Non-Fuclidean distances in secr 2.9
Murray Efford
2014-11-19

Contents

1
2. Scale of movement o depends on locations of both home-range centre and detector

3. Continuously varying o using gdistance L L.
4. Density-dependent o e
5. Habitat model for connectivity oo

And the winner is... e

References

© 00 00 00 g O Ut kW NN = =

Appendix. Implementation in secr of Sutherland et al. (2014) non-Euclidean simulation.

Introduction

Spatially explicit capture—recapture (SECR) entails a distance-dependent observation model: the expected
number of detections (\) or the probability of detection (g) declines with increasing distance between a
detector and the home-range centre of a focal animal. ‘Distance’ here, usually and by default, means the
Euclidean distance d = \/(z1 — 22)2 + (y1 — y2). The observation model can be customised by replacing the
Euclidean distance with one that ‘warps’ space in some ecologically meaningful way. There are innumerable
ways to do this. One is the a non-Euclidean ‘ecological distance’ envisioned by Royle et al. (2013).

This document shows how to define and use non-Euclidean distances in secr 2.9. An appendix gives example
secr code for the non-Euclidean SECR analysis of Sutherland et al. (2014).

Basics

Non-Euclidean distances are defined in secr by setting the ‘userdist’ component of the ‘details’ argument of
secr.fit. The options are to (i) provide a static K x M matrix containing the distances between the K
detectors and each of the M mask points, or (ii) to provide a function that computes the distances dynamically.
We focus on the second option because it is more flexible and allows the estimation of a parameter for the
distance model.

The userdist function

The userdist function takes three arguments. The first two are simply 2-column matrices with the coordinates
of the detectors and animal locations (mask points) respectively. The third is a habitat mask (this may be
the same as xy2). The function has this form:

mydistfn <- function (xyl, xy2, mask) {
if (missing(xyl)) return(charactervector)

distmat ## nrow(xyl) x nrow(xy2) matrix

}

Computation of the distances is entirely under the control of the user — here we indicate that by ‘...". The
calculations may use cell-specific values of two ‘real’ parameters ‘D’ and ‘noneuc’ that can be provided by
secr.fit as covariates of the mask. ‘D’ is the usual cell-specific expected density in animals per hectare.
‘noneuc’ is a special cell-specific ‘real’ parameter used only here: it means whatever the user wants it to mean.

Whether ‘noneuc’, ‘D’ or other mask covariates are needed by mydistfn is indicated by the character vector
returned by mydistfn when it is called with no arguments. Thus, charactervector may be either a zero-length
character vector or a vector of one or more parameter names (“noneuc”, “D”, ¢(“noneuc”; “D”)).

‘noneuc’ has its own link scale (default ‘log’) on which it may be modelled as a linear function of any
of the predictors available for density (x, y, x2, y2, xy, session, Session, g, or any mask covariate — see
secr-densitysurfaces.pdf). It may also, in principle, be modelled using regression splines (Borchers and Kidney
in prep.), but this is untested. When the model is fitted by secr.fit, the beta parameters for the ‘noneuc’
submodel are estimated along with all the others. To make noneuc available to userdist, ensure that it
appears in the ‘model’ argument. Use the formula noneuc ~ 1 if noneuc is constant.

The function may compute least-cost paths via intervening mask cells using the powerful igraph package
(Csardi and Nepusz 2006). This is most easily accessed with Jacob van Etten’s package gdistance, which in
turn uses the RasterLayer S4 object class from the package raster. To facilitate this we include code in secr
to treat the ‘mask’ S3 class as a virtual S4 class, and provide a method for the function ‘raster’ to convert a
mask to a RasterLayer.

If the function generates any bad distances (negative, infinite or missing) these will be replaced by 1el0, with
a warning.

Examples

We use annotated examples to show how the userdist function may be used to define different models. For
illustration we use the Orongorongo Valley brushtail possum dataset from February 1996 (see OVpossum in
secr-manual.pdf). The data are captures of possums over 5 nights in single-catch traps at 30-m spacing. We
start by extracting the data, defining a habitat mask, and fitting a null model:

library(secr)

library(maptools)

options (digits = 4)

setwd(system.file("extdata", package = "secr"))

ovforest <- readShapeSpatial("OVforest") ## forest polygons
leftbank <- read.table("leftbank.txt")[21:195,] ## for plotting only
ovposs <- 0VpossumCH[[1]] ## February 1996
ovmask <- make.mask(traps(ovposs), buffer = 120, type = "trapbuffer",

poly = ovforest[1:2,], spacing = 7.5, keep.poly = FALSE)

http://www.otago.ac.nz/density/pdfs/secr-densitysurfaces.pdf
http://www.otago.ac.nz/density/pdfs/secr-manual.pdf

fit0 <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE)

The distance functions below are not specific to a particular study: each may be applied to other datasets.

1. Scale of movement ¢ depends on location of home-range centre

In this simple case we use the non-Euclidean distance function to model continuous spatial variation in o.
This cannot be done directly in secr because sigma is treated as part of the detection model, which does not
allow for continuous spatial variation in its parameters. Instead we model spatial variation in ‘noneuc’ as a
stand-in for ‘sigma’

fnl <- function (xyl, xy2, mask) {
if (missing(xyl)) return("noneuc")
sig <- covariates(mask)$noneuc ## sigma(x,y) at mask points
sig <- matrix(sig, byrow = TRUE, nrow = nrow(xyl), ncol = nrow(xy2))
euc <- edist(xyl, xy2)
euc / sig
}
fitl <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,
details = list(userdist = fnl), model = noneuc ~ x + y + x2 + y2 + xy,
fixed = list(sigma = 1))

predict (fit1)
link estimate SE.estimate 1cl ucl
D log 14.6821 1.091461 12.69393 16.9816

lambda0 log 0.1085 0.009626 0.09123 0.1291
noneuc log 25.9275 1.302266 23.49821 28.6080

We can take the values of noneuc directly from the mask covariates because we know xy2 and mask are the
same points. We may sometimes want to use fnl in context where this does not hold, e.g., when simulating
data.

fnla <- function (xyl, xy2, mask) {
if (missing(xy1)) return('"noneuc"
xyl <- addCovariates(xyl, mask)
sig <- covariates(xyl)$noneuc ## sigma(x,y) at detectors
sig <- matrix(sig, nrow = nrow(xyl), ncol = nrow(xy2))
euc <- edist(xyl, xy2)
euc / sig
}
fitla <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,
details = list(userdist = fnla), model = noneuc ~ x + y + x2 + y2 + xy,
fixed = list(sigma = 1))

predict(fitla)
link estimate SE.estimate 1cl ucl
D log 14.4597 1.029559 12.57845 16.6222

lambda0 log 0.1076 0.009525 0.09047 0.1279
noneuc log 26.1291 1.420082 23.49071 29.0637

We can verify the use of ‘noneuc’ in fnl by using it to re-fit the null model:

fitO0a <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,
details = list(userdist = fnl), model = noneuc ~ 1,
fixed = list(sigma = 1))

predict (£it0)
link estimate SE.estimate 1cl ucl
D log 14.3775 1.002926 12.5423 16.4812

lambda0 log 0.1015 0.008947 0.0854 0.1206
sigma log 27.3772 0.973034 25.5356 29.3517

predict(fitOa)
link estimate SE.estimate 1cl ucl
D log 14.3775 1.002926 12.5423 16.4812

lambda0 log 0.1015 0.008947 0.0854 0.1206
noneuc log 27.3772 0.973031 25.5356 29.3517

Here, fitting noneuc as a constant while holding sigma fixed is exactly the same as fitting sigma alone.

2. Scale of movement o depends on locations of both home-range centre and detector

Hypothetically, detections at xy1 of an animal centred at xy2 may depend on both locations (this may also be
seen as a approximation to the following case of continuous variation along the path between xyl and xy2).
To model this we need to retrieve the value of noneuc for both locations. Within fn2 we use addCovariates
to extract the covariates of the mask (and hence noneuc) for each point in xyl and xy2. The call to secr.fit
is identical except that it uses fn2 instead of fnl:

fn2 <- function (xyl, xy2, mask) {
if (missing(xyl)) return("noneuc")
xyl <- addCovariates(xyl, mask)
Xy2 <- addCovariates(xy2, mask)
sigl <- covariates(xyl)$noneuc ## sigma(x,y) at detectors
sig2 <- covariates(xy2)$noneuc ## sigma(x,y) at mask points
euc <- edist(xyl, xy2)
sig <- outer (sigl, sig2, FUN = function(sl, s2) (sl + s2)/2)
euc / sig
}
fit2 <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,
details = list(userdist = fn2), model = noneuc ~ x + y + x2 + y2 + xy,
fixed = list(sigma = 1))

predict (£it2)
link estimate SE.estimate 1lcl ucl
D log 14.5442 1.057939 12.61409 16.7697

lambda0 log 0.1078 0.009549 0.09066 0.1282
noneuc log 26.0265 1.351356 23.50980 28.8126

Tip: the value of noneuc reported by predict.secr is the predicted value at the centroid of the mask, because
the model uses standardised mask coordinates.

3. Continuously varying ¢ using gdistance

A more elegant but slower approach is to find the least-cost path across the network of cells between xy1
and xy2, using noneuc (i.e. sigma) as the cell-specific cost weighting (large cell-specific sigma equates with
greater ‘conductance’, the inverse of friction or cost). For this we use functions from the package gdistance,
which in turn uses igraph.

fn3 <- function (xyl, xy2, mask) {
if (missing(xyl)) return('"noneuc")
warp distances to be proportional to \int_along path sigma(x,y) dp
where p is path distance
if (!require(gdistance))
stop ('install package gdistance to use this function')
make raster from mask
Sraster <- raster(mask, values = covariates(mask)$noneuc)
Assume animals can traverse gaps: bridge gaps using global mean
Sraster[is.na(Sraster[])] <- mean(Sraster[], na.rm = TRUE)
TransitionLayer
tr <- transition(Sraster, transitionFunction = mean, directions = 16)
tr <- geoCorrection(tr, type = "c", multpl = FALSE)
costDistance
costDistance(tr, as.matrix(xyl), as.matrix(xy2))
}
fit3 <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,
details = list(userdist = fn3), model = noneuc ~ x + y + x2 + y2 + xy,
fixed = list(sigma = 1))

predict (£fit3)
link estimate SE.estimate 1cl ucl
D log 14.4047 1.050992 12.48768 16.6160

lambda0 1log 0.1076 0.009505 0.09052 0.1279
noneuc log 26.4373 1.368816 23.90539 29.2373

The gdistance function costDistance uses a TransitionLayer object that essentially describes the connections
between cells in a RasterLayer. In transition adjacent cells are assigned a positive value for ‘conductance’
and all other cells a zero value. Adjacency is defined by the directions argument as 4 (rook’s case), 8 (queen’s
case), 16 (knight and one-cell queen moves) and possibly other values (see ?adjacent in gdistance). Values
< 16 can considerably distort distances even if conductance is homogeneous. geoCorrection is needed to
allow for the greater separation (xv/2) of cell centres measured along diagonals.

In ovmask there are two forest blocks separated by a shingle stream bed and low scrub that is easily crossed
by possums but does not count as ‘habitat’. Habitat gaps are assumed in secr to be traversible. The opposite
is assumed by gdistance. To coerce gdistance to behave like secr we here temporarily fill in the gaps.

The argument ‘transitionFunction’ determines how the conductance values of adjacent cells are combined to
weight travel between them. Here we simply average them, but any other single-valued function of 2 inputs
can be used.

Integrating along the path (fn3) takes about 3.6 times as long as the approximation (fn2) and gives quite
similar results.

4. Density-dependent o

A more interesting variation makes sigma a function of the cell-specific density, which may vary independently
across space. Specifically, o(z,y) = k/+v/D(x,y), where k is the fitted parameter (noneuc).

fn4 <- function (xyl, xy2, mask) {
if (missing(xy1)) return(c("D", "noneuc"))
if ('require(gdistance))
stop ('install package gdistance to use this function')
make raster from mask
D <- covariates(mask)$D
k <- covariates(mask)$noneuc
Sraster <- raster(mask, values = k / D70.5)
Assume animals can traverse gaps: bridge gaps using global mean
Sraster[is.na(Sraster[])] <- mean(Sraster[], na.rm = TRUE)
TransitionLayer
tr <- transition(Sraster, transitionFunction = mean, directions = 16)
tr <- geoCorrection(tr, type = "c", multpl = FALSE)
costDistance
costDistance(tr, as.matrix(xyl), as.matrix(xy2))
}
fitd <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,
details = list(userdist = fn4), fixed = list(sigma = 1),
model = list(noneuc ~ 1, D ~ x + y + x2 + y2 + xy))

predict(fit4)
link estimate SE.estimate 1cl ucl
D log 15.4579 1.626193 12.58486 18.9868

lambda0 1log 0.1067 0.009408 0.08978 0.1268
noneuc log 103.2258 5.031658 93.82566 113.5677

or using regression splines with same df

fit4a <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,
details = list(userdist = fn4), fixed = list(sigma = 1),
model = list(noneuc~1, D ~ s(x,y, k = 6)))

predict(fit4a)
link estimate SE.estimate 1cl ucl
D log 15.6903 1.786561 12.56093 19.5993

lambdaO 1log 0.1068 0.009412 0.08985 0.1269
noneuc log 103.0735 5.015270 93.70318 113.3808

plot(predictDsurface(fitda))
plot(traps(ovposs), add=T)
lines(leftbank)

D.0

20
18
16
14
12
10

+ o+ 4+ o+ o+ 4+
+ 4+ + + ++ + + + o+
o+t o+ o+ o+ o+ o+ + o+

o T T S S S e

o+ o+ o+ o+ o+ o+ + o+
o+ o+ o+ o+ o+ o+ o+ + o+
+ o+ o+ o+ o+ A+ o+ o+ 4
+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+
+ o+ o+ o+ A+ o+ o+ + 4
+ o+ o+ o+ o+ o+ o+
+ o+ o+ o+ o+ o+ o+ + 4
o+ o+ o+ A+ o+ o+ 4+

5. Habitat model for connectivity

Yet another possibility, in the spirit of Royle et al. (2013), is to model conductance as a function of habitat
covariates. As usual in secr these are stored as one or more mask covariates. It is easy to add a covariate for
forest type (Nothofagus-dominant ‘beech’ vs ‘nonbeech’) to our mask:

ovmask <- addCovariates(ovmask, ovforest[1:2,])

fits <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,
details = list(userdist = fn2), model = list(D ~ forest, noneuc ~ forest),
fixed = list(sigma = 1))

predict(fit5, newdata = data.frame(forest=c('beech', 'nonbeech')))

$ forest = beech”

link estimate SE.estimate 1cl ucl
D log 9.4275 2.653192 5.48772 16.1957
lambda0 1log 0.1011 0.008933 0.08506 0.1202
noneuc log 29.5556 3.405277 23.59890 37.0160

##

$ forest = nonbeech”

link estimate SE.estimate 1cl ucl
D log 15.6702 1.267629 13.37613 18.3578

lambda0 log 0.1011 0.008933 0.08506 0.1202
noneuc log 27.2356 1.032005 25.28684 29.3345

Note that we have re-used the userdist function fn2, and allowed both density and noneuc (sigma) to vary by
forest type. Strictly, we should have identified “forest” as a required covariate in the (re)definition of fn2, but
this is obviously not critical.

A full analysis should also consider models with variation in lambda0. There is no simple way in secr to
model continuous spatial variation in lambda0 as a function of home-range location (cf sigma in Example
1 above). However, variation in lambda0 at the point of detection may be modelled with detector-level
covariates(secr-overview.pdf).

http://www.otago.ac.nz/density/pdfs/secr-overview.pdf

And the winner is...
Now that we have a bunch of fitted models, let’s see which does the best:

AIC(fit0, fitOa, fitl, fitla, fit2, fit3, fit4, fitda, fith, criterion = 'AIC')[, -c(2,4,6)]

model npar AIC dAIC AICwt
fitda D~s(x, y, k = 6) lambdaO~1 noneuc-~1 8 3098 0.000 0.4259
fit4 D~x + y + x2 + y2 + xy lambdaO~1 noneuc~1 8 3099 0.144 0.3963
fitl D~1 lambdaO~1 noneuc~x + y + x2 + y2 + xy 8 3102 3.477 0.0749
fit3 D~1 lambdaO~1 noneuc~x + y + x2 + y2 + xy 8 3102 4.071 0.0556
fit2 D~1 lambdaO~1 noneuc~x + y + x2 + y2 + xy 8 3104 5.183 0.0319
fitla D~1 lambdaO~1 noneuc~x + y + x2 + y2 + xy 8 3105 6.633 0.0155
£it0 D~1 lambdaO~1 sigma~1 3 3118 19.752 0.0000
fitOa D~1 lambdaO~1 noneuc~1 3 3118 19.752 0.0000
£ith D~forest lambdaO~1 noneuc~forest 5 3118 20.059 0.0000

...the model with a quadratic or spline trend in density and density-dependent sigma.

Notes

The ‘real’ parameter for spatial scale (o) is lurking in the background as part of the detection model.
User-defined non-Euclidean distances are used in the detection function just like ordinary Euclidean distances.
This means in practice that they are (almost) always divided by (o). Formally: the distance d;; between an
animal ¢ and a detector j appears in all commonly used detection functions as the ratio r;; = d;; /o (e.g.,
halfnormal A = A\ exp(—0.57;;) and exponential A = A exp(—7;)).

What if T want non-Euclidean distances, but do not want to estimate noneuc? This is a perfectly reasonable
request if sigma is constant across space and the distance computation is determined entirely by the habitat
geometry, with no need for an additional parameter. If ‘noneuc’ is not included in the character vector
returned by your userdist function when it is called with no arguments then noneuc is not modelled at all.
(This is the default in secrlinear).

The initial value of ‘noneuc’ can be a problem. From secr 2.9.1 the argument ‘start’ of secr.fit may be a

named and possibly incomplete list of real parameter values, so a call such as this is valid:

secr.fit (captdata, model = noneuc~1, details = list(userdist=fn2), start = list(noneuc = 25),
fixed = list(sigma = 1))

Barriers to movement may be modelled with gdistance, at least in principle (I haven’t tried).

We have ignored the parameter Ag. This is almost certainly a mistake, as large variation in ¢ without
compensatory or normalising variation in)\g is biologically implausible and can lead to improbable results
(Efford and Mowat 2014, Efford 2014).

It is intended that non-Euclidean distances should work with all relevant functions in secr. However, not all
possible combinations have been tested, and not all make sense. Please report any problems.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for capture-recapture
studies. Biometrics 64, 377-385.

Borchers, D. L. and Kidney, D. J. (2014) Flexible density surface estimation using regression splines with
spatially explicit capture-recapture data. In prep.

Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. InterJournal
1695. http://igraph.org.

Efford, M. G. (2014) Bias from heterogeneous usage of space in spatially explicit capture-recapture analyses.
Methods in Ecology and Evolution 5, 599-602.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in capture-recapture data. Ecology 95,
1341-1348.

Royle, J. A., Chandler, R. B., Gazenski, K. D. and Graves, T. A. (2013) Spatial capture-recapture models
for jointly estimating population density and landscape connectivity. Ecology 94 287-294.

Sutherland, C., Fuller, A. K. and Royle, J. A. (2014) Modelling non-Euclidean movement and landscape
connectivity in highly structured ecological networks. Methods in Ecology and Evolution (in press).

van Etten, J. (2014) gdistance: distances and routes on geographical grids. R package version 1.1-5.
http://CRAN.R-project.org/package=gdistance

Appendix. Implementation in secr of Sutherland et al. (2014) non-Euclidean
simulation.

Sutherland et al. (2014) simulated SECR data from a population of animals whose movement was channeled
to varying extents along a dendritic network (river system). Their model treated the habitat as 2-dimensional
and shrank distances for pixels close to water and expanded them for pixels further away. Chris has kindly
provided data for the network map and detector layout which we use here to emulate their simulations in
secr. We assume an existing SpatialLinesDataFrame sample.water for the network, and a matrix of x-y
coordinates for detector locations gridTrapsXY. rivers is a version of sample.water clipped to the habitat
mask and used only for plotting.

use package secrlinear to create a discretised version of the network,
as a handy way to get distance to water (secrlinear should be published
by the time you read this - it is not used later in the analysis)

loading this package also loads secr

library(secrlinear)

library(gdistance)

swlinearmask <- read.linearmask(data = sample.water, spacing = 100)

generate secr traps object from detector locations
tr <- data.frame(gridTrapsXY*1000) ## convert to metres
names (tr) <- c('x','y")

tr <- read.traps(data=tr, detector = 'count')

generate 2-D habitat mask

sw2Dmask <- make.mask(tr, buffer = 3950, spacing = 100)

d2w <- distancetotrap(sw2Dmask, swlinearmask)

covariates(sw2Dmask) <- data.frame(d2w = d2w/1000) ## km to water

plot distance to water

par(mar = c(1,6,1,6))

plot(sw2Dmask, covariate = 'd2w', dots = FALSE)
plot(tr, add = TRUE)

plot(rivers, add = TRUE, col = 'blue')

http://igraph.org
http://CRAN.R-project.org/package=gdistance

Fig. Al. Shaded plot of distance to water (d2w in km) with detector sites (red crosses) and rivers
superimposed. Detector spacing 1.5 km N-S.

The distance function requires a value of the friction parameter ‘noneuc’ for each mask pixel. Distances are
approximated using gdistance functions as before, except that we interpret the distance-to-water scale as
‘friction’ and invert that for gdistance.

userdfnl <- function (xyl, xy2, mask) {

if (missing(xyl)) return('noneuc')

require(gdistance)

Sraster <- raster(mask, values = covariates(mask)$noneuc)

conductance is inverse of friction

trans <- transition(Sraster, transitionFunction = function(x) 1/mean(x),
directions = 16)

trans <- geoCorrection(trans)

costDistance(trans, as.matrix(xyl), as.matrix(xy2))

The Royle et al. (2013) and Sutherland et al. (2014) models use an (ag, @) parameterisation instead of
(Mo, 0). Their ay translates directly to a coefficient in the secr model, as we’ll see. We consider just one
realisation of one scenario (the package secrdesign manages replicated simulations of multiple scenarios).

parameter values from Sutherland et al. 2014

alpha0 <- -1 ## implies lambda0 = invlogit(-1) = 0.2689414

sigma <- 1400

alphal <- 1 / (2 * sigma”2)

alpha2 <- 5 ## just one scenario from the range 0..10

K <- 10 ## sampling over 10 occasions, collapsed to 1 occasion

Now we are ready to build a simulated dataset.

10

simulate fixed population of 200 animals in masked area
pop <- sim.popn (D = 200/nrow(sw2Dmask), core = tr, buffer = 3950, Ndist = 'fixed')
in order to simulate non-Euclidean detection we attach a mask with

the pixel-specific friction to the simulated popn object
covariates(sw2Dmask)$noneuc <- exp(alpha2 * covariates(sw2Dmask)$d2w)

attr(pop, 'mask') <- sw2Dmask

now simulate detections, specifying our non-Euclidean distance function

CH <- sim.capthist(tr, pop = pop, userdist = userdfnl, noccasions = 1, binomN = K,

detectpar = list(lambda0 = invlogit(alphaO), sigma = sigma), detectfn = 'HHN')
summary (CH)
Object class capthist
Detector type count

Detector number 64
Average spacing 1386 m

x-range 1698699 1708399 m
y-range 2387891 2398391 m
Counts by occasion

1 Total

n 41 41

u 41 41

£ 41 41

M(t+1) 41 41

losses 0 0

detections 114 114

detectors visited 35 35

detectors used 64 64

Model fitting is simple, but slow (38 minutes on an aging PC). This is partly because the mask is large
(32384 pixels) in order to maintain resolution in relation to the stream network. The default starting value
for noneuc is not suitable and is overridden.

fitnel <- secr.fit (CH, mask = sw2Dmask, detectfn = 'HHN', binomN = 10,
model = noneuc ~ d2w -1, details = list(userdist = userdfnl),

start = list(noneuc = 1))
coef (fitnel)
beta SE.beta 1cl ucl
D -5.108 0.17620 -5.454 -4.7630
lambdaO -1.291 0.16925 -1.623 -0.9593
sigma 7.312 0.09644 7.123 7.5011

noneuc.d2w 5.641 0.67081 4.327 6.9563

predict(fitnel)
link estimate SE.estimate 1cl ucl
D log 6.046e-03 1.074e-03 4.280e-03 8.540e-03

lambdaO 1log 2.750e-01 4.688e-02 1.974e-01 3.832e-01
sigma log 1.498e+03 1.448e+02 1.240e+03 1.810e+03
noneuc log 5.976e+02 5.285e+02 1.347e+02 2.651e+03

11

region.N(fitnel)

estimate SE.estimate 1cl ucl n
E.N 195.8 34.77 138.6 276.6 41
R.N 195.8 31.83 144.9 271.7 41

The coefficient noneuc.d2w corresponds to alpha2. Estimates of predicted (‘real’) parameters D and lambda0,
and the coefficient noneuc.d2w, and are comfortably close to the true values, and all true values are covered
by the 95% CI.

We fit the ‘noneuc’ (friction) parameter through the origin (zero intercept; —1 in formula). The predicted
value of ‘noneuc’ relates to the covariate value for the first pixel in the mask (d2w = 1.133 km), but in this
zero-intercept model the meaning of ‘noneuc’ itself is obscure. In effect, the parameter alphal (or sigma)
serves as the intercept; the same model may be fitted by fixing sigma (fixed = list(sigma = 1)) and
estimating an intercept for noneuc (model = noneuc ~ d2w). In this case, ‘noneuc’ may be interpreted as
the site-specific sigma (see also examples in the main text).

It is interesting to plot the predicted detection probability under the simulated model. For plotting we add
the pdot value as an extra covariate of the mask. Note that pdot here uses the ‘noneuc’ value previously
added as a covariate to sw2Dmask.

covariates(sw2Dmask)$predicted.pdot <- pdot(sw2Dmask, tr, noccasions = 1, binomN = 10,
detectfn = 'HHN', detectpar = list(lambda0 = invlogit(-1), sigma = sigma),
userdist = userdfnl)

par(mar = c(1,6,1,6))

plot(sw2Dmask, covariate = 'predicted.pdot', dots = FALSE)
plot(tr, add = TRUE)

plot(rivers, add = TRUE, col = 'blue')

predicted.pdot
1

0.9
08

Fig. A2. Shaded plot of p.(z,y) (probability animal is detected at least once). Detector sites and rivers as
in Fig. Al. Animals living within the detector array and away from a river (about half the population within
the array) stand very little chance of being detected because the model confines them to a small home range
and)\g is constant.

12

	Introduction
	Basics
	The userdist function
	Examples
	1. Scale of movement depends on location of home-range centre
	2. Scale of movement depends on locations of both home-range centre and detector
	3. Continuously varying using gdistance
	4. Density-dependent
	5. Habitat model for connectivity

	And the winner is…
	Notes
	References
	Appendix. Implementation in secr of Sutherland et al. (2014) non-Euclidean simulation.

