interpolation

	Grid interpolation: R and C functions
	General grid interpolation
	General 1D interpolation function
	Vectors and arrays in R
	Algorithm
	R implementation

	Linear grid interpolation
	Context
	Algorithm
	R implementation

