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1 Comparative methods for adaptive hypotheses

1.1 Background

Comparing traits in groups of related species in different environments or time periods can provide
powerful tests of adaptive hypotheses (e.g. Sober 2008; Hansen 2014). The distributions of trait values of
extant species at the tips of a phylogeny (and fossil data or reconstructed ancestral states within the
phylogeny if available) however, may reflect, adaptation, phylogenetic inertia, both of these, or none of
these. We use the term phylogenetic inertia in the sense of resistance to adaptive change i.e. it comes
about when related species inherit an inert trait from a common ancestor, which then lags adaptive
change to new optima. Hence, if inertia is present, observed trait values may reflect both adaptive change
as well as an influence of a maladapted ancestral trait. When testing an adaptive hypothesis with such
data, the constraints provided by such resistance to change for current trait values as they evolve towards
their optima need to be controlled for (and similarly, the effects of adaptation need to be controlled for
when testing hypothesis of phylogenetic inertia).

Most contemporary comparative methodologies do not control for inertia in the sense defined above, but
rather control for general effects of phylogeny. Their principal concern is to deal with statistical issues
that arise from non-independent, correlated data that naturally arise from evolution along a branching
phylogeny, and are usually used to remove these correlations before the actual analysis takes place.
Phylogenetic effects, however, will also be present when traits adapt to variables that are themselves
phylogenetically structured. Effects of adaptation should not be controlled for when studying adaptation
and they need to be separated from inertia. Furthermore, most contemporary methods assume that traits
evolve as a Brownian motion, a crucial assumption and one that provides the analytical techniques to
remove the correlations (e.g. independent contrasts). Numerous studies however, have pointed out that
comparative method that assumes a Brownian motion as the underlying evolutionary process are not
suitable for studying adaptation towards optima (e.g. Hansen 2014). A Brownian motion is a stochastic
process in which the expected mean value equals the common ancestral state at the base of the species
phylogeny. There is no mechanism in the process that allows one to specify adaptation to or maintenance
at specific optima. Even if the ancestral state is at the optimum and the optimum does not change
through time, any deviations from the optimum relationship generated by the stochastic Brownian-motion
process will be inherited and there is no mechanism that allows a trait in a species to return to its
optimum value.

Hansen (1997), Butler & King (2004), Hansen & Orzack (2005) and Hansen et al. (2008) have argued
that comparative methods based on an Ornstein-Uhlenbeck (OU) process are more suited to studying
adaptive hypotheses using comparative data. The OU process, unlike a pure Brownian motion, consists
of a deterministic component (which can be used to model adaptation of a trait towards an optimum) as
well as a stochastic component (which models the random fluctuations of the trait as it evolves towards
the optimum. If we take away the deterministic component of an OU process, we are left with a Brownian
motion.

1.2 Phylogeny

These methods require a rooted phylogeny with branch lengths. Both ultrametric and non-ultrametric
trees can be used, but this will have implications for reliable estimation of ancestral states. Polytomies
and non-branching edges are not a problem but each branch must have a length. The units of the lengths
are arbitrary and can be given in time units or number of nucleotide substitutions. A lot of the power of
this method comes from having accurate branch lengths so some care should be taken in time-calibrating
the phylogeny.

2 Comparative methods built around an Ornstein-Uhlenbeck
process

The Ornstein-Uhlenbeck process describes stochastic evolution with a deterministic tendency to move
towards a fixed state (Hansen & Martins 1996). To model adaptive evolution in a comparative data



set, we interpret this fixed state as a “primary optimum”, defined as the average fitness optimum that
would be reached by a large number of independent species evolving for a sufficiently long time in a
given niche to be free of any ancestral influence (Hansen 1997). The model assumes that primary optima
exist at any point in time (on the phylogeny), and the idea is to test hypotheses about the effect of
specified environmental variables on the primary optima. Currently, the software allows the primary
optimum to be be modeled as a multiple regression on several continuous “random” variables, continuous
“direct-effect” covariates, or as a one-way ANOVA on fixed, categorical variables mapped as regimes on
the phylogenetic tree.

2.1 The optimum

If we let O(x1,x2...), be the primary optimum as a function of environmental variables, 1,2 ..., then
for the regression model, we have:

9(1‘1,1‘2...):b0+b1$1+b2]}2...,

where by is an intercept, and by, b . . . are regression slopes on the environmental variables. For the ANOVA
model we let x1, x5 ... be indicator variables indicating different categorical states of the environment,
and we write

9(1‘1,.%2...):01$1+92I2...,

where 6121, 0225 . .. are parameters describing the state of the primary optimum in the different environ-
ments or niches. The goal is to estimate the parameters b; or 6; to test whether particular aspects of the
environment have an effect on the optimum or not. Our adaptive hypotheses thus takes the form: Given
that there is a single optimum, the species are adapted to variable x if x has an (important) effect on the
optimum. As we will see, the methods also allow for assessments of how strongly the species tend to
evolve towards the optimum, and thus to reject the base assumption of adaptation altogether.

2.2 Ornstein-Uhlenbeck process

In both the fixed categorical and continuous random predictor cases, the evolution of the response trait,
y, can be represented by the stochastic differential Ornstein-Uhlenbeck process equation:

dy = —a(y — 0)dt + o, dW,,

which is interpreted as follows: dy is the change in y over a time step dt, « is a parameter measuring the
rate of adaptation towards the optimum, dW, is a white-noise process having independent, normally-
distributed random changes with mean zero and unit variance. The standard deviation of the random
changes is given by o, and @ are the fixed or random optima as defined above. Categorical predictor
variables must be mapped on the phylogeny a priori, and the method treats these as fixed.

2.3 Parameterization

We note that we will work with the transformed parameters:

log(2)
tij2 =
_%
Yo 2a’

These are both easier to interpret than o and o,. The phylogenetic half life, ¢, 5, is the time it takes
for the expected trait value to move half the distance from the ancestral state to the primary optimum.
The half life provides a useful metric to asses the strength of phylogenetic inertia as it is on the same
linear scale as the phylogenetic branch lengths. If the half life is short relative to the total length of the



phylogeny, it means adaptation to the primary optimum is rapid in expectation, and if the half life is
long, it suggests the presence of inertia and that ancestral trait values influence the species’ observed
trait values at the tips. Consequently, if the half life is large, we would expect the species traits to be
poorly adapted to the primary niches. A half life of infinity corresponds to evolution governed by a
Brownian-motion process in which there is no tendency to move towards the optimum, and a half life of
zero corresponds to immediate adaptation. The parameter v, is the variance expected when the adaptive
and stochastic forces are in stochastic equilibrium.

2.4 Random continuous predictor

For the random predictors we have an additional stochastic differential Brownian-motion process to
describe their evolution on a phylogeny:

dr = o,dW,,

where o, gives the standard deviation of the random changes (hence, the rate at which the predictors
change). These dynamical equations can be solved for the different assumptions about the optimum.

2.5 Categorical fixed predictors (niches, regimes)

With fixed, categorical predictor variables, the model predicts that the species data will be of the form:

Yi = CoilYa + C1:01 + 2302 - - - + 14,

where y, is a parameter describing the state of the trait at the root of the tree, the coeflicients, c;; , are
determined by the time on the phylogeny the species ¢ has spent in environment j, such that more recent
environments are weighted more than more ancient environments. The weights are determined by the
rate of adaptation, o. More specifically, c;; is a sum over all time intervals in the past history of species ¢
where this species experienced environment j, and each interval contributes a term e~ @5 where,
starting at the root with tg = 0, s is the time when the species enters the environment, and ¢ is the
end-time of the environment (see Hansen (1997) for formal derivation). The coefficient for the ancestral
state y, is co = e~* | where t is the time from the root to species i. Note that if « is large, then only
the most recent environment will contribute to the trait values of the species. Ancient environments
only contribute to species’ trait values if the rate of adaptation is low. SLOUCH will automatically
compute these coefficients given a mapping of niches on the tree. The residual terms, r;, are assumed to
be normally distributed with mean zero and variances and covariances given later.

— e

2.6 Direct-effect predictors

For some biological systems (e.g. allometry) it may be more realistic to model the influence of x on y as
direct, non-lagged process. In this case, we can expand the Ornstein-Uhlenbeck differential equation:

dy = —a(y — 0)dt + bdx + o, dW,,

where changes in the predictor (dz) has an immediate effect on changes in the response trait (dy). The
direct-effect model makes no assumptions of any phylogenetic process that gives rise to x.

2.7 Example: expectation with random covariates

For random, continuous predictor variables, evolving as if by a Brownian motion, the model predicts:

y; =k + p(at;)biz1; + plat;)boze; - - + 14,



where x;; is the current state of predictor variable j for species ¢, and r; is the residual term. The intercept
(k) discussed below. The phylogenetic correction factor (p) is another measure of the strength of inertia:

1—e ot

t)=1—
plat;) o,
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where t; is the time from root to species i. The correction factor varies between 0 and 1, and is identical
for all species for ultrametric trees. While the optimal regression represents the relationship between
predictor and the trait that we expect if adaptation is immediate, the evolutionary regression is the
generalized least squares regression of a trait on the predictor, and is influenced by both adaptation and
inertia. The optimal regression is accordingly an estimate of the optimal relationship between predictor
and the trait totally free of constraints, while evolutionary regression is the ‘observed’ relationship.
The magnitude of the difference between the optimal and the evolutionary regression (p) is therefore
informative of the relative importance of inertia and adaptation between the predictor and the response
trait. The evolutionary and optimal regression will be identical if there is no inertia (p(at;) = 1). The
optimal and evolutionary regressions are not alternative models, but rather two perspectives or aspects of
the same model. In the random evironment model, we also need to estimate the rate of evolution of the
environmental variable, o,.

The intercept-only model is also useful for testing one of the assumptions of the OU-BM model; that
the predictor variables evolve as a Brownian motion. The stationary variance (v, = o7 /2a) of the joint
OU-BM process is a measure of the relative influence of stochastic factors in the adaptive process relative
to the primary adaptive force. Secondary stochasticity is generated by a combination of stochastic
influences (such as changes in unmeasured selective forces, genetic drift, etc) on the response variable as
it evolves towards the optimum or optima.

2.8 Residual covariances

The residual covariances of the fixed-effect model were derived in Hansen (1997):

Cov[ri,r;] = vye_o‘t” (1- 6_2‘”“),

where t; is the time from root to species i, t, is the time from root to the most recent common ancestor
of species ¢ and j, and t;; is the time separating species ¢ from species j (i.e. the sum of the distances
from ¢ and j to their most recent common ancestor). For the random-effect model, Hansen et al. (2008)
derived the residual covariances as:
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The parameter o3 in the above equation equals 302, + b302, + ..., assuming the predictor variables are
not correlated. The instantaneous variances, o2,, of the predictor variables are estimated in advance.
Note that this is considerably more complex than with fixed effects, and that the residual covariances
also depend on the regression parameters b;.

2.9 Intercept

The intercept, k, in the random-effect model is given as:

E=e "y, +(1—e by + (1 —e * — p(at))(b1Za1 + b2Taz + ... ),

where y, and z,; are the ancestral states of the trait, y, and the predictor variables, ;, and by is the true
intercept of the optimal regression. As t is the time from root to the species, we also see that the intercept
on a non-ultrametric tree will differ from species to species. Clearly, k is not a parameter of biological



interest. What we would like is to get estimates of its components, and in particular of the “optimal”
intercept, by. For species on a non-ultrametric phylogeny, it is technically possible to get independent
estimates of by, y, and the z,’s, but unless there is strong phylogenetic inertia and the phylogeny is
strongly non-ultrametric, these would be poorly resolved, and the individual estimates will be inaccurate.
We generally do not recommend separate estimates of these parameters, and for an ultrametric phylogeny,
we can only obtain an estimate of the composite k. An estimate of the optimal intercept may, however,
be obtained indirectly with an additional assumption. First, note that SLOUCH returns independent
estimates of the ancestral states x, based on the assumption that the predictors evolve as if by a Brownian
motion. The problem is then only to get an estimate of the ancestral state of the trait, y,. One resonable
way to do this is to assume that the common ancestor was optimal, and use y, = bg + b1Tq1 + b2Zgo .. ..
From this we can derive an estimate of the optimal intercept as:

bo =k + (p(at) — 1)(b1xa1 + boZaa ... ),

where k,b’s, 2,’s and p(at) are all output from the SLOUCH analysis. This may be useful for plotting of
the optimal regression, etc. The error due to the ancestral-optimality assumption is likely to be small
unless the phylogenetic half-life is large.

3 Brownian-motion models

The Ornstein-Uhlenbeck process is a generalization of Brownian motion. When « = 0, the model collapses
into a Brownian motion with no pull towards the optimum. Brownian motion is not distinguishable
from an Ornstein-Uhlenbeck process where the phylogenetic half-life is much larger than the tree length
(t12 >>t). SLOUCH can also explicitly fit Brownian Motion models of trait evolution. The stochastic
differential equation is

dy = o, dWy,

where dW,, ~ N (0, dt). For a zero-trend model, we have:

Yi = Ya + T4,

where y, is the ancestral state (or “phylogenetic mean”). The residual covariances are

Covlr;,rj] = cr;ta,

where ¢, is the sum of shared branch lengths for species ¢ and j. With this model, we only estimate one
parameter with likelihood: 05.

3.1 Regime-dependent trends

Keep in mind that, since there is no directional or stabilizing trend in a standard Brownian motion, the
intercept is the same as the ancestral state y,. Unlike the OU process, there are no optima (), and
the rate of adaptation («) is not a part of the model. We can, however, expand the model to include
regime-dependent trends:

dy = 7dt + oy, dW,

where 7 is one or more trends. The trends (7) in this model are equivalent to 7 = lim,—,¢(6a) under an
OU model. The model predicts:

Yi = Ya +Z7-sts + 74
s

where tg is the total time that species i has spent in regime s. With ultrametric trees, y, can not be
estimated independently of the trends 7, and as such y, is not estimated with default settings. In other
words, we assume that y, = 0, and hence the trends 75 can only be interpreted relative to each other. If



we do estimate y, independently, however, the trends 75 will represent the absolute expected direction of
change. The residuals covariances are equal to the zero-trend model.

3.2 Continuous covariates

Next, we can expand the model to include continuous covariates. If we model the covariates to influence
the response trait directly and immediately, the model implementation is similar to the previously
described direct-effect model. Another option is to model the trend as a linear function of a random
variable evolving as a Brownian motion (7 = a + bz).

dy = (a + bx)dt + o,dW,,
dr = o,dW,

where a are the regime-dependent trends as previously denoted 7, and « is a random variable evolving as
a Brownian motion. In the case of multiple independent predictors, we have

dy = (a + Z bjx;)dt + oy, dWy,
k

where }; bjz; is also a Brownian motion with variances o3 =3 j b307. For each species, the model
predicts:

Y =Ya+ Zasts + Zp(t)bjzj +,
s J

where y, is the ancestral state, as is the trend in regime s, and ¢4 is the sum of time spent in regime s.
x; is the current (extant) state of predictor variable j, and p(t) is the phylogenetic correction factor:

p(t) = 53

where ¢ is the time from the species to the root of the tree. Note that unlike previously, where p was
unitless and in the interval [0,1], the p for the Brownian motion continuous-trend model is positive and in
units of time. The residual covariances for this model are

Cov[r;,r;] = ajta +opta (12 /12 + tiatja/4),

where the time from the most recent common ancestor (MRCA) of species i, j to species i is t;4, and the
time from the MRCA to species j is ¢jq.

Comment: The brownian-motion section is a little thin. We can’t just cite thomas’ & krzysztof’s notes
for the interpretation and derivation, can we? Does this kind of material even fit in a manual, if not first
introduced elsewhere?

4 Parameter estimation

4.1 Model formulation

First, we set up the model. As an example, we model log neocortex size (mm?) as having three distinct
optima (browsers, grazers, mixed feeders) and adapting in response to log brain size (g), where brain size
evolves as if by a Brownian motion. For each species 4, this is

Yi = CoiYa + Cliebrowscr + CQiegrazcr + C3i0mixcd feeder 1 bp(tz)xz + 7.



For the moment, let’s assume that y, is equal to the optimum present at the root of the tree (Omixed feeder)-
In matrix form, the equivalent is

C11 C21 €31 + co1 p(tl)xl abrowser

12 C22 c3zx+tcor  p(ta)xs Ourazer
Y = . . . . grase + r,

emixed feeder

Cin Con C3n + Con p(tn)xn b

where Y is a vector of observed log neocortex size, r ~ N (0,V) is a vector of residuals, and n is the
number of species. Note that the coefficients ¢ are themselves functions of the rate of adaptation (),
the regime topology and the tree branch lengths. In the next section we will use the equivalent compact
version:

Y =X3+r,

where X is the model matrix, and S is a vector of linear model parameters.

4.2 Least-squares

In SLOUCH, the regression parameters are estimated using the least-squares method. Conditional on the
other model parameters (e.g. tq/2, 05 /2a and crij), we start with an ordinary least-squares estimate of
the regression parameters:

Bo = (XTX)"1(XTX).

We require an initial estimate () since the regression coefficients enter the residual variance-covariance
matrix V when measurement error is included in the model. We use 5y and V to obtain a generalized
least-squares (GLS) estimate of the regression parameters as:

B =XV IX)"{(XTVIX).

We update V and iterate the GLS estimation until convergence is reached. For models with random
predictor variables, this estimate yields the optimal or primary regression, as the interpretation depends
on the phylogenetic half-life. In calculating the evolutionary regression, Bcvolutionary, we reconstruct the
model matrix X by setting p = 1, and apply same above formula. The variances and covariances of the
linear model parameter are estimated as:

Var[f] = (XTV~1X)" !,

where the square root of the diagonal elements are the standard errors.

4.3 Maximum likelihood

We use the GLS estimates to we evaluate the log-likelihood (= support) function:

log L(t1/2, 0;/20) = —%(nlog(%) +1og [V + (v = XA)TV "y - X)),

The regression parameters and likelihood are estimated in equal fashion for all types of models. SLOUCH
includes two options for estimating ¢, , and 05 /2 using likelihood. A numerical optimization routine
(L-BFGS-B, Byrd et al. 1995) is used as default, but a grid search is also implemented.



5 Model selection

SLOUCH output provides the user with various statistics in order to compare models with different
combinations of predictor variables. These are the coefficient of determination (R?), Akaike Information
Criteion (AIC), the small-sample corrected AIC (AICc) and the stricter Schwarz Information Critetion
(SIC) (Burnham & Anderson, 1998). For continuous predictor models, these criteria can be used to
choose the number of informative predictors in a multiple regression, or to decide which is the best
predictor of a given trait’s evolution. These information criteria can also be used to decide whether a
single or multiple optima Ornstein-Uhlenbeck process or a Brownian-Motion process best describes a
trait’s evolution. For models with fixed categorical predictors, these information criteria are useful for
assessing which categories influence a trait’s evolution (Butler & King 2004). In this way the user can
either pool different categories or further subdivide a given category into biological meaningful categories
in order to test various hypotheses concerning differential selective niches. We note however, that the
information criteria will sometimes pick models with strange parameter estimates like optima or ancestral
states that are way out of biological bounds, or stationary variances of zero. Such models should be
regarded with skepticism, and one can use grid search to look at the support surfaces to see if there
are other peaks in the likelihood surface with more reasonable estimates. Note that all of the model fit
statistics, as well as the parameter search itself, is conditional on the naive GLS estimator, i.e. prior to
any bias-correction routines.

6 Estimation error

The linear model coefficients are reported with standard errors, which can be used to construct confidence
intervals. These are, however, conditional on the maximum-likelihood estimates of ¢; 5 and v,,.

The estimation errors in ¢ /5 and v, are more difficult to estimate, however, as we use numerical techniques
to optimize the likelihood. With numerical optimization, the default setting does not provide estimation
error. An experimental option (slouch.fit(...hessian=TRUE)) uses numerical sampling to approximate
the Hessian matrix at the likelihood peak, which can be used to report standard errors of ¢, /5 and v,,.
We note that this method can be numerically unstable, particularly with long half-lives, and may even
crash the program for small half-lives.

A good way to inspect estimation error is to perform a grid search, which can be seen in the examples
vignette. A grid search starts by manually providing vectors of potential values for each parameter to
the program to find the combination that maximizes the likelihood. The best estimates of ¢/, and v,
are a joint estimate and for this reason the support region (the three-dimensional log-likelihood plot)
is given as a measure of uncertainty for ¢,/ and v, jointly. The marginal lowest and highest values of
t1/2 within the support region, conditional on the best estimate of v,, can also be obtained using the
figure and the support-region tables in the output (and vice versa for v,). The slouch.fit function can
also take scalars rather than vectors, which may be useful for finding the marginal support region of #; /5
conditional on v, (and vice versa).

6.1 Measurement variance

Hansen & Bartozsek (2012) discuss how to incorporate measurement error into a phylogenetic comparative
analysis. Most often, a comparative analysis involves using species means as input values. In this case
the main component of measurement error is estimation error in the mean (or whatever other statistics
are used) resulting from sampling a finite number of individuals. If each mean species value to be used
in the regression was obtained from a large number of individuals (> 20-30 or so) the square of the
standard error (i.e. the estimation variance) can be entered into the measurement error column for that
variable. If no measurement error is to be included, then simply add a column of zeros. We also refer the
reader to the examples vignette for a more detailed example. SLOUCH deals with measurement error in
the response variable by adding measurement variance to the diagonals of the residual variance matrix.
Measurement variance in the random predictor variable(s) is incorporated by multiplying it by the square
of the uncorrected slope parameter and then adding it to the diagonals of the residual variance matrix. If
the observational errors in the predictor variables are non-zero, the generalized least squares estimator



may be biased. A bias correction for the regression coefficients is implemented according to Hansen &
Bartoszek (2012).

7 Caveats and limitations

As with any statistical model, the quality of the parameter estimates is dependent on the quality of the
data and certain assumptions concerning the residuals must be met. SLOUCH utilizes both measured
trait values and the phylogenetic topology and branch lengths as data. With regards to the trait values,
we assume that a linear relationship exists between expected optimal trait values and the predictor
variables. Although SLOUCH can perform non-linear regression by entering quadratic terms in the model,
this will most likely violate the assumption that the predictors evolve as a Brownian Motion. SLOUCH
also assumes that the underlying evolutionary process is equal in all parts of the tree, as t;,, and 05 are
constant. When studying a clade that is heterogeneic (e.g. Cetartiodactyla) or spans large timespans this
assumption may be violated, and one may consider splitting the phylogeny or using methods that relax
this assumption (e.g. Beaulieu et al. 2014). It should also be kept in mind that any inferences drawn about
the rates of adaption, phylogenetic inertia and its potential effects on trait values are conditional on the
phylogeny used. SLOUCH does not include routines for evaluating the effects of phylogeny uncertainty in
a systematic manner, but one can perform the analysis on plausible alternative phylogenetic hypotheses
to examine the effects of phylogenetic uncertainty on parameter estimates. Simulation may also be useful
here for examining potential interactions between true parameter values and alternative phylogenies.

8 History & comparison with other packages

This document describes an R-package for estimating parameters for a suite of comparative methods
based on the Ornstein-Uhlenbeck process as a model of adaptive evolution. We refer to this program as
SLOUCH 2.0 since it builds on the models in SLOUCH 1.0 (Hansen et al. 2008). SLOUCH 1.0 dealt
with a continuous trait that evolves as an Ornstein-Uhlenbeck process around an optimal state that
itself depend on an environmental variable that evolves as if by a Brownian motion. For the current
version we have extended the model to deal with an optimal state that depends on multiple randomly
evolving predictors and multiple direct effect predictors. We also describe in more detail how to include
measurement error in the analyses. SLOUCH 2.0 also includes functionality designed to deal with traits
that evolve in response to fixed categorical niches that can be mapped onto a phylogeny and then used to
estimate niche optima for the response trait (Hansen, 1997; Butler & King, 2004). The multi-optima
model is thus an alternative to Butler & King’s (2004) OUCH program, but it differs in a few crucial
apects, as described below. SLOUCH 1.3 and earlier versions were built as an addition to OUCH, and
data formats and some functions were borrowed from the original version of OUCH, either as is, or
slightly modified. In SLOUCH 2.0 the phylogenetic tree format is revamped, and now uses the format
used by the R-package APE (Paradis et al. 2004).

The fixed.fit function of SLOUCH 1.1 differs from the OUCH program as follows: a) it allows the user
to estimate parameters using a non-ultrametric tree, such as those that include extinct species, b) it
allows the user to incorporate measurement error in the response variable, ¢) it automatically calculates
standard errors for estimated optima, goodness of fit as R? and can be used to compute support regions
for rates of adaptation and trait variances, d) it includes functionality to use both grid search and the
built-in R optimization routines to estimate parameters, and e) it includes various options to deal with
intercept estimation, which can be problematic. [Do we need to compare with OUCH?|

SLOUCH 2.0 also includes Brownian-motion models where the optima are instead modeled as trends.
This document is written to serve as an updated user manual for SLOUCH. It provides a summary of the
rationale for the methods, and illustrates them with examples based on the ruminant neocortex data set.
It extends the user manual for SLOUCH 1.0 by discussing multiple regression and ANOVA type of models
for the optimum, and gives more details on modeling non-ultrametric trees and measurement error. The
mathematical and conceptual basis of the adaptation-inertia methods are presented and discussed in
Hansen (1997), Butler & King (2004), and Hansen et al. (2008). A user of SLOUCH should also consult
these papers.
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