1 Introduction

The purpose of the simTool package is to disengage the research from any
kind of administrative source code which is usually an annoying necessity of a
simulation study.

This vignette will give an introduction into the simTool package mainly by
examples of growing complexity. The workhorse is the function evalGrids.
Every parameter of this function will be discussed briefly and the functionality
is illustrated by at least one example.

2 Workflow

The workflow is quite easy and natural. One defines two data.frames, the
first one represents the functions that generate the data sets and the second
one represents the functions that analyze the data. These two data.frames are
passed to evalGrids which conducts the simulation. Afterwards, the results
can nicely be displayed as a data.frame be coercing the object returned by
evalGrids to a data.frame.

3 Defining the data.frames for data generation
and analyzation

There are 3 rules:
e the first column (a character vector) defines the functions to be called

e the other columns are the parameters that are passed to function specified
in the first column

e The entry NA will not be passed to the function specified in the first col-
umn.

The function expandGrid is a convenient function for defining such data.frames.
We now define the data generation functions for our first simulation.

library(simTool)
library(plyr)
library (reshape)

##

Attaching package: ’reshape’

##

The following objects are masked from ’package:plyr’:
##

rename, round_any

print(dg <- rbind.fill(
expandGrid (fun="rexp", n=c(10, 20), rate=1:2),
expandGrid (fun="rnorm", n=c(10, 20), mean=1:2)))

#i# fun n rate mean
1 rexp 10 1 NA
2 rexp 20 1 NA
3 rexp 10 2 NA
4 rexp 20 2 NA
5 rnorm 10 NA 1
6 rnorm 20 NA 1
7 rnorm 10 NA 2
8 rnorm 20 NA 2

This data.frame represents 8 R-functions. For instance, the second row
represents a function that generates 20 exponential distributed random variables
with rate 1. Since mean=NA in the second row, this parameter is not passed to
Texp.

Similar, we define the data.frame for data analyzing functions.

print (pg<-rbind.fill(
expandGrid(proc="min"),
expandGrid(proc="mean", trim=c(0.1, 0.2))))

proc trim
1 min NA
2 mean 0.1
3 mean 0.2

Hence, this data.frame represents 3 R-functions i.e. calculating the mini-
mum and the arithmetic mean with trim=0.1 and trim=0.2.

4 The workhorse evalGrids

The workhorse evalGrids has the following simplified pseudo code:

1 convert dg to R-functions {g1,...,9x}

2 convert pg to R-functions {fi,...,f¢}

3 initialize result object

4 append dg and pg to the result object

5 t1 = current.time()

6 for g in {gla"'agk}

7 for r in 1l:replications (optionally in a parallel manner)
8 data = g(Q

9 for £ in {f1,..., fe}

10 append f(data) to the result object

11 optionally append data to the result object

12 optionally summarize the result object over all
replications but separately for fi,..., fo
13 optionally save the results so far obtained to HDD

14 t2 = current.time()
15 Estimate the number of replications per hour from tl and t2

In general, the object returned by evalGrids is a 1list of class evalGrid
and can be coerced into a data.frame. Later on, we will investigate the case if
this is not the case.

dg = expandGrid(fun="rnorm", n=10, mean=1:2)
pg = expandGrid(proc="min"
eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 2)

[1] "Estimated replications per hour: 44086115"

as.data.frame(eg)

#i#t ij fun n mean proc replication Vi
1 1 1 rnorm 10 1 min 1 0.26875
2 1 1 rnorm 10 1 min 2 -0.98311
3 2 1 rnorm 10 2 min 1 0.78409
4 2 1 rnorm 10 2 min 2 0.09762

As you can see, the function always estimates the number of replications
that can be done in one hour.

The object returned by evalGrids will be discussed at the end of this section.
But specific points about this object will be explained earlier.

4.1 Parameter replications

Of course, this parameter controls the number of replications conducted.
eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 3)
[1] "Estimated replications per hour: 62308780"

as.data.frame(eg)

#it ij fun n mean proc replication Vi
1 1 1 rnorm 10 1 min 1 -0.2308
2 1 1 rnorm 10 1 min 2 -0.7510
3 1 1 rnorm 10 1 min 3 -0.1170
4 2 1 rnorm 10 2 min 1 1.2573
5 2 1 rnorm 10 2 min 2 1.3779
6 2 1 rnorm 10 2 min 3 0.8037

4.2 Parameter discardGeneratedData

evalGrids saves ALL generated data sets. In general, it is sometimes very
handy to have the data sets in order to investigate unusual or unexpected results.
But saving the generated data sets can be very memory consuming. Stop saving
the generated data sets can be obtained by setting discardGeneratedData =
TRUE. Confer command line 11 in the pseudo code.

eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 1000)
[1] "Estimated replications per hour: 89601139"
object.size(eg)

1244648 bytes

eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 1000,

discardGeneratedData = TRUE)
[1] "Estimated replications per hour: 87596268"
object.size(eg)

908808 bytes

The object returned by evalGrids will be discussed at the end of this vi-
gnette.

4.3 Parameter progress

This parameter activates a text progress bar in the console. Usually, this does
not make sense if one uses Sweave or knitr, but for demonstration purpose we
do this here.

eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 10,
progress = TRUE)

##

| 0%

|
|
|
| | 50%
[
|

| 100%
[1] "Estimated replications per hour: 29143976"

The progress bar increases every time a new element is chosen in command
line 6 of the pseudo code.

4.4 Parameter post.proc

As stated in command line 12 we can summarize the result objects over all
replications but separately for all data analyzing functions.

dg = expandGrid(fun="runif", n=c(10,20,30))
pg = expandGrid(proc=c("min", "max"))
eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 1000,

post.proc=mean)
[1] "Estimated replications per hour: 19753187"

as.data.frame(eg)

#it ij fun n proc value Vi
1 1 1 runif 10 min (all) 0.09424
2 1 2 runif 10 max (all) 0.91075
3 2 1 runif 20 min (all) 0.04433
4 2 2 runif 20 max (all) 0.94950
5 3 1 runif 30 min (all) 0.03126
6 3 2 runif 30 max (all) 0.96894

eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 1000,
post.proc=c(mean, sd))

[1] "Estimated replications per hour: 21515748"

as.data.frame(eg)

#it ij fun n proc value Vli_mean V1_sd
1 1 1 runif 10 min (all) 0.09664 0.08937
2 1 2 runif 10 max (all) 0.91214 0.08140
3 2 1 runif 20 min (all) 0.04722 0.04432
4 2 2 runif 20 max (all) 0.94972 0.04699
5 3 1 runif 30 min (all) 0.03055 0.03066
6 3 2 runif 30 max (all) 0.96566 0.03275

Note, by specifying the parameter post.proc the generated data sets and
all individual result objects are discarded. In this example we discard 3 x 1000
data sets and 3 x 1000 x 2 individual result objects. Although the function
as.data.frame or to be more precise as.data.frame.evalGrid has also a
parameter post.proc that serves the same purpose, it may be necessary to
summarize the results as soon as possible to spare memory.

We now briefly show that post.proc in evalGrids and as.data.frame yield
the same results.

set.seed(1234)

summarize the result objects as soon as possible

eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 1000,
post.proc=mean)

[1] "Estimated replications per hour: 24216768"

as.data.frame(eg)

1 j fun n proc value Vi
1 1 1 runif 10 min (all) 0.09211
2 1 2 runif 10 max (all) 0.90852
3 2 1 runif 20 min (all) 0.04986
4 2 2 runif 20 max (all) 0.95271
5 3 1 runif 30 min (all) 0.03026
6 3 2 runif 30 max (all) 0.96821

set.seed(1234)
keeping the result objects
eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 1000)

[1] "Estimated replications per hour: 40987685"

summarize the result objects by as.data.frame
as.data.frame(eg, post.proc=mean)

#it ij fun n proc value Vi
1 1 1 runif 10 min (all) 0.09211
2 1 2 runif 10 max (all) 0.90852
3 2 1 runif 20 min (all) 0.04986
4 2 2 runif 20 max (all) 0.95271
5 3 1 runif 30 min (all) 0.03026
6 3 2 runif 30 max (all) 0.96821

4.5 Parameter ncpus and clusterSeed

By specifying ncpus larger than 1 a cluster objected is created for the user and
passed to the parameter cluster discussed in the next section.

eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 10,
ncpus=2, post.proc=mean)

Loading required package: parallel

[1] "Estimated replications per hour: 126867"

as.data.frame(eg)

#ij fun n proc value V1
1 1 1 runif 10 min (all) 0.08837
2 1 2 runif 10 max (all) 0.91211
3 2 1 runif 20 min (all) 0.06557
4 2 2 runif 20 max (all) 0.94724
5 3 1 runif 30 min (all) 0.03624
6 3 2 runif 30 max (all) 0.96856

As it is stated in command line 6, the replications are parallelized. In our
case, this means that roughly every CPU conducts 5 replications.

The parameter clusterSeed must be an integer vector of length 6 and serves
the same purpose as the function set.seed. By default, clusterSeed equals
rep(12345, 6). Note, in order to reproduce the simulation study it is also
necessary that ncpus does not change.

4.6 Parameter cluster

The user can create a cluster on its own. This also enables the user to distribute
the replications over different computers in a network.

require(parallel)

cl = makeCluster(rep("localhost", 2), type="PSOCK")

eg = evalGrids(dataGrid = dg, procGrid = pg, replications = 10,
cluster=cl, post.proc=mean)

[1] "Estimated replications per hour: 125604"

as.data.frame(eg)

#it ij fun n proc value Vi
1 1 1 runif 10 min (all) 0.08837
2 1 2 runif 10 max (all) 0.91211
3 2 1 runif 20 min (all) 0.06557
4 2 2 runif 20 max (all) 0.94724
5 3 1 runif 30 min (all) 0.03624
6 3 2 runif 30 max (all) 0.96856
stopCluster(cl)

As you can see our cluster consists of 3 workers. Hence, this reproduces
the results from the last code chunk above. Further note, if the user starts the
cluster, the user also has to stop the cluster. A cluster that is created within
evalGrids by specifying ncpus is also stop within evalGrids.

4.7 Parameter clusterLibraries and clusterGlobalObjects

A newly created cluster is “empty”. Hence, if the simulation study requires
libraries or objects from the global environment, they must be transferred to
the cluster.

Lets look at standard example from the boot package.

library(boot)
ratio <- function(d, w) sum(d$x * w)/sum(d$u * w)
city.boot <- boot(city, ratio, R = 999, stype = "w",
sim = "ordinary")
boot.ci(city.boot, conf = c(0.90, 0.95),
type = c("norm", "basic", "perc", "bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates

#

CALL :

boot.ci(boot.out = city.boot, conf = c(0.9, 0.95), type = c("norm",
"basic", "perc", "bca"))

it

Intervals :

Level Normal Basic

90% (1.096, 1.853) (1.047, 1.755)
95% (1.023, 1.926) (0.814, 1.777)
it

Level Percentile BCa

90% (1.285, 1.994) (1.308, 2.047)
957 (1.264, 2.226) (1.275, 2.293)
Calculations and Intervals on Original Scale

The following data generating function is extremely boring because it always
returns the data set city from the library boot.

returnCity = function(){
city

bootConfInt = function(data){

city.boot <- boot(data, ratio, R = 999, stype = "w",

sim = "ordinary")
boot.ci(city.boot, conf = c(0.90, 0.95),
type = c("norm", "basic", "perc", "bca"))

}

The function ratio exists at the moment only in our global environment.
Further we had to load the boot package. Hence, we load the boot package by

setting clusterLibraries = c("boot") and transfer the function ratio by
setting clusterGlobalObjects = c("ratio").

dg = expandGrid(fun="returnCity")

pg = expandGrid(proc="bootConfInt")

eg = evalGrids(dg, pg, replications=10, ncpus=2,
clusterLibraries=c("boot"),
clusterGlobalObjects=c("ratio"))

[1] "Estimated replications per hour: 122237"

Of course, it is possible to set clusterGlobalObjects=1s(), but then all
objects from the global environment are transferred to all workers.

4.8 Parameter fallback

If the user is afraid of a power black out, server crashes, or something else
interrupting the simulation study, the user can pass a character to fallback.
Then every time a new element in command line 6 is chosen, the results obtained
so far are written to the file specified in fallback.

genData = function(n){
n
}
anaData = function(data){
if (data == 4)
stop("Simulated error that terminates the simulation")
data”2
}
dg = expandGrid(fun="genData", n=1:5)
pg = expandGrid(proc="anaData")
try(eg <- evalGrids(dg, pg, replications=2,
fallback="simTool_fbTest"))

[1] "With fallback!"

Loading the Rdata-file creates an R-object fallBack0bj of the class evalGrid.
Of course, some results are missing which is indicated by the column
.evalGridComment in the resulting data.frame.

clean the current R-session
rm(list=1s())
load("simTool_fbTest.Rdata")
as.data.frame(fallBackObj)

ij fun n proc replication V1 .evalGridComment

1 1 1 genData 1 anaData 11 <NA>
2 1 1 genData 1 anaData 2 1 <NA>
3 2 1 genData 2 anaData 1 4 <NA>
4 2 1 genData 2 anaData 2 4 <NA>
5 3 1 genData 3 anaData 1 9 <NA>
6 3 1 genData 3 anaData 2 9 <NA>
7 4 1 genData 4 anaData <NA> NA Results missing
8 5 1 genData 5 anaData <NA> NA Results missing

4.9 Parameter envir

The function evalGrids generates in a first step function calls from dataGrid
and procGrid. This is achieved by applying the R-function get. By default,
envir=globalenv() and thus get searches the global environment of the current
R session. An example shows how to use the parameter envir.

masking summary from the base package
summary = function(x) sd(x)
g = function(x) quantile(x, 0.1)
someFunc = function(){
summary = function(x) c(sd=sd(x), mean=mean(x))

dg = expandGrid(fun="runif", n=100)
pg = expandGrid(proc=c("summary", "g"))

the standard ts to use the global

environment, hence summary defined outside
of someFunc() will be used
print(as.data.frame(evalGrids(dg, pg)))

will use the local defined summary, but g

from the global environment, because

g 1s not locally defined.
print(as.data.frame(evalGrids(dg, pg, envir=environment())))

}

someFunc ()

[1] "Estimated replications per hour: 5672236"

#it ij fun n proc replication Vi 10%

1 1 1 runif 100 summary 1 0.2866 NA

2 1 2 runif 100 g 1 NA 0.1124
-

[1] "Estimated replications per hour: 12069939"

#i#t ij fun n proc replication sd mean 10%
1 1 1 runif 100 summary 1 0.2871 0.5386 NA

10

2 1 2 runif 100 g 1 NA NA 0.1958

4.10 The result object

Usually, the user has not work with the object returned by evalGrids because
as.data.frame can coerce it to a data.frame. Nevertheless, we want to discuss
the return value of evalGrids.

dg = rbind.fill(
expandGrid (fun="rexp", n=c(10, 20), rate=1:2),
expandGrid (fun="rnorm", n=c(10, 20), mean=1:2))
pg = rbind.fill(
expandGrid(proc="min"),
expandGrid(proc="mean", trim=c(0.1, 0.2)))

Now we conduct a simulation study and discuss the result object
eg = evalGrids(dg, pg, replications=100)
[1] "Estimated replications per hour: 4567120"

The returned object is a 1list of class evalGrid:

names (eg)
[1] "call" "dataGrid" "procGrid"
[4] "simulation" "post.proc" "est.reps.per.hour"

[7] "sessionInfo"

The important element is simulation which itself is a list. It option-
ally contains ALL data that were generated and optionally contains ALL ob-
jects returned by the data analyzing functions. The structure is as follows.
eg$simulation[[i]] [[r]]$data is the data generated by the ith row in dg in
the rth replication and eg$simulation[[i]] [[r]]$results[[j]] is the object
returned by the jth parameter constellation of pg applied to
eg$simulation[[i]] [[r]]l$data. For instance, let ¢ = 7,r = 22, and j = 3.
We generated the data according to

dgl7,]

#i# fun n rate mean
7 rnorm 10 NA 2

that is 10 normal distributed random variables with mean 2 and analyzed it
with

11

pgl3,]

proc trim
3 mean 0.2

In the 22nd replication this leads to
eg$simulation[[7]] [[22]]$results[[3]]
[1] 2.782

which can be replicated by
mean (eg$simulation[[7]] [[22]]$data, trim=0.2)

[1] 2.782

5 Converting results to data.frame

We have already applied as.data.frame.evalGrid many times. This function
also has the parameters post.proc and progress. The functionality of these
parameter resembles the corresponding parameters of evalGrids. Hence, it re-
mains to explain value.fun. Sometimes, the objects returned by the analyzing
functions can not be automatically converted to data.frame. In such cases, the
parameter value.fun enables the user to pre-process the result objects. We
exemplify this by calculating linear regression models.

genRegData <- function(){
data.frame(
x = 1:10,
y = rnorm(10, mean=1:10))

eg <- evalGrids(
expandGrid (fun="genRegData"),
expandGrid(proc="1m", formula=c("y ~ x", "y ~ x + I(x"2)")),
replications=100)
[1] "Estimated replications per hour: 1006231"
class(eg$simulation[[1]] [[1]]$results[[1]])
[1] "1m"

An object of class 1m can easily be converted by calling coef.

12

head(df<-as.data.frame(eg, value.fun=coef))

#ij fun proc formula replication (Intercept) x I(x"2)
1 1 1 genRegData 1Im y 7 x 1 0.1184 1.0614 NA
2 1 1 genRegData 1Im y 7 x 2 0.7990 0.9287 NA
3 1 1 genReghData 1Im y 7 x 3 -0.6973 1.1399 NA
4 1 1 genReghData 1Im y 7 x 4 -0.5630 0.9967 NA
5 1 1 genReghData 1Im y ~ x 5 -0.2929 0.9978 NA
6 1 1 genRegData 1Im y 7 x 6 -1.4514 1.2381 NA
Of course, this can be combined with post.proc
as.data.frame(eg, value.fun=coef, post.proc=c(mean, sd))
#ij fun proc formula value (Intercept)_mean (Intercept)_sd
1 1 1 genRegData 1m y 7 x (all) -0.04609 0.7228
2 1 2 genRegData 1Imy ~ x + I(x"2) (all) -0.06337 1.3401
x_mean x_sd I(x"2)_mean I(x72)_sd

1 1.004 0.1114 NA NA
2 1.012 0.5677 -0.0007857 0.04935

13

