
simecol-Howto: Tips, Tricks and Building Blocks

Thomas Petzoldt
Technische Universität Dresden

Abstract

This document is intended as a loose collection of sections that describe different
aspects of modelling and model implementation in R with the simecol package. It sup-
plements the original publication of Petzoldt and Rinke (2007) from which an updated
version, simecol-introduction, is also part of this package. Please refer to the JSS
publication when citing this work.

Keywords: R, simecol, ecological modeling, object-oriented programming (OOP), compiled
code, debugging.

1. Building simecol objects

The intention behind simecol is the construction of “all-in-one” model objects. That is, ev-
erything that defines one particular model, equations and data are stored together in one
simObj (spoken: sim-Object), and only some general algorithms (e.g. differential equation
solvers or interpolation routines) remain external, preferably as package functions (e.g. func-
tion lsoda in the package deSolve (Soetaert, Petzoldt, and Setzer 2009) or as functions in
the user workspace.

This strategy has three main advantages:

1. You can have several independent versions of one model in the computer memory at the
same time. These instances may have different settings, parameters and data or even
use different formula, but they do not interfere with each other. Moreover, if all data
and functions are encapsulated in their simObjects, identifiers can be re-used and it is,
for example, not necessary to keep track over a large number of variable names or to
invent new identifiers for parameter sets of different scenarios.

2. You can give simObjects away, either in binary form or as source code objects. Every-
thing essential to run such a model is included, not only the formula but also defaults
for parameter and data. You, or your users need only R, some packages and your model
object. It is also possible to start model objects directly from the internet or, on the
other hand, to distribute model collections as R packages.

3. All simObjects can be handled, simulated and modified with the same generic functions,
e.g. sim, plot or parms. Your users can start playing with your models without the
need to understand all the internals.

2 simecol-Howto

While it is, of course, preferable to have all parts of a model encapsulated in one object, it is
not mandatory to have the complete working model object before starting to use simecol.

simecol models (in the following called simObjects) can be built step by step, starting with
mixed applications composed by rudimentary simObjects and ordinary user space functions.
When everything works, you should encapsulate all the main parts of your model in the
simObject to get a clean object that does not interfere with others.

1.1. An Example

We start with the example given in the simecol-introduction (Petzoldt and Rinke 2007), an
implementation of the UPCA model of Blasius, Huppert, and Stone (1999), but we write it
in the usual deSolve style, i.e. without using simecol:

R> f <- function(x, y, k) {

+ x * y/(1 + k * x)

+ }

R> func <- function(time, y, parms) {

+ with(as.list(c(parms, y)), {

+ du <- a * u - alpha1 * f(u, v, k1)

+ dv <- -b * v + alpha1 * f(u, v, k1) + -alpha2 *

+ f(v, w, k2)

+ dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

+ list(c(du, dv, dw))

+ })

+ }

R> times <- seq(0, 100, 0.1)

R> parms <- c(a = 1, b = 1, c = 10, alpha1 = 0.2, alpha2 = 1,

+ k1 = 0.05, k2 = 0, wstar = 0.006)

R> y <- c(u = 10, v = 5, w = 0.1)

The model is defined by 5 variables in the R user workspace, namely f, func, times, parms
and init. The implementation is similar to the help page examples of package deSolve and
we can solve it exactly in the same manner:

R> library(deSolve)

R> out <- lsoda(y, times, func, parms)

R> matplot(out[, 1], out[, -1], type = "l")

1.2. Transition to simecol

If we compare this example with the simecol structure, we may see that they are kind of
similar. This obvious coincidence is quite natural, because the notation of both, deSolve and
simecol, is based on the state-space notation of control theory1.

Due to this, only small restructuring and renaming is needed to form a simObj:

1see http://en.wikipedia.org/wiki/State_space_(controls), version of 2008-11-01

http://en.wikipedia.org/wiki/State_space_(controls)

Thomas Petzoldt 3

0 20 40 60 80 100

0
5

10
15

out[, 1]

ou
t[,

 −
1]

Figure 1: Output of UPCA model, solved with lsoda from package deSolve.

R> library("simecol")

R> f <- function(x, y, k){x*y / (1+k*x)} # Holling II

R> upca <- new("odeModel",

+ main = function(time, y, parms) {

+ with(as.list(c(parms, y)), {

+ du <- a * u - alpha1 * f(u, v, k1)

+ dv <- -b * v + alpha1 * f(u, v, k1) +

+ - alpha2 * f(v, w, k2)

+ dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

+ list(c(du, dv, dw))

+ })

+ },

+ times = seq(0, 100, 0.1),

+ parms = c(a=1, b=1, c=10, alpha1=0.2, alpha2=1,

+ k1=0.05, k2=0, wstar=0.006),

+ init = c(u=10, v=5, w=0.1),

+ solver = "lsoda"

+)

You may notice that the assignment operators “<-” changed to a declarative equal sign “=”
for the slot definitions, that some of the names (y, func) were changed to the pre-defined
slot names of simecol and that all the slot definitions are now comma separated arguments

4 simecol-Howto

of the new function that creates the upca object. The solver method lsoda is also given as a
character string pointing to the original lsoda function in package deSolve.

The new object can now be simulated very easily with the sim function of simecol that returns
the object with all original slots and one additional slot out holding the output values. A
generic plot function is also available for basic plotting of the output:

R> upca <- sim(upca)

R> plot(upca)

It is now also possible to extract the results from upca with a so called accessor function out,
and to use arbitrary, user-defined plot functions:

R> plotupca <- function(obj, ...) {

+ o <- out(obj)

+ matplot(o[, 1], o[, -1], type = "l", ...)

+ legend("topright", legend = c("u", "v", "w"), lty = 1:3,

+ , bg = "white", col = 1:3)

+ }

R> plotupca(upca)

Okay, that’s it, but note that function f is not yet part of the simecol object, that’s why we
call here a “mixed implementation”. This function f is rather simple here, but it would be
also possible to call functions of arbitrary complexity from main.

1.3. Creating scenarios

After defining one simecol object (that we can call a parent object or a prototype), we
may create derived objects, simply by copying (cloning) and modification. As an example,
we create two scenarios with different parameter sets:

R> sc1 <- sc2 <- upca

R> parms(sc1)["wstar"] <- 0

R> parms(sc2)["wstar"] <- 0.1

R> sc1 <- sim(sc1)

R> sc2 <- sim(sc2)

R> par(mfrow = c(1, 2))

R> plotupca(sc1, ylim = c(0, 250))

R> plotupca(sc2, ylim = c(0, 250))

If we simulate and plot these scenarios, we see an exponentially growing u in both cases, and
cycles resp. an equilibrium state for v and w for the scenarios respectively (figure 2).

If we now also change the functional response function f from Holling II to Lotka-Volterra:

R> f <- function(x, y, k) {

+ x * y

+ }

Thomas Petzoldt 5

0 20 40 60 80

0
50

10
0

20
0

o[, 1]

o[
, −

1]

u
v
w

0 20 40 60 80
0

50
10

0
20

0

o[, 1]

o[
, −

1]

u
v
w

Figure 2: Two scenarios of the UPCA model (left: wstar=0, right: wstar=0.1; functional
response f is Holling II).

both model scenarios, sc1 and sc2 are affected by this new definition.

R> sc1 <- sim(sc1)

R> sc2 <- sim(sc2)

R> par(mfrow = c(1, 2))

R> plotupca(sc1, ylim = c(0, 20))

R> plotupca(sc2, ylim = c(0, 20))

Now, we get a stable cycle for u and v in scenario 1 and an equilibrium for all state variables
in scenario 2 (figure 3). You may also note that the new function f has exactly the same
parameters as above, including the, in the second case obsolete, parameter k.
In the examples above, function f was an ordinary function in the user workspace, but it
is also possible to implement such functions (or sub-models) directly as part of the model
object. As one possibility, one might consider to define local functions within main, but that
would have the disadvantage that such functions are not easily accessible from outside.
To allow the latter, simecol has an optional slot “equations”, that can hold a list of submodels.
Such an equations-slot can be defined either during object creation, or functions may be added
afterwards. In the following, we derive two new clones with default parameter settings from
the original upca-object, and then assign one version (the Holling II functional response) to
scenario 1 and the other version (simple multiplicative Lotka-Volterra functional response) to
scenario 2 (figure 4):

6 simecol-Howto

0 20 40 60 80

0
5

10
15

20

o[, 1]

o[
, −

1]

u
v
w

0 20 40 60 80
0

5
10

15
20

o[, 1]

o[
, −

1]

u
v
w

Figure 3: Two scenarios of the UPCA model (left: wstar=0, right: wstar=0.1; functional
response f is Holling II).

R> sc1 <- sc2 <- upca

R> equations(sc1)$f <- function(x, y, k) {

+ x * y/(1 + k * x)

+ }

R> equations(sc2)$f <- function(x, y, k) {

+ x * y

+ }

R> sc1 <- sim(sc1)

R> sc2 <- sim(sc2)

R> par(mfrow = c(1, 2))

R> plotupca(sc1, ylim = c(0, 20))

R> plotupca(sc2, ylim = c(0, 20))

This method allows to compare models with different structures in the same way as scenarios
with different parameter values. In addition, it is also possible to define model objects with
different versions of built-in submodels, that can be alternatively enabled:

R> upca <- new("odeModel", main = function(time, y, parms) {

+ with(as.list(c(parms, y)), {

+ du <- a * u - alpha1 * f(u, v, k1)

+ dv <- -b * v + alpha1 * f(u, v, k1) + -alpha2 *

Thomas Petzoldt 7

0 20 40 60 80

0
5

10
15

20

o[, 1]

o[
, −

1]

u
v
w

0 20 40 60 80
0

5
10

15
20

o[, 1]

o[
, −

1]

u
v
w

Figure 4: Two scenarios of the UPCA model (left: functional response f is Holling II, right
functional response is Lotka-Volterra).

+ f(v, w, k2)

+ dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

+ list(c(du, dv, dw))

+ })

+ }, equations = list(f1 = function(x, y, k) {

+ x * y

+ }, f2 = function(x, y, k) {

+ x * y/(1 + k * x)

+ }), times = seq(0, 100, 0.1), parms = c(a = 1, b = 1, c = 10,

+ alpha1 = 0.2, alpha2 = 1, k1 = 0.05, k2 = 0, wstar = 0.006),

+ init = c(u = 10, v = 5, w = 0.1), solver = "lsoda")

R> equations(upca)$f <- equations(upca)$f1

1.4. Debugging

As stated before, all-in-one encapsulation of all functions and data in simObjects has many
advantages, but there is also one disadvantage, namely debugging. Debugging of S4 objects
is sometimes cumbersome, especially if slot-functions (e.g. main, equations, initfunc) come
into play. These difficulties are not much important for well-functioning ready-made model
objects, but they appear as an additional burden during model building, in particular if these

8 simecol-Howto

models are technically not as simple as in our example.

Fortunately, there are easy workarounds. One of them is implementing the technically chal-
lenging parts in the user-workspace first using the above mentioned mixed style. Then, after
developing and debugging the model and if everything works satisfactory, integrating the parts
into the object is straightforward, given that you keep the general structure in mind. In the
example below, we implement the main model as a workspace function fmain2 with the same
interface (parameters and return values) as above, which is then called by the main-function
of the simObj:

R> f <- function(x, y, k) {

+ x * y/(1 + k * x)

+ }

R> fmain <- function(time, y, parms) {

+ with(as.list(c(parms, y)), {

+ du <- a * u - alpha1 * f(u, v, k1)

+ dv <- -b * v + alpha1 * f(u, v, k1) + -alpha2 *

+ f(v, w, k2)

+ dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

+ list(c(du, dv, dw))

+ })

+ }

R> upca <- new("odeModel", main = function(time, y, parms) fmain(time,

+ y, parms), times = seq(0, 100, 0.1), parms = c(a = 1,

+ b = 1, c = 10, alpha1 = 0.2, alpha2 = 1, k1 = 0.05,

+ k2 = 0, wstar = 0.006), init = c(u = 10, v = 5, w = 0.1),

+ solver = "lsoda")

This function fmain as well as any other submodels like f can now be debugged with the
usual R tools, e.g. debug:

R> debug(fmain)

R> upca <- sim(upca)

Debugging can be stopped by undebug(fmain). If everything works, you can add the body
of fmain to upca manually, and it is even possible to do this in the formalized simecol way
of object modification:

R> main(upca) <- fmain # assign workspace function to main slot

R> equations(upca)$f <- f # assign workspace function to equations

R> rm(fmain, f) # optional, for saving memory and avoiding confusion

R> str(upca) # show the object

Formal class 'odeModel' [package "simecol"] with 10 slots
..@ parms : Named num [1:8] 1e+00 1e+00 1e+01 2e-01 1e+00 5e-02 0e+00 6e-03

2Note that this function must never be named “func”, for some rather esoteric internal reasons which we
shall not discuss further here.

Thomas Petzoldt 9

.. ..- attr(*, "names")= chr [1:8] "a" "b" "c" "alpha1" ...

..@ init : Named num [1:3] 10 5 0.1

.. ..- attr(*, "names")= chr [1:3] "u" "v" "w"

..@ observer : NULL

..@ main :function (time, y, parms)

..@ equations:List of 1

.. ..$ f:function (x, y, k)

..@ times : num [1:1001] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ...

..@ inputs : NULL

..@ solver : chr "lsoda"

..@ out : NULL

..@ initfunc : NULL

Now, you can delete f and fmain and you have a clean workspace with only the necessary
objects.

2. Different ways to store simObjects

One of the main advantages of simecol is, that model objects can be made persistent and that
it is easy to distribute and share simObjects over the internet.

The most obvious and simple form is, of course, to use the original source code of the objects,
i.e. the function call to new with all the slots which creates the S4-object (see section 1.2),
but there are also other possibilities.

simecol objects can be saved in machine readable form as S4-object binaries with the save
method of R, which stores the whole object with all its equations, initial values, parameters
etc. and also the simulation output if the model was simulated before saving.

R> save(upca, file="upca.Rdata") # persistent storage of the model object

R> load("upca.Rdata") # load the model

Conversion of the S4 object to a list representation is another possibility, that yields a repre-
sentation that is readable by humans and by R:

R> l.upca <- as.list(upca)

This method allows to get an alternative text representation of the simObj, that can be
manipulated by code parsing programs or dumped to the hard disk:

R> dput(l.upca, file = "upca_list.R")

and this is completely reversible via:

R> l.upca <- dget("upca_list.R")

R> upca <- as.simObj(l.upca)

10 simecol-Howto

Sometimes it may be useful to store simObjects in an un-initialized form, in particular if they
are to be distributed in packages.

Let’s demonstrate this again with a simple Lotka-Volterra model. In the first step, we define
a function, that returns a simecol object:

R> genLV <- function() {

+ new("odeModel", main = function(time, init, parms) {

+ x <- init

+ p <- parms

+ dx1 <- p["k1"] * x[1] - p["k2"] * x[1] * x[2]

+ dx2 <- -p["k3"] * x[2] + p["k2"] * x[1] * x[2]

+ list(c(dx1, dx2))

+ }, parms = c(k1 = 0.2, k2 = 0.2, k3 = 0.2), times = c(from = 0,

+ to = 100, by = 0.5), init = c(prey = 0.5, predator = 1),

+ solver = "lsoda")

+ }

Now, the function contains the instruction, how R can create a new instance of such a model.
The simecol object is not created yet, but a call to the creator function can bring it to live:

R> lv1 <- genLV()

R> plot(sim(lv1))

This style is used in package simecolModels3, a collection of (mostly) published ecological
models.

3. Methods to work with S4 objects

The S4 scheme includes several utility functions which can be used to inspect objects and
their methods. As an example, showMethods can be used to list all different functions, that
are available for one method (here sim), depending on the object types involved:

R> showMethods("sim")

Function: sim (package simecol)
obj="gridModel"
obj="odeModel"
obj="simObj"

Based on this information, it is now possible to inspect the source code of the particular
method, e.g. the sim-function for differential equation models (class odeModel):

R> getMethod("sim", "odeModel")

3simecolModels can be downloaded from the R-Forge server, http://simecol.r-forge.r-project.org/.

http://simecol.r-forge.r-project.org/

Thomas Petzoldt 11

Method Definition:

function (obj, initialize = TRUE, ...)
{

if (initialize & !is.null(obj@initfunc))
obj <- initialize(obj)

times <- fromtoby(obj@times)
func <- obj@main
inputs <- obj@inputs
equations <- obj@equations
environment(func) <- environment()
equations <- addtoenv(equations)
out <- do.call(obj@solver, list(obj@init, times, func, obj@parms,

...))
obj@out <- out
invisible(obj)

}
<environment: namespace:simecol>

Signatures:
obj

target "odeModel"
defined "odeModel"

In addition to this, R has several other functions to inspect or manipulate objects, e.g.
hasMethod, findMethod, or setMethod, please see the documentation of these functions for
details.

4. Implementing models in compiled languages

Compilation of model code can speed up simulations considerably and there are several ways
to call compiled code from R; so it is possible to use functions written in C/C++ or Fortran
in the ordinary way described in the “Writing R Extensions” manual (R Development Core
Team 2006). This can speed up computations, but still a certain amout of communication
overhead is needed because the control is given back to R in every simulation step.

In addition to this basic method, it is also possible to enable direct communication between
integration routines and the model code if both are available in compiled languages and if
the direct call of a compiled model is supported by the integrator. All integrators of the
lsoda-family of solvers support this and additional solvers may support this in the future,
see the deSolve documentation for details.

Now, let’s inspect an example. We firstly provide our model as described in the deSolve
vignette “Writing Code in Compiled Language”, here again the Lotka-Volterra-model:

/* file: clotka.c */
#include <R.h>

12 simecol-Howto

static double parms[3];

#define k1 parms[0]
#define k2 parms[1]
#define k3 parms[2]

/* It is possible to define global variables here */
static double aGlobalVar = 99.99; // for testing only

/* initializer: same name as the dll (without extension) */
void clotka(void (* odeparms)(int *, double *)) {
int N = 3;
odeparms(&N, parms);
Rprintf("model parameters succesfully initialized\n");

}

/* Derivatives */
void dlotka(int *neq, double *t, double *y,
double *ydot, double *yout, int *ip) {

// sanity check for the 2 'additional outputs'
if (ip[0] < 2) error("nout should be at least 2");

// derivatives
ydot[0] = k1 * y[0] - k2 * y[0] * y[1];
ydot[1] = k2 * y[0] * y[1] - k3 * y[1];

// the 2 additional outputs, here for demo purposes only
yout[0] = aGlobalVar;
yout[1] = ydot[0];

}

Using #define macros are a typical C-trick to get readable names for the parameters. This
method is simple and efficient and of course, there are more elaborate possibilities. One
alternative is using dynamic variables, another is doing call-backs to proglangR.
The C code can now be compiled into a so-called shared library (on Linux) or a DLL on
Windows, that can be linked to R.
Compilation requires an installed C compiler (gcc) and some other tools that are quite stan-
dard on Linux, and which are also available for the Macintosh or, form of the R-Tools collec-
tion4 provided by Duncan Murdoch for Windows.
If the tools are installed, compilation can be done directly from R with:

R> system("R CMD SHLIB clotka.c")

The result, a shared library or DLL, can now be linked to the current R session with dyn.load,
that we show here for Windows, and which is quite similar for Linux (see R Development Core

4http://www.murdoch-sutherland.com/Rtools/

http://www.murdoch-sutherland.com/Rtools/

Thomas Petzoldt 13

Team 2006, , Writing R Extensions for details). Note that you set the working directory of
R to the path where the DLL resides or use the full path in the call to dyn.load.

R> modeldll <- dyn.load("clotka.dll")

You can now call the derivatives dlotka of the model in the main function of a simecol-object,
but we do not want to go this way here. What we do is to go the more efficient way, i.e. we
tell the solver lsoda where to find the model in the DLL.

The trick consists of two parts:

1. We write an almost empty main function that returns all the information that the ODE
solver needs in form of a list,

2. Instead of putting a character reference to an existing solver function into the solver
slot (e.g. "lsoda") we write a user-defined interface to the solver and assign it to the
solver-slot as shown in the example.

Now, we can simulate our model as usual, but avoid interpretation and communication over-
head of R during the integration.

clotka <- new("odeModel",

note that 'main' does not contain any equations directly

but returns information where these can be found

'nout' is the number of 'additional outputs'
main = function(time, init, parms) {

a list with: dllname, func, [jacfunc], nout

list(lib = "clotka",

func = "dlotka",

jacfunc = NULL,

nout = 2)

},

parms, times, init are provided as usual, enabling

scenario control like for 'ordinary' simecol models

parms = c(k1=0.2, k2=0.2, k3=0.2),

times = c(from=0, to=100, by=0.5),

init = c(prey=0.5, predator=1),

special solver function that evaluates funclist

and passes its contents directly to the lsoda

in the 'compiled function' mode

solver = function(init, times, funclist, parms, ...) {

f <- funclist()

as.data.frame(lsoda(init, times, func=f$func,

parms = parms, dllname = f$lib, jacfunc=f$jacfunc, nout = f$nout, ...)

)

}

)

14 simecol-Howto

clotka <- sim(clotka)

the two graphics on top are the states

the other are additional variables returned by the C code

(for demonstration purposes here)

plot(clotka)

Another simulation with more time steps

times(clotka)["to"] <- 1000

plot(sim(clotka))

another simulation with intentionally reduced accuracy

for testing

plot(sim(clotka, atol=1))

dyn.unload(as.character(modeldll[2]))

You should note a considerable speed-up and you may ask if this is still a simecol object,
because the main parts are now in C and you may also ask, why one should still write models
in R if C or FORTRAN are so much faster.

The answer is that speed of computation is not the only factor. What counts is a good
compromise between execution speed and programming effort. Programming in scripting
languages like R is much more convenient than programming in compiled languages like C
or FORTRAN. Also, programming in compiled languages does only pay its effort required if
models are quite large or if a large number of model runs is performed. Even in such cases, a
mixed R and C approach can be efficient, because it is only necessary to implement the core
functionality of the model in C and most of data manipulation and scenario control can be
done in R.

simecol follows exactly this philosophy. Implementing everything in R is highly productive if
speed is of minor importance, but you may use C etc. whenever necessary, and even in that
case you still have the scenario management and data manipulation features of simecol.

References

Blasius B, Huppert A, Stone L (1999). “Complex Dynamics and Phase Synchronization in
Spatially Extended Ecological Systems.” Nature, 399, 354–359.

Petzoldt T, Rinke K (2007). “simecol: An Object-Oriented Framework for Ecological Modeling
in R.” Journal of Statistical Software, 22(9), 1–31. ISSN 1548-7660. URL http://www.
jstatsoft.org/v22/i09.

R Development Core Team (2006). Writing R Extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9, URL http://www.R-project.org.

Soetaert K, Petzoldt T, Setzer RW (2009). deSolve: General Solvers for Ordinary Differential
Equations (ODE) and for Differential Algebraic Equations (DAE). R package version 1.2-3.

http://www.jstatsoft.org/v22/i09
http://www.jstatsoft.org/v22/i09
http://www.R-project.org

Thomas Petzoldt 15

Affiliation:

Thomas Petzoldt
Institut für Hydrobiologie
Technische Universität Dresden
01062 Dresden, Germany
E-mail: thomas.petzoldt@tu-dresden.de
URL: http://tu-dresden.de/Members/thomas.petzoldt/

mailto:thomas.petzoldt@tu-dresden.de
http://tu-dresden.de/Members/thomas.petzoldt/

	Building simecol objects
	An Example
	Transition to simecol
	Creating scenarios
	Debugging

	Different ways to store simObjects
	Methods to work with S4 objects
	Implementing models in compiled languages

