Worked Example: Logistic Regression

Jack Baker

In this example we use the package to infer the bias and coefficients in a logistic regression model using stochastic gradient Langevin Dynamics with control variates. We assume we have data \(\mathbf x_1, \dots, \mathbf x_N\) and response variables \(y_1, \dots, y_N\) with likelihood \[ p(\mathbf X, \mathbf y | \beta, \beta_0 ) = \prod_{i=1}^N \left[ \frac{1}{1+e^{-\beta_0 + \mathbf x_i \beta}} \right]^{y_i} \left[ 1 - \frac{1}{1+e^{-\beta_0 + \mathbf x_i \beta}} \right]^{1-y_i} \]

First let’s load in the data, we will use the cover type dataset commonly used to benchmark classification models. We use the dataset from LIBSVM, which transforms the problem from multiclass to binary.

library(sgmcmc)
# Load data from package
data("covertype")

First we’ll remove about 10000 observations from the original dataset to form a test set, this will be used to check the validity of the algorithm. Then we’ll separate out the response variable y and the explanatory variables X. The response variable is the first column in the dataset.

testObservations = sample(nrow(covertype), 10^4)
testSet = covertype[testObservations,]
X = covertype[-c(testObservations),2:ncol(covertype)]
y = covertype[-c(testObservations),1]
dataset = list( "X" = X, "y" = y )

In the last line we defined the dataset as it will be input to the relevant sgmcmc function. A lot of the inputs to functions in sgmcmc are defined as lists. This improves flexibility by enabling models to be specified with multiple parameters, datasets and allows separate tuning constants to be set for each parameter. We assume that observations are always accessed on the first dimension of each object, i.e. the point \(x_i\) is located at X[i,] rather than X[,i]. Similarly the observation \(i\) from a 3d object Y would be located at Y[i,,].

Now we want to set the starting values and shapes for our parameters. We can see from the likelihood equation we have two parameters, the bias \(\beta_0\) and the coefficients \(\beta\). We’ll just set these to start from zero. Similar to the data, these are just a list with the relevant names.

# Get the dimension of X, needed to set shape of params$beta
d = ncol(dataset$X)
params = list( "bias" = 0, "beta" = matrix( rep( 0, d ), nrow = d ) )

Now we’ll define the functions logLik and logPrior. It should now become clear why the list names come in handy. The function logLik should take two parameters as input: params and dataset. These parameters will be lists with the same names as those you defined for params and dataset earlier. There is one difference though, the objects in the lists will have automatically been converted to TensorFlow objects for you. The params list will contain TensorFlow tensor variables; the dataset list will contain TensorFlow placeholders. The logLik function should take these lists as input and return the value of the log likelihood as a tensor at point params given data dataset. The function should do this using TensorFlow operations, as this allows the gradient to be automatically calculated; it also allows the wide range of distribution objects as well as matrix operations that TensorFlow provides to be taken advantage of. A tutorial of TensorFlow for R is beyond the scope of this article, for more details we refer the reader to the website of TensorFlow for R. With this in place we can define the logLik function as follows

logLik = function(params, dataset) {
    yEstimated = 1 / (1 + tf$exp( - tf$squeeze(params$bias + tf$matmul(dataset$X, params$beta))))
    logLik = tf$reduce_sum(dataset$y * tf$log(yEstimated) + (1 - dataset$y) * tf$log(1 - yEstimated))
    return(logLik)
}

Next we want to define our log-prior density, we assume each \(\beta_i\) has an independent Laplace prior distribution, with location 0 and scale 1, so that \(\log p( \beta ) = - \sum_{i=0}^d | \beta_i|\). Similar to the log-likelihood function, the log-prior density is defined as a function with input params. In our case the definition is

logPrior = function(params) {
    logPrior = - (tf$reduce_sum(tf$abs(params$beta)) + tf$reduce_sum(tf$abs(params$bias)))
    return(logPrior)
}

Finally, we’ll set the stepsize parameters for the algorithm, along with the minibatch size. sgldcv relies on two stepsize parameters, one for the optimization step and one for the MCMC step. To allow stepsizes to be set for different parameters, the form of the stepsizes for the MCMC will be lists with names corresponding to each of the names in params. The optimization step will just be one value as the stepsize is automatically tuned

stepsizesMCMC = list("beta" = 2e-5, "bias" = 2e-5)
stepsizesOptimization = 1e-1

Alternatively, we can simply use the shortcut stepsizesMCMC = 2e-5 which would set the stepsizes for each parameter to 2e-5. The optimization step is performed using the TensorFlow AdamOptimizer.

Now we can run our SGLD-CV algorithm using the function sgldcv from the sgmcmc package, which returns a list of Markov chains for each parameter as output. Use the argument verbose = FALSE to hide the output of the function. As the dataset size is quite large, we’ll change the minibatchSize from its default 0.01 * N to 500. To allow a small 1000 iteration burn-in we’ll set the number of iterations to be 11000

output = sgldcv(logLik, dataset, params, stepsizesMCMC, stepsizesOptimization, logPrior = logPrior, minibatchSize = 500, nIters = 11000 ) 
## 
## Finding initial MAP estimates...
## Iteration: 100       Log posterior estimate: -318934.15625
## Iteration: 200       Log posterior estimate: -311100.21875
## Iteration: 300       Log posterior estimate: -304136.59375
## Iteration: 400       Log posterior estimate: -288272.03125
## Iteration: 500       Log posterior estimate: -278034.9375
## Iteration: 600       Log posterior estimate: -323016.59375
## Iteration: 700       Log posterior estimate: -283915.875
## Iteration: 800       Log posterior estimate: -315919.34375
## Iteration: 900       Log posterior estimate: -315031.375
## Iteration: 1000      Log posterior estimate: -288968.625
## Iteration: 1100      Log posterior estimate: -291185.53125
## Iteration: 1200      Log posterior estimate: -287866.09375
## Iteration: 1300      Log posterior estimate: -293647.34375
## Iteration: 1400      Log posterior estimate: -310071.84375
## Iteration: 1500      Log posterior estimate: -291897.6875
## Iteration: 1600      Log posterior estimate: -300818.34375
## Iteration: 1700      Log posterior estimate: -305018.8125
## Iteration: 1800      Log posterior estimate: -287657.65625
## Iteration: 1900      Log posterior estimate: -278235.75
## Iteration: 2000      Log posterior estimate: -303246.3125
## Iteration: 2100      Log posterior estimate: -281668.8125
## Iteration: 2200      Log posterior estimate: -308920
## Iteration: 2300      Log posterior estimate: -290777.21875
## Iteration: 2400      Log posterior estimate: -289024
## Iteration: 2500      Log posterior estimate: -290047.40625
## Iteration: 2600      Log posterior estimate: -291038.5625
## Iteration: 2700      Log posterior estimate: -292185.90625
## Iteration: 2800      Log posterior estimate: -295259.53125
## Iteration: 2900      Log posterior estimate: -294429.59375
## Iteration: 3000      Log posterior estimate: -278330.78125
## Iteration: 3100      Log posterior estimate: -282764.84375
## Iteration: 3200      Log posterior estimate: -310849.28125
## Iteration: 3300      Log posterior estimate: -310186.90625
## Iteration: 3400      Log posterior estimate: -298926.96875
## Iteration: 3500      Log posterior estimate: -303079.125
## Iteration: 3600      Log posterior estimate: -294008.40625
## Iteration: 3700      Log posterior estimate: -312734.9375
## Iteration: 3800      Log posterior estimate: -293633.59375
## Iteration: 3900      Log posterior estimate: -276008.75
## Iteration: 4000      Log posterior estimate: -283248.15625
## Iteration: 4100      Log posterior estimate: -289258.1875
## Iteration: 4200      Log posterior estimate: -289803.8125
## Iteration: 4300      Log posterior estimate: -305144.0625
## Iteration: 4400      Log posterior estimate: -292219.1875
## Iteration: 4500      Log posterior estimate: -296130.59375
## Iteration: 4600      Log posterior estimate: -294772.84375
## Iteration: 4700      Log posterior estimate: -298234.53125
## Iteration: 4800      Log posterior estimate: -287088.6875
## Iteration: 4900      Log posterior estimate: -310976.40625
## Iteration: 5000      Log posterior estimate: -300378.5
## Iteration: 5100      Log posterior estimate: -307007.65625
## Iteration: 5200      Log posterior estimate: -312647.78125
## Iteration: 5300      Log posterior estimate: -304682.5
## Iteration: 5400      Log posterior estimate: -280271.6875
## Iteration: 5500      Log posterior estimate: -307953.4375
## Iteration: 5600      Log posterior estimate: -319640.40625
## Iteration: 5700      Log posterior estimate: -289323.59375
## Iteration: 5800      Log posterior estimate: -312788.75
## Iteration: 5900      Log posterior estimate: -284317.3125
## Iteration: 6000      Log posterior estimate: -302825.9375
## Iteration: 6100      Log posterior estimate: -287940.21875
## Iteration: 6200      Log posterior estimate: -276601.59375
## Iteration: 6300      Log posterior estimate: -307636.375
## Iteration: 6400      Log posterior estimate: -291986.96875
## Iteration: 6500      Log posterior estimate: -305340.8125
## Iteration: 6600      Log posterior estimate: -302332.21875
## Iteration: 6700      Log posterior estimate: -299466
## Iteration: 6800      Log posterior estimate: -298791.125
## Iteration: 6900      Log posterior estimate: -297779.21875
## Iteration: 7000      Log posterior estimate: -289950.53125
## Iteration: 7100      Log posterior estimate: -330373.25
## Iteration: 7200      Log posterior estimate: -282641.34375
## Iteration: 7300      Log posterior estimate: -283827.9375
## Iteration: 7400      Log posterior estimate: -289006.65625
## Iteration: 7500      Log posterior estimate: -282916.34375
## Iteration: 7600      Log posterior estimate: -295792.21875
## Iteration: 7700      Log posterior estimate: -283200.34375
## Iteration: 7800      Log posterior estimate: -283077.9375
## Iteration: 7900      Log posterior estimate: -281539.96875
## Iteration: 8000      Log posterior estimate: -297851.03125
## Iteration: 8100      Log posterior estimate: -295451
## Iteration: 8200      Log posterior estimate: -283193.9375
## Iteration: 8300      Log posterior estimate: -285842.03125
## Iteration: 8400      Log posterior estimate: -293102.65625
## Iteration: 8500      Log posterior estimate: -288639.90625
## Iteration: 8600      Log posterior estimate: -284451.9375
## Iteration: 8700      Log posterior estimate: -291608.84375
## Iteration: 8800      Log posterior estimate: -291328.71875
## Iteration: 8900      Log posterior estimate: -311649.3125
## Iteration: 9000      Log posterior estimate: -302892.8125
## Iteration: 9100      Log posterior estimate: -290860.4375
## Iteration: 9200      Log posterior estimate: -285636.34375
## Iteration: 9300      Log posterior estimate: -295014.34375
## Iteration: 9400      Log posterior estimate: -299942.1875
## Iteration: 9500      Log posterior estimate: -295133.34375
## Iteration: 9600      Log posterior estimate: -308232.9375
## Iteration: 9700      Log posterior estimate: -278838.59375
## Iteration: 9800      Log posterior estimate: -282269.53125
## Iteration: 9900      Log posterior estimate: -304174.8125
## Iteration: 10000     Log posterior estimate: -309968.5
## 
## Sampling using SGMCMC...
## Iteration: 100       Log posterior estimate: -290171.03125
## Iteration: 200       Log posterior estimate: -279223.8125
## Iteration: 300       Log posterior estimate: -278308.4375
## Iteration: 400       Log posterior estimate: -279897.9375
## Iteration: 500       Log posterior estimate: -283376.3125
## Iteration: 600       Log posterior estimate: -317401.28125
## Iteration: 700       Log posterior estimate: -295789.21875
## Iteration: 800       Log posterior estimate: -310984.4375
## Iteration: 900       Log posterior estimate: -279781.84375
## Iteration: 1000      Log posterior estimate: -299323.03125
## Iteration: 1100      Log posterior estimate: -298043.65625
## Iteration: 1200      Log posterior estimate: -289478.84375
## Iteration: 1300      Log posterior estimate: -305483.5625
## Iteration: 1400      Log posterior estimate: -287282.75
## Iteration: 1500      Log posterior estimate: -282191.40625
## Iteration: 1600      Log posterior estimate: -309234.09375
## Iteration: 1700      Log posterior estimate: -281940.0625
## Iteration: 1800      Log posterior estimate: -303067.40625
## Iteration: 1900      Log posterior estimate: -299208.5625
## Iteration: 2000      Log posterior estimate: -283990.34375
## Iteration: 2100      Log posterior estimate: -277591.9375
## Iteration: 2200      Log posterior estimate: -299869.28125
## Iteration: 2300      Log posterior estimate: -272720.03125
## Iteration: 2400      Log posterior estimate: -280149.03125
## Iteration: 2500      Log posterior estimate: -287280.03125
## Iteration: 2600      Log posterior estimate: -291755.59375
## Iteration: 2700      Log posterior estimate: -283403.4375
## Iteration: 2800      Log posterior estimate: -302196.125
## Iteration: 2900      Log posterior estimate: -292763.46875
## Iteration: 3000      Log posterior estimate: -281877.9375
## Iteration: 3100      Log posterior estimate: -333051.3125
## Iteration: 3200      Log posterior estimate: -298832.09375
## Iteration: 3300      Log posterior estimate: -288650.34375
## Iteration: 3400      Log posterior estimate: -289696.53125
## Iteration: 3500      Log posterior estimate: -286719.65625
## Iteration: 3600      Log posterior estimate: -300798.28125
## Iteration: 3700      Log posterior estimate: -297927.84375
## Iteration: 3800      Log posterior estimate: -291033.34375
## Iteration: 3900      Log posterior estimate: -275082.15625
## Iteration: 4000      Log posterior estimate: -286376.1875
## Iteration: 4100      Log posterior estimate: -324981.34375
## Iteration: 4200      Log posterior estimate: -279220.78125
## Iteration: 4300      Log posterior estimate: -282712.6875
## Iteration: 4400      Log posterior estimate: -268535.65625
## Iteration: 4500      Log posterior estimate: -290500.875
## Iteration: 4600      Log posterior estimate: -313894.1875
## Iteration: 4700      Log posterior estimate: -290789
## Iteration: 4800      Log posterior estimate: -266297.6875
## Iteration: 4900      Log posterior estimate: -311418.59375
## Iteration: 5000      Log posterior estimate: -305157.3125
## Iteration: 5100      Log posterior estimate: -310085.53125
## Iteration: 5200      Log posterior estimate: -294280.625
## Iteration: 5300      Log posterior estimate: -271685.03125
## Iteration: 5400      Log posterior estimate: -297813.25
## Iteration: 5500      Log posterior estimate: -278053.9375
## Iteration: 5600      Log posterior estimate: -289355.15625
## Iteration: 5700      Log posterior estimate: -309618.65625
## Iteration: 5800      Log posterior estimate: -298705.8125
## Iteration: 5900      Log posterior estimate: -286467.96875
## Iteration: 6000      Log posterior estimate: -332059.78125
## Iteration: 6100      Log posterior estimate: -294429.3125
## Iteration: 6200      Log posterior estimate: -294467.53125
## Iteration: 6300      Log posterior estimate: -283324.78125
## Iteration: 6400      Log posterior estimate: -300902.09375
## Iteration: 6500      Log posterior estimate: -284868.625
## Iteration: 6600      Log posterior estimate: -293198.96875
## Iteration: 6700      Log posterior estimate: -289145.625
## Iteration: 6800      Log posterior estimate: -295144.5625
## Iteration: 6900      Log posterior estimate: -267968.5
## Iteration: 7000      Log posterior estimate: -304658.15625
## Iteration: 7100      Log posterior estimate: -308917.3125
## Iteration: 7200      Log posterior estimate: -322541.1875
## Iteration: 7300      Log posterior estimate: -291500.15625
## Iteration: 7400      Log posterior estimate: -299093.03125
## Iteration: 7500      Log posterior estimate: -272092.375
## Iteration: 7600      Log posterior estimate: -278800.78125
## Iteration: 7700      Log posterior estimate: -286997.1875
## Iteration: 7800      Log posterior estimate: -284155.875
## Iteration: 7900      Log posterior estimate: -293022.46875
## Iteration: 8000      Log posterior estimate: -284036.3125
## Iteration: 8100      Log posterior estimate: -294387.4375
## Iteration: 8200      Log posterior estimate: -299493.6875
## Iteration: 8300      Log posterior estimate: -295624.5
## Iteration: 8400      Log posterior estimate: -283145.8125
## Iteration: 8500      Log posterior estimate: -311274.75
## Iteration: 8600      Log posterior estimate: -282711.8125
## Iteration: 8700      Log posterior estimate: -273210.59375
## Iteration: 8800      Log posterior estimate: -301488.28125
## Iteration: 8900      Log posterior estimate: -315557.84375
## Iteration: 9000      Log posterior estimate: -296773.5
## Iteration: 9100      Log posterior estimate: -295796.8125
## Iteration: 9200      Log posterior estimate: -321198.09375
## Iteration: 9300      Log posterior estimate: -315938.75
## Iteration: 9400      Log posterior estimate: -299486.5625
## Iteration: 9500      Log posterior estimate: -280255.4375
## Iteration: 9600      Log posterior estimate: -277771.90625
## Iteration: 9700      Log posterior estimate: -302288.46875
## Iteration: 9800      Log posterior estimate: -294178.75
## Iteration: 9900      Log posterior estimate: -285188.96875
## Iteration: 10000     Log posterior estimate: -299911.75
## Iteration: 10100     Log posterior estimate: -281869.3125
## Iteration: 10200     Log posterior estimate: -264595.375
## Iteration: 10300     Log posterior estimate: -270510.53125
## Iteration: 10400     Log posterior estimate: -295076.34375
## Iteration: 10500     Log posterior estimate: -300016.78125
## Iteration: 10600     Log posterior estimate: -285350.21875
## Iteration: 10700     Log posterior estimate: -279112.71875
## Iteration: 10800     Log posterior estimate: -291103.84375
## Iteration: 10900     Log posterior estimate: -288083.71875
## Iteration: 11000     Log posterior estimate: -336730.34375

To check the algorithm converged, we’ll plot the average log-predictive density of the data from our test set every 10 iterations. Let \[\hat \pi_i^{(j)} := \frac{1}{1 + \exp\left[-\beta_0^{(j)} - \mathbf x_i \beta^{(j)}\right]},\] here \(\hat \pi_i^{(j)}\) denotes the probability that the \(j^{\text{th}}\) iteration of our MCMC chain assigned to observation \(i\) is in our test set. Define our test set by \(T\), the average log-predictive density is given by \[A := \frac{1}{|T|} \sum_{y_i \in T} \left[ y_i \log \hat \pi_i^{(j)} + (1 - y_i) \log(1 - \hat \pi_i^{(j)}) \right]\]

To check convergence, we’ll plot the average log-predictive density every 10 iterations as follows

yTest = testSet[,1]
XTest = testSet[,2:ncol(testSet)]
# Remove burn-in
output$bias = output$bias[-c(1:1000)]
output$beta = output$beta[-c(1:1000),,]
iterations = seq(from = 1, to = 10^4, by = 10)
avLogPred = rep(0, length(iterations))
# Calculate log predictive every 10 iterations
for ( iter in 1:length(iterations) ) {
    j = iterations[iter]
    # Get parameters at iteration j
    beta0_j = output$bias[j]
    beta_j = output$beta[j,]
    for ( i in 1:length(yTest) ) {
        pihat_ij = 1 / (1 + exp(- beta0_j - sum(XTest[i,] * beta_j)))
        y_i = yTest[i]
        # Calculate log predictive at current test set point
        LogPred_curr = - (y_i * log(pihat_ij) + (1 - y_i) * log(1 - pihat_ij))
        avLogPred[iter] = avLogPred[iter] + 1 / length(yTest) * LogPred_curr
    }
}
library(ggplot2)
plotFrame = data.frame("iteration" = iterations, "logPredictive" = avLogPred)
ggplot(plotFrame, aes(x = iteration, y = logPredictive)) +
    geom_line() +
    ylab("Average log predictive of test set")