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1 Introduction

The shotGroups package adds functionality to the open source statistical environment R (R
Development Core Team, 2014a).1 It provides functions to read in, plot, statistically describe,
analyze, and compare shooting data with respect to group shape, precision, and accuracy. This
includes graphical methods, descriptive statistics, and inference tests using standard, but also
nonparametric and robust statistical techniques. The data can be imported from files produced
by OnTarget PC and OnTarget TDS (Block, 2014), or from custom data files in text format
with a similar structure.

The package includes limited support for the analysis of three-dimensional data (see sections
3.2.1, 3.2.2),

Use help(package="shotGroups") for a list of all functions and links to the detailed help
pages with information on options, usage and output.

2 Analyzing bullet hole data

Analyzing shot groups usually takes the following steps:

• Read in data (section 2.1)

• Perform either a comprehensive numerical as well as graphical analysis of a group’s shape,
location (accuracy), and spread (precision) with analyzeGroup() (section 2.2) . . .

• . . . or analyze these aspects of a group separately with groupShape() (section 2.3),
groupSpread() (section 2.4), groupLocation() (section 2.5)

• Numerically and visually compare different groups in terms of their shape, location
(accuracy), and spread (precision) with compareGroups() (section 2.6)

• Use additional utility functions (section 3) to individually explore different aspects of a
given group

Grubbs (1964b) and http://ballistipedia.com/ are good sources for statistical methods for
analyzing shot groups.

2.1 Reading in data

To import data into R, it should be saved as a text file with the following format:

• The file should have one row for each shot, and one column for each coordinate as well as
for any other variable such as distance to target, point-of-aim coordinates.

• Columns should be separated by commas, tabs or other whitespace. This type of text file
can be exported from OnTarget PC/TDS, or from a spreadsheet application like Excel or
Calc.

• The file needs a header in the first line giving the variable names, and should contain at
least the coordinates of points of impact, either with variable names Point.X, Point.Y

or just X, Y.

1For an introduction to R, see Dalgaard (2008), TryR (http://tryr.codeschool.com/) or Quick-R (http://

www.statmethods.net/).
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• For several analysis functions, the following additional variables are useful: Group (group
number), Distance (distance to target), and Aim.X, Aim.Y (point of aim). If these
variables are missing, default values are assumed with a warning.

• Note that R is case sensitive, so the aforementioned variable names must match exactly.

• If you have output files from OnTarget PC/TDS, you can read multiple files with
readDataOT1() (for OnTarget PC v1.*), or with readDataOT2() (for OnTarget PC v2.*
and OnTarget TDS v3.*).

• If you have other whitespace or comma-separated text files with the structure outlined
above, you can read multiple files with readDataMisc(). For three-dimensional data,
this function also recognizes variables Point.Z or Z and Aim.Z.

• If your data is saved in some other text file format, consult the help for read.table() or
the R import/export manual (R Development Core Team, 2014b).

library(shotGroups, verbose=FALSE) # load shotGroups package

## read text files and save to data frame

## not run, we later use data frame provided in package instead

DFgroups <- readDataMisc(fPath="c:/path/to/files",

fNames=c("series1.dat", "series2.dat"))

By default, OnTarget’s “Export Point Data” places the origin of the coordinate system in
the top-left corner. This can be taken into account by correctly setting the option xyTopLeft

in functions analyzeGroup() (section 2.2), compareGroups (section 2.6), and drawGroup()

(section 3.3). In OnTarget TDS, the orientation of the y-axis can be changed by checking the
box “Tools → Options → Options tab → Data Export → Invert Y-Axis on Export”. If groups
appear to be upside-down, xyTopLeft is the setting to change.

When analyzing different aspects of a group separately using groupShape() (section 2.3),
groupSpread() (section 2.4), and groupLocation() (section 2.5), the scatterplots will be
upside-down if the default option of OnTarget was used.

2.2 Performing a combined analysis

analyzeGroup(): This function is a convencience wrapper for the functions presented in
sections 2.3, 2.4, and 2.5. It analyzes a group’s shape, precision, and accuracy in one go, and
collects the results.

library(shotGroups, verbose=FALSE) # load shotGroups package

analyzeGroup(DFtalon, conversion="m2mm")

## output not shown, see following sections for results

2.3 Analyzing group shape

groupShape(): Assess (multivariate) normality, identify outliers and get a sense for the shape
of the bivariate distribution.
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Reported statistical parameters and tests:

• Correlation matrix including a robust estimate using the MCD method (from package
robustbase; Rousseeuw et al., 2014)

• Outlier identification: Either using squared robust Mahalanobis distances and adjusted
quantiles from the χ2-distribution, or using robust principal components analysis (PCA)
with options to tune the sensitivity (from package mvoutlier; Filzmoser & Gschwandtner,
2014)

• Shapiro-Wilk normality tests for the distribution of x- and y-coordinates. For more than
5000 observations, the drop-in Kolmogorov-Smirnov-test is reported instead.

• Energy test for bivariate normality of (x, y)-coordinates (from package energy; Rizzo &
Szekely, 2014)

Plots:

• Combined plot for multivariate outlier identification using squared robust Mahalanobis
distances and adjusted quantiles from the χ2-distribution (from package mvoutlier)

• χ2 Q-Q-plot for eyeballing multivariate normality of (x, y)-coordinates

• Heatmap of a nonparametric 2D-kernel density estimate for the (x, y)-coordinates (from
package KernSmooth; Wand, 2013) together with robust group center and robust error
ellipse

• Q-Q-plots for eyeballing normality of x- and y-coordinates

• Histogram of x- and y-coordinates including a fitted normal distribution as well as a
nonparametric kernel density estimate

library(shotGroups, verbose=FALSE) # load shotGroups package

groupShape(DFtalon, bandW=0.4, outlier="mcd")

$corXY

X Y

X 1.0000 -0.2931

Y -0.2931 1.0000

$corXYrob

X Y

X 1.00000 0.08223

Y 0.08223 1.00000

$Outliers

[1] 22 24 25 26 28 31 32 33 35 39 42 81 82 83 85 158

$ShapiroX

Shapiro-Wilk normality test

data: X
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W = 0.9471, p-value = 3.105e-06

$ShapiroY

Shapiro-Wilk normality test

data: Y

W = 0.9552, p-value = 1.769e-05

$multNorm

Energy test of multivariate normality: estimated parameters

data: x, sample size 180, dimension 2, replicates 1499

E-statistic = 3.74, p-value < 2.2e-16
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2.4 Analyzing group spread – precision

groupSpread(): Assess precision using empirical and parametric spread measures with con-
fidence intervals. Where possible, also use the MCD method for a robust estimate of the
covariance matrix (from package robustbase). Bootstrap confidence intervals are from package
boot (Canty & Ripley, 2013) with 1499 replications.

Reported statistical parameters and tests:

• (Robust) Standard deviations of x- and y-coordinates together with parametric and
bootstrap confidence intervals (in original measurement units, MOA, SMOA, milrad)

• (Robust) Covariance matrix of (x, y)-coordinates

• Empirical mean and median radius as well as estimated Rayleigh precision parameter σ,

estimated Rayleigh radial standard deviation RSD = σ
√

4−π
2 , and estimated Rayleigh

mean radius MR = σ
√

π
2 together with parametric and bootstrap confidence intervals for

σ, RSD, and MR (in original measurement units, MOA, SMOA, milrad)

• Maximum pairwise distance (center-to-center, = maximum spread, in original measurement
units, MOA, SMOA, milrad)

• Width and height of bounding box with diagonal and figure of merit as well as of the
(oriented) minimum-area bounding box (in original measurement units, MOA, SMOA,
milrad)

• Radius for the minimum enclosing circle (in original measurement units, MOA, SMOA,
milrad)

• Length of semi-major and semi-minor axis of the (robust) confidence ellipse (in original
measurement units, MOA, SMOA, milrad)

• Aspect ratio
√

κ (with condition index κ) and flattening 1 − 1√
κ

of the (robust) confidence

ellipse as well as the trace and determinant of the covariance matrix

• Estimate for the circular error probable CEP (see section 3.2.1; in original measurement
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units, MOA, SMOA, milrad)

Plots:

• Scatterplot of the (x, y)-coordinates together with group center, circle with average
distance to center, and (robust) confidence ellipse

• Scatterplot of the (x, y)-coordinates together with the bounding box, minimum-area
bounding box, minimum enclosing circle, and maximum group spread

• Histogram of distances to group center including a Rayleigh fit and a nonparametric
kernel density estimate

library(shotGroups, verbose=FALSE) # load shotGroups package

groupSpread(DFtalon, CEPtype=c("CorrNormal", "GrubbsPatnaik", "Rayleigh"),

level=0.95, bootCI="basic", dstTarget=10, conversion="m2mm")

$sdXY

X Y

unit 2.2746 2.7308

MOA 0.7819 0.9388

SMOA 0.8188 0.9831

milrad 0.2275 0.2731

$sdXci

sdX ( sdX ) sdX basic ( sdX basic )

unit 2.0614 2.5374 1.9601 2.6175

MOA 0.7087 0.8723 0.6738 0.8998

SMOA 0.7421 0.9134 0.7056 0.9423

milrad 0.2061 0.2537 0.1960 0.2618

$sdYci

sdY ( sdY ) sdY basic ( sdY basic )

unit 2.4749 3.0463 2.4415 3.070

MOA 0.8508 1.0472 0.8393 1.056

SMOA 0.8909 1.0967 0.8789 1.105

milrad 0.2475 0.3046 0.2442 0.307

$sdXYrob

X Y

unit 2.0721 2.3063

MOA 0.7123 0.7928

SMOA 0.7460 0.8303

milrad 0.2072 0.2306

$covXY

X Y

X 5.174 -1.820

Y -1.820 7.457

8



$covXYrob

X Y

X 4.2935 0.3929

Y 0.3929 5.3188

$distToCtr

mean median sigma RSD MR

unit 2.9486 2.6696 2.5078 1.6430 3.1431

MOA 1.0137 0.9178 0.8621 0.5648 1.0805

SMOA 1.0615 0.9611 0.9028 0.5915 1.1315

milrad 0.2949 0.2670 0.2508 0.1643 0.3143

$sigmaCI

sigma ( sigma ) sigma basic ( sigma basic )

unit 2.3433 2.7136 2.2419 2.8128

MOA 0.8056 0.9329 0.7707 0.9670

SMOA 0.8436 0.9769 0.8071 1.0126

milrad 0.2343 0.2714 0.2242 0.2813

$RSDci

RSD ( RSD ) RSD basic ( RSD basic )

unit 1.5352 1.7778 1.4688 1.8428

MOA 0.5278 0.6112 0.5049 0.6335

SMOA 0.5527 0.6400 0.5288 0.6634

milrad 0.1535 0.1778 0.1469 0.1843

$MRci

MR ( MR ) MR basic ( MR basic )

unit 2.9369 3.4010 2.810 3.5254

MOA 1.0096 1.1692 0.966 1.2119

SMOA 1.0573 1.2244 1.012 1.2691

milrad 0.2937 0.3401 0.281 0.3525

$maxPairDist

unit MOA SMOA milrad

16.819 5.782 6.055 1.682

$groupRect

width height FoM diag

unit 14.050 13.840 13.945 19.722

MOA 4.830 4.758 4.794 6.780

SMOA 5.058 4.982 5.020 7.100

milrad 1.405 1.384 1.394 1.972

$groupRectMin

width height FoM diag

9



unit 15.185 12.517 13.851 19.679

MOA 5.220 4.303 4.762 6.765

SMOA 5.466 4.506 4.986 7.084

milrad 1.518 1.252 1.385 1.968

$minCircleRad

unit MOA SMOA milrad

8.4095 2.8910 3.0274 0.8409

$confEll

semi-major semi-minor

unit 7.1814 5.0386

MOA 2.4688 1.7321

SMOA 2.5853 1.8139

milrad 0.7181 0.5039

$confEllRob

semi-major semi-minor

unit 5.8072 4.9512

MOA 1.9964 1.7021

SMOA 2.0906 1.7824

milrad 0.5807 0.4951

$confEllShape

aspectRatio flattening trace det

1.4253 0.2984 12.6311 35.2687

$confEllShapeRob

aspectRatio flattening trace det

1.1729 0.1474 9.5585 22.2700

$CEP

CorrNormal GrubbsPatnaik Rayleigh

unit 6.2469 6.2722 6.1385

MOA 2.1475 2.1562 2.1103

SMOA 2.2489 2.2580 2.2099

milrad 0.6247 0.6272 0.6139
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Histogram distances to center w/ kernel density estimate
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2.5 Analyzing group location – accuracy

groupLocation(): Assess accuracy of a group using empirical and parametric measures. Where
possible, also use the MCD method for a robust estimate of the covariance matrix (from package
robustbase). Bootstrap confidence intervals are from package boot with 1499 replications.

Reported statistical parameters and tests:

• (x, y)-offset of (robust) group center relative to point of aim

• Distance from (robust) group center to point of aim (in original measurement units, MOA,
SMOA, milrad)

• Hotelling’s T 2-test result for equality of the true group center with point of aim

• Parametric and bootstrap confidence intervals for the true center’s x- and y-coordinate

Plots:
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• Scatterplot of the (x, y)-coordinates together with (robust) group center.

library(shotGroups, verbose=FALSE) # load shotGroups package

groupLocation(DFtalon, dstTarget=10, conversion="m2cm",

level=0.95, plots=FALSE, bootCI="basic")

$ctr

X Y

0.8947 -0.3432

$ctrRob

X Y

0.4457 0.3610

$distPOA

unit MOA SMOA milrad

0.9583 3.2943 3.4498 0.9583

$distPOArob

unit MOA SMOA milrad

0.5735 1.9717 2.0648 0.5735

$Hotelling

Analysis of Variance Table

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

(Intercept) 1 0.156 13.9 2 178 2.5e-06

Residuals 179

$ctrXci

x ( x )

t 0.5602 1.229

basic 0.5559 1.222

$ctrYci

y ( y )

t -0.7448 0.05849

basic -0.7354 0.06922

2.6 Comparing groups

compareGroups(): Compare two or more groups with regard to their precision and accuracy
using empirical measures and statistical tests.

compareGroups() requires that the data includes a variable Series that identifies shot groups.
OnTarget PC/TDS’ variable Group identifies groups just within one file, Series should number

12



groups also across different original files. When you read in data with readDataOT1(), Series

is added automatically (same for readDataOT2() and readDataMisc()). For data from just
one file, you can otherwise copy variable Group to Series in a data frame called shots with

shots$Series <- shots$Group

Reported statistical parameters and tests:

• Group center offset from the respective point of aim

• Distances from group centers to their respective point of aim (in original measurement
units, MOA, SMOA, milrad)

• MANOVA result from testing equality of group center offset from the respective point of
aim

• Group correlation matrices for the (x, y)-coordinates

• Group standard deviations of the x- and y-coordinates including parametric 95%-confidence
intervals (in original measurement units, MOA, SMOA, milrad)

• Average distances from points to their respective group center (in original measurement
units, MOA, SMOA, milrad)

• Maximum pairwise distance between points for each group (center-to-center, = maximum
spread, in original measurement units, MOA, SMOA, milrad)

• Figure of merit FoM and diagonal of the (oriented) minimum-area bounding box for each
group (in original measurement units, MOA, SMOA, milrad)

• Radius of the minimum enclosing circle for each group (in original measurement units,
MOA, SMOA, milrad)

• Estimate for the 50% circular error probable (CEP) in each group (see section 3.2.1; in
original measurement units, MOA, SMOA, milrad)

• Ansari-Bradley-test results from testing equality of group variances for x- and y-coordinates
– when two groups are compared. With more than two groups, the Fligner-Killeen-test is
used

• Wilcoxon-Rank-Sum-test (= Mann-Whitney-U -test) result from testing equality of average
point distances to their respective group center – when two groups are compared. With
more than two groups, the Kruskal-Wallis-test is used

The Ansari-Bradley-, Fligner-Killeen-, Wilcoxon-Rank-Sum-, and Kruskal-Wallis-tests are
implemented as permutation tests using the coin package (Hothorn, Hornik, van de Wiel, &
Zeileis, 2008). The tests for two groups (Ansari-Bradley, Wilcoxon) use the exact permutation
distribution, the tests for more than two groups (Fligner-Killeen, Kruskal-Wallis) use the
approximate permutation distribution with 9999 random permutations.

Plots:

• Scatterplot showing all groups as well as their respective center and 50%-confidence ellipse

• Scatterplot showing all groups as well as their respective (minimum) bounding box and
maximum group spread

• Scatterplot showing all groups as well as their respective minimum enclosing circle and
circle with average distance to center

13



library(shotGroups, verbose=FALSE) # load shotGroups package

## only use first 3 groups of DFtalon

DFsub <- subset(DFtalon, Series %in% 1:3)

compareGroups(DFsub, conversion="m2mm")

$ctr

Series1 Series2 Series3

X 0.3475 3.856 -0.7985

Y -0.1910 -2.913 -1.6140

$distPOA

Series1 Series2 Series3

unit 0.39653 4.8329 1.8007

MOA 0.13632 1.6614 0.6190

SMOA 0.14275 1.7399 0.6483

milrad 0.03965 0.4833 0.1801

$MANOVA

Analysis of Variance Table

Df Wilks approx F num Df den Df Pr(>F)

(Intercept) 1 0.676 13.4 2 56 1.7e-05

Series 2 0.504 11.4 4 112 7.9e-08

Residuals 57

$corXY

$corXY$Series1

X Y

X 1.0000 -0.4632

Y -0.4632 1.0000

$corXY$Series2

X Y

X 1.0000 -0.2143

Y -0.2143 1.0000

$corXY$Series3

X Y

X 1.0000 -0.5081

Y -0.5081 1.0000

$sdXY

$sdXY$Series1

X Y
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unit 0.94037 1.4912

MOA 0.32327 0.5126

SMOA 0.33853 0.5368

milrad 0.09404 0.1491

$sdXY$Series2

X Y

unit 3.3539 4.220

MOA 1.1530 1.451

SMOA 1.2074 1.519

milrad 0.3354 0.422

$sdXY$Series3

X Y

unit 1.7549 1.6556

MOA 0.6033 0.5691

SMOA 0.6318 0.5960

milrad 0.1755 0.1656

$sdXYci

$sdXYci$Series1

sdX ( sdX ) sdY ( sdY )

unit 0.71514 1.3735 1.1340 2.1780

MOA 0.24585 0.4722 0.3898 0.7487

SMOA 0.25745 0.4945 0.4082 0.7841

milrad 0.07151 0.1373 0.1134 0.2178

$sdXYci$Series2

sdX ( sdX ) sdY ( sdY )

unit 2.5506 4.8986 3.2094 6.1638

MOA 0.8768 1.6840 1.1033 2.1190

SMOA 0.9182 1.7635 1.1554 2.2190

milrad 0.2551 0.4899 0.3209 0.6164

$sdXYci$Series3

sdX ( sdX ) sdY ( sdY )

unit 1.3346 2.5631 1.2591 2.4181

MOA 0.4588 0.8811 0.4328 0.8313

SMOA 0.4804 0.9227 0.4533 0.8705

milrad 0.1335 0.2563 0.1259 0.2418

$meanDistToCtr

Series1 Series2 Series3

unit 1.2526 4.8246 2.0961
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MOA 0.4306 1.6586 0.7206

SMOA 0.4509 1.7368 0.7546

milrad 0.1253 0.4825 0.2096

$maxPairDist

Series1 Series2 Series3

unit 7.6423 15.650 8.0773

MOA 2.6272 5.380 2.7768

SMOA 2.7512 5.634 2.9078

milrad 0.7642 1.565 0.8077

$bbFoM

Series1 Series2 Series3

unit 5.2415 12.170 5.7565

MOA 1.8019 4.184 1.9790

SMOA 1.8869 4.381 2.0724

milrad 0.5241 1.217 0.5757

$bbDiag

Series1 Series2 Series3

unit 7.7121 17.219 8.7324

MOA 2.6512 5.920 3.0020

SMOA 2.7764 6.199 3.1437

milrad 0.7712 1.722 0.8732

$minCircleRad

Series1 Series2 Series3

unit 3.8212 7.8248 4.0386

MOA 1.3136 2.6900 1.3884

SMOA 1.3756 2.8169 1.4539

milrad 0.3821 0.7825 0.4039

$CEP

Series1 Series2 Series3

unit 1.3724 4.4169 1.9169

MOA 0.4718 1.5184 0.6590

SMOA 0.4940 1.5901 0.6901

milrad 0.1372 0.4417 0.1917

$FlignerX

Approximative Fligner-Killeen Test

data: X by Series (1, 2, 3)

chi-squared = 18.23, p-value = 1e-04
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$FlignerY

Approximative Fligner-Killeen Test

data: Y by Series (1, 2, 3)

chi-squared = 21.42, p-value < 2.2e-16

$Kruskal

Approximative Kruskal-Wallis Test

data: dstCtr by Series (1, 2, 3)

chi-squared = 15.34, p-value = 3e-04
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3 Additional functionality

The shotGroups package also provides a number of utility functions that can be used separately
to . . .

• calculate individual descriptive precision measures (section 3.1)

• estimate hit probabilities: either get the region that is expected to contain a certain
fraction of shots, or get the estimated fraction of shots expected to be within a given
region (section 3.2)

• plot a group to scale on a target background and add precision indicators (section 3.3)

• simulate the ring count for a given group, bullet diameter, and target type (section 3.4)

• convert between absolute and angular size units MOA, SMOA, and milrad (section 3.5)

• try an analysis on collections of empirical data included in the package (section 3.6)

3.1 Descriptive precision measures

The following functions can be used to calculate precision measures that summarize some
feature of the group’s geometry. Section 3.3 illustrates how to add these precision indicators to
a plot of the group.

• getBoundingBox(): Calculates the vertices, length of diagonal, and figure of merit (FoM)
of the axis-aligned bounding box. This is the smallest rectangle that contains all points
(bullet hole centers), and has edges parallel to the x- and y-axes.

• getMinBBox(): Calculates the vertices, length of diagonal, and figure of merit (FoM) of
the minimum-area bounding box. This is the smallest, possibly oriented rectangle that
contains all points (bullet hole centers). Uses the rotating calipers algorithm (Toussaint,
1983).

• getMinCircle(): Calculates center and radius of the minimum enclosing circle. This is
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the smallest circle that contains all points (bullet hole centers). Uses the Skyum algorithm
(Skyum, 1991).

• getDistToCtr(): Calculates the distances of a set of points to their center. The mean or
median can then be taken as a precision measure.

• getMaxPairDist(): Calculates the maximum of all pairwise distances between points.

library(shotGroups, verbose=FALSE) # load shotGroups package

getBoundingBox(DFtalon) # axis-aligned bounding box

$pts

xleft ybottom xright ytop

-4.43 -4.37 9.62 9.47

$width

[1] 14.05

$height

[1] 13.84

$FoM

[1] 13.95

$diag

[1] 19.72

getMinBBox(DFtalon) # minimum-area bounding box

$pts

X Y

[1,] -2.447 11.428

[2,] -5.161 -3.512

[3,] 7.155 -5.750

[4,] 9.869 9.190

$width

[1] 15.18

$height

[1] 12.52

$FoM

[1] 13.85

$diag

[1] 19.68
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$angle

Y

79.7

getMinCircle(DFtalon) # minimum enclosing circle

$ctr

[1] 2.940 3.015

$rad

[1] 8.409

getMaxPairDist(DFtalon) # maximum pairwise distance

$d

[1] 16.82

$idx

[1] 169 39

3.2 Estimating hit probability

Beyond calculating decriptive/geometric precision measures, shotGroups also includes functions
that provide inferential statistics to estimate hit probabilities.

• Section 3.2.1 shows how to estimate the circular, spherical or elliptical region that is
expected to contain a given fraction of shots.

• Section 3.2.2 describes how to estimate the fraction of shots expected to be within a given
distance to the true group center.

• Section 3.2.3 covers the extrapolation of hit probabilities to different distances other than
the one a group was actually shot at.

3.2.1 Region for a given hit probability: CEP, SEP and confidence ellipse

The following functions estimate the region that is expected to contain a given fraction of shots
(bullet hole centers) under different assumptions. The given fraction of shots is the same as
the probability for one shot to lie within the calculated region. The functions can use the
MCD method for a robust estimate of the group center and covariance matrix (from package
robustbase). See section 3.2.4 for more references to relevant literature.

• getCEP(): Calculates estimates for the Circular Error Probable CEP. For three-dimensional
data, the Spherical Error Probable SEP is returned. The CEP/SEP estimate is the radius
of the circle/sphere around the true mean µ of the distribution that is expected to cover a
certain fraction of points. If systematic accuracy bias is ignored, µ is assumed to coincide
with the group center. If systematic accuracy bias is taken into account, µ is assumed to
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be the point of aim, possibly offset from the group center. The following estimates are
available:

– CorrNormal: If systematic accuracy bias is ignored, this estimate is based on the
closed-form solution for the distribution of radial error in the bivariate normal
distribution re-written in polar coordinates (radius and angle; Hoyt, 1947; Paris,
2009a, 2009b). Shot coordinates may be correlated and have unequal variances. If
systematic accuracy bias is taken into account, package CompQuadForm (Duchesne &
Lafaye de Micheaux, 2010) is used to calculate the cdf of radial error using numerical
integration of the multivariate normal distribution over an offset disc (DiDonato &
Jarnagin, 1961a; Evans, Govindarajulu, & Barthoulot, 1985) or sphere (DiDonato,
1988). The quantile function uses numerical root finding to get the inverse cdf. The
CorrNormal estimate is available for all probability levels and generalizes to three
dimensions.

– GrubbsPearson: The Grubbs-Pearson estimate (Grubbs, 1964a) is based on the
Pearson three-moment central χ2-approximation (Imhof, 1961; Pearson, 1959) of
the cumulative distribution function of radial error in bivariate normal variables.
Shot coordinates may be correlated and have unequal variances. The eigenvalues of
the covariance matrix of coordinates are used as variance estimates since they are
the variances of the principal components (the PCA-rotated = decorrelated data).
For probabilities ≥ 0.25, the approximation is very close to the true cumulative
distribution function (cdf) used in CorrNormal – but easier to calculate. For proba-
bilities < 0.25 and some distribution shapes, the approximation can diverge from
the true cdf. The Grubbs-Pearson estimate is available for all probability levels, and
generalizes to three dimensions.

– GrubbsPatnaik: The Grubbs-Patnaik estimate (Grubbs, 1964a) differs from the
Grubbs-Pearson estimate insofar as it is based on the Patnaik (1949) two-moment
central χ2-approximation of the true cumulative distribution function of radial error.
For probabilities < 0.5 and some distribution shapes, the approximation can diverge
from the true cdf.

– GrubbsLiu: The Grubbs-Liu estimate was not proposed by Grubbs but follows the
same principle as his original estimates. It differs from them insofar as it is based
on the Liu, Tang, and Zhang (2009) four-moment non-central χ2-approximation of
the true cumulative distribution function of radial error. For accuracy=FALSE, it is
identical to GrubbsPearson.

– Rayleigh: This estimate uses the Rayleigh distribution with a bias-corrected estimate
of its scale parameter σ (H. P. Singh, 1992). The Rayleigh distribution assumes
uncorrelated multivariate normal shot coordinates with equal variances σ2. Numerical
simulations suggest reasonable coverage for aspect ratios of the error ellipse not
exceeding 4, and for quantiles in the range of [0.5, 0.9]. The Rayleigh estimate is
available for all probability levels, and generalizes to three dimensions.

– Ethridge: The Ethridge estimate (Ethridge, 1983) is not based on the assumption
of multivariate normality of shot coordinates but uses a robust unbiased estimator
for the median radius (Hogg, 1967). The Ethridge estimate is also documented in
Puhek (1992).2 This estimate can only be reported for probability 0.5 but generalizes

2Note that the formula for the Hogg weighted location estimate is wrong in Puhek (1992); Tongue (1993);
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to three dimensions.

– RAND: The modified RAND R-234 estimate (RAND Corporation, 1952) is a weighted
sum of the square root of the eigenvalues of the covariance matrix, that is of the
standard deviations of the two principal components. The bias correction with
accuracy=TRUE is based on a cubic regression fit to tabulated data (Pesapane &
Irvine, 1977; Puhek, 1992). This estimate can only be reported for probability 0.5
and does not generalize to three dimensions.

• getConfEll(): Calculates the confidence ellipse for the true mean of the distribution
under the assumption of multivariate normality of shot coordinates. The coordinates may
be correlated and have unequal variances. The confidence ellipse gives the iso-probability
contour, the points on its rim all have the same Mahalanobis distance to the center. The
result also includes the ellipse based on a robust estimate for the covariance matrix of
the coordinates using the MCD algorithm (from package robustbase). The confidence
ellipse generalizes to three-dimensional data.

## circular error probable

getCEP(DFscar17, type=c("GrubbsPatnaik", "Rayleigh"), level=0.5,

dstTarget=100, conversion="yd2in")

$CEP

GrubbsPatnaik Rayleigh

unit 0.8415 0.8290

MOA 0.8036 0.7917

SMOA 0.8415 0.8290

milrad 0.2337 0.2303

$ellShape

aspectRatio flattening

1.4503 0.3105

$ctr

X Y

2.599 2.299

## confidence ellipse

getConfEll(DFscar17, level=0.95,

dstTarget=100, conversion="yd2in")

$ctr

X Y

2.599 2.299

$ctrRob

X Y

Wang, Yang, Jia, and Wang (2013); Wang, Yang, Yan, Wang, and Song (2014); Williams (1997).
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2.804 2.283

$cov

X Y

X 0.4492 -0.1695

Y -0.1695 0.6253

$covRob

X Y

X 0.03677 0.00779

Y 0.00779 1.97410

$size

semi-major semi-minor

unit 2.4900 1.7168

MOA 2.3778 1.6395

SMOA 2.4900 1.7168

milrad 0.6917 0.4769

$sizeRob

semi-major semi-minor

unit 4.099 0.5592

MOA 3.915 0.5340

SMOA 4.099 0.5592

milrad 1.139 0.1553

$shape

aspectRatio flattening trace det

1.4503 0.3105 1.0745 0.2522

$shapeRob

aspectRatio flattening trace det

7.33035 0.86358 2.01087 0.07253

$magFac

[1] 2.918

Function getRayParam() estimates the Rayleigh distribution’s radial precision parameter σ

together with its radial standard deviation RSD = σ
√

4−π
2 , and its mean radius MR = σ

√

π
2 ,

including parametric confidence intervals.

## Rayleigh parameter estimates with 95% confidence interval

getRayParam(DFscar17, level=0.95)

$sigma

sigma sigCIlo sigCIup
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0.7041 0.5608 1.0976

$RSD

RSD RSDciLo RSDciUp

0.4613 0.3674 0.7191

$MR

MR MRciLo MRciUp

0.8825 0.7029 1.3756

3.2.2 Hit probability for a given region

Given a circle or sphere with radius r around the true mean of the bullet hole distribution,
getHitProb() estimates the expected fraction of shots that has at most distance r to the group
center. The estimated fraction of shots is the same as the estimated probability for one shot to
lie in the circle with radius r. The probability can be calculated using the correlated bivariate
normal, Grubbs-Pearson χ2, Grubbs-Patnaik χ2, Grubbs-Liu χ2, and Rayleigh distribution as
explained in section 3.2.1.

In the example given below, we plug in the results for the 50%-CEP as calculated by getCEP()

in section 3.2.1 for r, and therefore expect a hit probability of 50%.

## for the Grubbs-Patnaik estimate

getHitProb(DFscar17, r=0.8414825, unit="in", accuracy=FALSE,

dstTarget=100, conversion="yd2in", type="GrubbsPatnaik")

GrubbsPatnaik

0.5

## for the Rayleigh estimate

getHitProb(DFscar17, r=0.8290354, unit="in", accuracy=FALSE,

dstTarget=100, conversion="yd2in", type="Rayleigh")

Rayleigh

0.5

Another calculation gives the estimated fraction of shots within a circle with radius 1 MOA.

getHitProb(DFscar17, r=1, unit="MOA", accuracy=FALSE,

dstTarget=100, conversion="yd2in", type="CorrNormal")

CorrNormal

0.6508
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3.2.3 Extrapolating CEP and confidence ellipse to different distances

Function getCEP() returns the radius of the circular error probable (CEP) in absolute and
angular size units, as does getConfEll() for the size of the confidence ellipse (section 3.2.1).
Since angular size measures can be converted back to absolute size for arbitrary distances
(3.5.1), it is possible to estimate the absolute size of the CEP and confidence ellipse for distances
different than the one a group was actually shot at.

Given an observed group shot at 100 yd, one might, for example, calculate the radius of the
circle at 300 m that is expected to contain 50% of the shots. This calculation is highly idealized
as it makes the assumption that all influences on precision scale linearly with distance. Under
most circumstances, this assumption is invalid. Generally, extrapolating beyond observed data
can often be misleading. However, projecting CEP to slightly different distances might still
give a sufficient approximation.

## 50% circular error probable for group shot at 100yd

CEP100yd <- getCEP(DFscar17, type=c("GrubbsPatnaik", "Rayleigh"),

level=0.5, dstTarget=100, conversion="yd2in")

## CEP in absolute and angular size units

CEP100yd$CEP

GrubbsPatnaik Rayleigh

unit 0.8415 0.8290

MOA 0.8036 0.7917

SMOA 0.8415 0.8290

milrad 0.2337 0.2303

## extract CEP in MOA

CEPmoa <- CEP100yd$CEP["MOA", c("GrubbsPatnaik", "Rayleigh")]

## 50% CEP in inch for the same group extrapolated to 100m

fromMOA(CEPmoa, dst=100, conversion="m2in")

GrubbsPatnaik Rayleigh

0.9203 0.9066

Given a group shot at 100 yd, one may be interested in the expected fraction of shots within a
circular region with radius r = 1 inch around the group center at the distance of 100 m (section
3.2.2). To this end, we first convert 1 inch at 100 m to MOA, and then supply the MOA value
to getHitProb().

## 1 inch at 100 m in MOA

MOA <- getMOA(1, dst=100, conversion="m2in")

getHitProb(DFscar17, r=MOA, unit="MOA", accuracy=FALSE,

dstTarget=100, conversion="yd2in", type="GrubbsPatnaik")
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GrubbsPatnaik

0.5545

3.2.4 Literature related to CEP

The literature on the circular error probable (CEP) is extensive and diverse: Applications
for CEP are found in areas such as target shooting, missile ballistics, or positional accuracy
of navigation and guidance systems like GPS. The statistical foundations in quadratic forms
of normal variables are important for analyzing the power of inference tests. The Hoyt and
Rayleigh distribution have applications in (wireless) signal processing.

The following list is by no means intended to be complete. Beware that the quality of the
cited articles is not uniformly high. The relevant publications may be roughly categorized into
different groups:

• Articles that develop a CEP estimator or the modification of one – e. g., RAND-234
(RAND Corporation, 1952), modified RAND-234 (Pesapane & Irvine, 1977), Grubbs
(1964a), Rayleigh (Culpepper, 1978; Saxena & Singh, 2005; H. P. Singh, 1992), Ethridge
(1983), Spall and Maryak (1992), correlated bivariate normal (DiDonato & Jarnagin,
1961a; Evans et al., 1985). Some articles focus on the confidence intervals for CEP
(DiDonato, 2007; Sathe, Joshi, & Nabar, 1991; Taub & Thomas, 1983b; Thomas, Crigler,
Gemmill, & Taub, 1973; Zhang & An, 2012).

• Articles or Master’s theses comparing the characteristics of CEP estimators in different
scenarios (Blischke & Halpin, 1966; Elder, 1986; Kamat, 1962; McMillan & McMillan,
2008; Moranda, 1959, 1960; Nelson, 1988; Puhek, 1992; Tongue, 1993; Taub & Thomas,
1983a; Wang, Jia, Yang, & Wang, 2013; Wang, Yang, et al., 2013; Wang et al., 2014;
Williams, 1997).

• Publications studying the correlated bivariate normal distribution re-written in polar
coordinates radius and angle (Chew & Boyce, 1962; Greenwalt & Shultz, 1962; Harter,
1960; Hoover, 1984; Hoyt, 1947). The distribution of the radius is known as the Hoyt
(1947) distribution. The closed form expression for its cumulative distribution function
has only recently been identified as the symmetric difference between two first-order
Marcum Q-functions (Marcum, 1950; Paris, 2009a, 2009b). The latter a special cases
of the non-central χ2-distribution (Nuttall, 1975). The statistical literature on coverage
problems in the multivariate normal distribution is reviewed in Guenther and Terragno
(1964).

• DiDonato and Jarnagin (1961a, 1961b, 1962a, 1962b); Evans et al. (1985) develop methods
to use the correlated bivariate normal distribution for CEP estimation when systematic
accuracy bias must be taken into account. This requires integrating the distribution
over a disc that is not centered on the true mean of the shot group but on the point
of aim. This so-called offset circle probability is the probability of a quadratic form of
a normal variable (Duchesne & Lafaye de Micheaux, 2010). The exact distribution of
quadratic forms is a weighted average of non-central χ2-distributions and difficult to
calculate without numerical tools. Therefore, the Patnaik (1949) two-moment central
χ2-approximation or the Pearson (Imhof, 1961; Pearson, 1959) three-moment central
χ2-approximation are often used. Recently, (Liu et al., 2009) proposed a four-moment
non-central χ2-approximation.
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• A number of articles present algorithms for the efficient numerical calculation of the Hoyt
cumulative distribution function (cdf), as well as for its inverse, the quantile function
(DiDonato, 2004, 2007; Pyati, 1993; Shnidman, 1995). Numerical algorithms to efficiently
and precisely calculate the distribution of quadratic forms of normal random variables
were proposed by Davies (1980); Farebrother (1984, 1990); Imhof (1961); Sheil and
O’Muircheartaigh (1977). A comparison and implementation can be found in Duchesne
and Lafaye de Micheaux (2010).

• The Spherical Error Probable is developed in DiDonato (1988); N. Singh (1962, 1970).

3.3 Plotting scaled bullet holes on a target background

Function drawGroup() serves to illustrate a group of bullet holes by drawing the holes to scale
on a target background, possibly adding the following features:

• The diagram can be drawn in original measurement units, in absolute size units m, cm,
mm, yd, ft, in, or in angular measures MOA, SMOA, milrad.

• A target background can be selected from a number of pre-defined circular target types
from different shooting federations (ISSF, DSB, BDS, BDMP, see help(targets)). Tar-
gets can also be plotted just by themselves using drawTarget().

• Precision indicators can be added to the plot individually:

– (Minimum-area) bounding box with diagonal

– Minimum enclosing circle

– Maximum group spread

– Circle with mean distance to group center

– (Robust) confidence ellipse

– Circular error probable CEP

• If a known target is supplied, the simulated ring value for each shot can be displayed (see
section 3.4)

drawGroup() invisibly returns all the information that is shown in the diagram converted to
the requested measurement unit. In the following example, the original measurement unit for
(x, y)-coordinates was inch, the group is here drawn converted to cm. The second example
shows how to plot a CEP estimator for multiple levels.

library(shotGroups, verbose=FALSE) # load shotGroups package

dg1 <- drawGroup(DFcciHV, xyTopLeft=TRUE, bb=TRUE, minCirc=TRUE,

maxSpread=TRUE, scaled=TRUE, dstTarget=100,

conversion="yd2in", caliber=5.56, unit="cm", alpha=0.5,

target=NA)

## minimum enclosing circle parameters in cm

dg1$minCirc

$ctr

[1] -0.4395 1.5890
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$rad

[1] 5.771

## show Grubbs CEP estimate for 50%, 90% and 95%

dg2 <- drawGroup(DFcciHV, xyTopLeft=TRUE, CEP="GrubbsPatnaik", scaled=TRUE,

level=c(0.5, 0.9, 0.95), dstTarget=100, conversion="yd2in",

caliber=5.56, unit="cm", alpha=0.5, target=NA)

## Grubbs CEP estimate for 50%, 90% and 95%

dg2$CEP

[1] 2.471 4.592 5.254
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Now draw the group with coordinates converted to MOA, add the minimum-area bounding
box, 50%-confidence ellipse, use the ISSF 100 yd target, and show the ring value for each shot
(see section 3.4).

library(shotGroups, verbose=FALSE) # load shotGroups package

dg3 <- drawGroup(DFcciHV, xyTopLeft=TRUE, bbMin=TRUE, bbDiag=TRUE,

confEll=TRUE, ringID=TRUE, level=0.5, scaled=TRUE,

dstTarget=100, conversion="yd2in", caliber=5.56, unit="MOA",

alpha=0.5, target="ISSF_100yd")

## simulated total ring count with maximum possible

dg3$ringCount

count max

351 400
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3.4 Simulate ring count

Given the (x, y)-coordinates of a group, bullet diameter, and target type with definition of ring
diameters, simRingCount() calculates a simulated ring count. This is an idealized calculation
as it assumes that bullet holes exactly have the bullet diameter, and that rings exactly have the
diameter given in the target definition. The count thus ignores the possibility of ragged bullet
holes as well as the physical width of the ring markings. The simulated ring count therefore
need not be equal to the calculated ring count from the corresponding physical target.

As an example, we simulate the ring count for the DFscar17 data from shooting a .308 rifle
(bullet diameter 7.62 mm) at 100 yd, using the ISSF target made for rifle shooting at 100 m.

library(shotGroups, verbose=FALSE) # load shotGroups package

## simulated ring count and maximum possible with given number of shots

simRingCount(DFscar17, target="ISSF_100m", caliber=7.62, unit="in")

$count

[1] 71

$max

[1] 100

$rings

[1] 7 6 7 7 7 7 7 7 8 8

Levels: 10 9 8 7 6 5 4 3 2 1 0

3.5 Conversion between absolute and angular size units

In addition to absolute length units, group size is often reported in terms of its angular
diameter. Angles can be measured equivalently either in degree or in radian. If x is the angular
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measurement in radian, and ϕ the angular measurement in degree for the same angle, then
x

2π = ϕ
360 such that conversion between degree and radian is given by x = 2π

360 · ϕ and ϕ = 360
2π · x

(figure 1).

Figure 1: Angle ϕ (degree) with corresponding arc length x (radian) in the unit circle.

The angular size of an object with absolute size s is its angular diameter at a given distance d.
This is the angle α subtended by the object with the line of sight centered on it (figure 2).

Figure 2: Angular diameter of object with absolute size s at distance to target d. Right triangle
formed by d and object of size s/2. s corresponds to angle α (degree) and arc length
x (radian).

The shotGroups package includes functions getMOA() and fromMOA() to convert from absolute
object size to the angular measures MOA, SMOA, milrad and vice versa. The functions need
the distance to target d, object sizes s and measurement units for d and s. The option type

controls which angular measure is returned:

• type="MOA": Convert to/from MOA = minute of angle = arcmin. The circle is divided
into 360 degrees, 1 MOA = 1/60 degree such that the circle has 360 · 60 = 21600 MOA.

• type="SMOA": Convert to/from SMOA = Shooter’s MOA = Inches Per Hundred Yards
IPHY. 1 inch at 100 yards = 1 SMOA.

• type="milrad": Convert to/from milrad = milliradian = 1/1000 radian. 1 radian is 1
unit of arc length on the unit circle which has a circumference of 2π. The circle is thus
divided into 2π · 1000 ≈ 6283.19 milrad.

Function getDistance() returns the distance to an object given its absolute size and angular
size in MOA, SMOA, or milrad.
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3.5.1 Calculating the angular diameter of an object

Figure 2 shows how the angle α subtended by an object of size s at distance d can be
calculated from the right triangle with hypotenuse d and cathetus s/2: tan

(

α
2

)

= s
2 · 1

d , therefore
α = 2 · arctan

(

s
2d

)

.

Assuming that the argument for tan(·) and the result from arctan(·) are in radian, and that
distance to target d and object size s are measured in the same unit, this leads to the following
formulas for calculating α in MOA, SMOA and x in milrad based on d and s:

• Angle α in MOA: α = 60 · 360
2π · 2 · arctan

(

s
2d

)

= 21600
π · arctan

(

s
2d

)

• Angle α in SMOA: By definition, size s = 1 inch at d = 100 yards (= 3600 inch) is 1
SMOA.

Conversion factors to/from MOA are 21600
π · arctan

(

1
2·3600

)

≈ 0.95493 (fairly close to

3/π), and π
21600 · 1

arctan(1/7200) ≈ 1.04720 (fairly close to π/3).

α = π
21600 · 1

arctan(1/7200) · 21600
π · arctan

(

s
2d

)

= 1
arctan(1/7200) · arctan

(

s
2d

)

• Arc length x in milrad: x = 1000 · 2 · arctan
(

s
2d

)

= 2000 · arctan
(

s
2d

)

.

Conversion factors to/from MOA are 21600
2000π ≈ 3.43775 and 2000π

21600 ≈ 0.29089.

## convert object sizes in cm to MOA, distance in m

getMOA(c(1, 2, 10), dst=100, conversion="m2cm", type="MOA")

[1] 0.3438 0.6875 3.4377

Likewise, absolute object size s can be calculated from angular size and distance to target d:

• From angle α in MOA: s = 2 · d · tan
(

(2π/360)(α/60)
2

)

= 2 · d · tan
(

α · π
21600

)

• From angle α in SMOA: s = 21600
π · arctan

(

1
7200

)

· 2 · d · tan
(

α · π
21600

)

• From arc length x in milrad: s = 2 · d · tan
(

x/1000
2

)

= 2 · d · tan(x · 0.0005)

## convert from SMOA to object sizes in inch, distance in yard

fromMOA(c(0.5, 1, 2), dst=100, conversion="yd2in", type="SMOA")

[1] 0.5 1.0 2.0

## convert from object sizes in mm to milrad, distance in m

fromMOA(c(1, 10, 20), dst=100, conversion="m2mm", type="milrad")

[1] 100 1000 2000

Conversely, distance to target d can be calculated from absolute object size s and angular
size:

• From angle α in MOA: d = s
2 · 1

tan(α·π/21600)

• From angle α in SMOA: d = s
2 · 1

tan(α·arctan(1/7200))
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• From arc length x in milrad: d = s
2 · 1

tan(x·0.0005)

## get distance in yard from object size in inch and angular size in MOA

getDistance(2, angular=5, conversion="yd2in", type="MOA")

[1] 38.2

## get distance in m from object size in mm and angular size in milrad

getDistance(2, angular=0.5, conversion="m2mm", type="milrad")

[1] 4

3.5.2 Less accurate calculation of angular size

Sometimes, a slightly different angular size is reported as corresponding to absolute size s at
distance d: This is the angle α′ subtended by the object if it “sits” on the line of sight (figure
3). α′ can be calculated from the right triangle with hypotenuse d and cathetus s: tan(α′) = s

d ,
therefore α′ = arctan( s

d).

Figure 3: Object “sits” on line of sight: right triangle formed by distance to target d and object
of size s. s corresponds to angle α′ (degree) and arc length x′ (radian).

If size s is small compared to distance d, the difference between the actual angular diameter α
and approximate angular size α′ is negligible, but it becomes noticeable once s gets bigger in
relation to d (figure 4).

3.6 Included data sets

The shotGroups package includes a number of empirical data sets with shooting results:

• DF300BLK: One group of shooting a Noveske AR-15 rifle in 300BLK at 100 yd with factory
ammunition (20 observations)3

• DF300BLKhl: Three groups of shooting a Noveske AR-15 rifle in 300BLK at 100 yd with
handloaded ammunition (60 observations, see footnote 3)

• DFcciHV: Two groups of shooting a PWS T3 rifle in .22LR at 100 yd (40 observations, see
footnote 3)

3Thanks: David Bookstaber http://ballistipedia.com/
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Figure 4: Comparison between actual angular diameter α (red) and the approximate angular
size α′ (blue) as well as between arc lengths x (red) and x′ (blue) corresponding to s
at distance d.

• DFcm: Several groups of shooting a 9x19mm pistol at 25 m (487 observations)

• DFtalon: Several groups of shooting a Talon SS air rifle at 10 m (180 observations)4

• DFsavage: Several groups of shooting a Savage 12 FT/R rifle in .308 Win at distances
from 100 to 300 m (180 observations, see footnote 4)

• DFscar17: One group of shooting an FN SCAR 17 rifle in .308 Win at 100 yd (10
observations, see footnote 3)

4 TODO

• CEP parametric/bootstrap CIs

• Human-readable output from functions compareGroups(), groupLocation(), groupShape(),
groupSpread() by using print() methods

• Function which accepts extreme order statistics (maximum spread) to allow inference for
Rayleigh parameters σ, RSD, MR (Taylor & Grubbs, 1975; Taylor, 1977)

• Add formulas for calculated statistics to this vignette

• Consider platykurtic distribution type that allows for more near misses than normal
distribution; spatial Poisson process

• Allow dates be associated with group data to track accuracy and precision performance
over time

• Allow 3D data where applicable
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