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This document provides an overview of secr, an R package for spatially
explicit capture–recapture analysis (SECR). It includes some necessary back-
ground on SECR, an outline of the package, and a more detailed description of
how models are implemented. See Appendix 1 for a glimpse of secr in action.
For details of how to use secr see the help pages.
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Introduction to SECR

SECR is a set of methods for estimating the density of an animal population from
capture–recapture data collected with an array of ‘detectors’. SECR methods
overcome edge effects that are problematic in conventional capture–recapture
estimation of animal populations (Otis et al. 1978). Detectors may be live-
capture traps, with animals uniquely marked. Detectors also may be sticky traps
or snags that passively sample hair, from which individuals are distinguished
by their DNA microsatellites, or cameras that take photographs from which
individuals are recognized by their natural marks.

The primary data for SECR are (i) the locations of the detectors, and (ii)
detections of known individuals on one or more sampling occasions (i.e. their de-
tection histories). The terms ‘detectors’ and ‘detections’ cover the full spectrum
of possibilities (see ‘Detector types’ below), but we use them interchangeably
with the more familiar ‘traps’ and ‘captures’, respectively. Table 1 gives a con-
crete example.

Table 1: Example of spatially explicit detection data. Each entry (e.g. A9)
records the detector at which a known animal (ID) was observed on the given
occasion (sample time). ‘.’ indicates no detection. Each detector has known
x-y coordinates.

Occasions
ID 1 2 3 4 5

1 A9 . . . .
2 A12 A12 . . .
3 . . C6 B5 .
4 . . G3 . F3

etc.

In SECR, a spatial model of the population and the detection process is
fitted to the spatial detection histories. The resulting estimates of population
density are unbiased by edge effects and incomplete detection (other sources of
bias may remain). Inverse prediction (IP SECR) and maximum likelihood (ML
SECR) are alternative methods for fitting the spatial detection model (Efford
2004, Borchers and Efford 2008). Of these, ML SECR is the more flexible,
with a caveat for data from single-catch traps. Data augmentation and Markov
chain Monte Carlo (McMC) methods have also been used for SECR (Royle et
al. 2009), but this approach is not considered here.

State and observation models

Like other methods for estimating animal abundance (Borchers et al. 2002),
SECR combines a state model and an observation model. The state model
describes the distribution of animal home ranges in the landscape, and the
observation model (a spatial detection model) relates the probability of detecting
an individual at a particular detector to the distance of the detector from a
central point in each animal’s home range. The distances are not observed
directly (we don’t know the range centre), so conventional distance sampling
methods do not apply.
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Distribution of home-range centres

The distribution of range centres in the population (Borchers and Efford 2008)
will usually be treated as a homogeneous Poisson point process (Fig. 1). Density
is the sole parameter of a Poisson process. An inhomogeneous distribution
may also be fitted and this provides a means to evaluate the effects of habitat
variables on density.
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Figure 1: Hypothetical Poisson distribution of range centres near an array of
detectors.

Detection functions

A detection model is based on one of several possible parametric forms for the
decline in detection probability with distance (d) from the home-range centre
(Table 2, Fig. 2). The probability g(d) is for the ‘ideal’ case of just one animal
and one detector; the actual probability may differ (see discussion of traps under
Detector Types).

Table 2: Various functions relating the probability of detection to distance (d)

Halfnormal g(d) = g0 exp
(

−d2
2σ2

)
Exponential g(d) = g0 exp

(
− d
σ

)
Hazard-rate g(d) = g0[1− exp{−( dσ )−z}]
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Figure 2: Alternative shapes for a function relating the probability of detection
to distance from range centre.

Detector types

Properties of the detectors are an important part of the observation model.
Some common detectors (camera ‘traps’ and hair snags for DNA) do not cap-
ture animals but provide evidence of their passing, and can be considered to act
independently of each other. We call these ‘proximity’ detectors. With prox-
imity detectors, each animal x occasion ‘cell’ of a detection history potentially
contains several positive records. In the simplest case each such observation is
a binary vector coding presence or absence at each detector. Recent extensions
include ‘proximity count’ detectors (a vector of counts, one per detector) and
acoustic ‘signal strength’ detectors (a binary vector supplemented by measure-
ments of signal strength, e.g. from an array of microphones).

Detectors that are true traps do not act independently because capture of
an animal in one trap prevents capture in another (until the animal is released).
Traps expose animals to competing risks of capture. The per-trap probability
of capture may be adjusted for the competing risk from other traps by using an
additive hazard model (Borchers and Efford 2008). However, if the detectors
are traps that catch only one animal at a time then there is a further level of
competition – between animals for traps. Multi-catch and single-catch traps
therefore represent distinct detector types. No general adjustment has been
found for the per-trap probability of capture in the single-catch case (it’s an open
research question), and there is strictly no known maximum likelihood estimator.
However, density estimates using the multi-catch likelihood for single-catch data
appear only slightly biased (Efford, Borchers and Byrom 2009).
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Origins and outline of the package ‘secr’

The program DENSITY (Efford et al. 2004, Efford 2009) provides a graphical
interface to SECR methods that has been accepted by many biologists. How-
ever, DENSITY has significant drawbacks: it requires the Windows operating
system and is increasingly difficult to maintain, its algorithms are not always
transparent or well-documented, it fits only homogeneous Poisson models, and
it omits some recent advances in SECR.

The R package secr was written to address these weaknesses and allow
for further development. It implements almost all the methods and options
described in Borchers and Efford (2008) and Efford et al. (2009), and others
yet to be published. secr uses external C code for computationally intensive
operations. Appendix 2 compares the features of DENSITY and secr. The
major functions of secr are listed in Appendix 3.

How secr works

secr defines a set of R classes1 and methods for data from detector arrays. The
essential classes are:

traps locations of detectors; detector type (‘proximity’, ‘multi’, etc.)
capthist spatial detection histories, including a traps object
mask points on habitat mask
secr fitted SECR model.

To perform an SECR analysis you will construct each of these objects in turn,
using the functions provided (e.g., make.grid2, make.capthist, secr.fit).
Fig. 3 summarizes the relationships among the core object classes. The classes
traps, capthist and mask may optionally store covariates specific to detectors,
animals and habitat points respectively. Each set of covariates is saved in a
dataframe that is an attribute of the corresponding object; the covariates

method is used to extract or replace covariates.

Output

The output from the function secr.fit is an object of class secr. This is an
R list with many components. Assigning the output to a named object (such
as secr0 or secrb in the example) saves both the fit and the data for further
manipulation. Typing the name at the R prompt invokes print.secr which
formats the key results. Functions are provided for further computations on
secr objects (e.g., density as a derived parameter, profile-likelihood confidence
intervals for beta parameters, AIC model selection, model averaging, likelihood
ratio and score tests). Some of these are listed in Appendix 3.

1A ‘class’ specifies a particular type of data object and the functions (methods) by which
it is manipulated (computed, printed, plotted etc). See the R documentation for further
explanation

2Text in teletype font refers to R objects that are documented in online help for the secr
package, or in base R. A good place to start is the page for secr.fit
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Figure 3: Essentials of the secr package. Each object class (shaded box) comes
with methods to display and manipulate the data it contains (e.g. print, sum-
mary, plot, rbind, subset). Detector coordinates (traps) are stored with
attributes such as detector type and usage. Detection data (captures) are ini-
tially stored in a dataframe with one row per detection, but must be wrapped
with the corresponding traps in a capthist object for analysis. If a habitat
mask is not created manually (dashed arrow) it will be generated automatically
by secr.fit. Any of the objects input to secr.fit may include a dataframe
of covariates whose names may be used in a model formula. Fitted secr mod-
els may be further manipulated with the methods shown on the right. Addi-
tional functions (not shown) construct a regular detector array (e.g. make.grid,
make.circle) or simulate detection of a known population (sim.capthist).

Documentation

The primary documentation for secr is in the help pages that accompany the
package. Help for a function is obtained in the usual way by typing a question
mark at the R prompt, followed by the function name. Note the ‘Index’ link at
the bottom of each help page.

The consolidated help pages are also distributed as a pdf file that may be
accessed from within R using

> RShowDoc("secr-manual", package = "secr")

Other documentation in the form of pdf files based on Sweave vignettes will
be added from time to time. The ‘overview’ link in the package help index lists
available vignettes. To list vignettes for all packages use

> vignette()

The same function may be used to view a particular vignette, for example

> vignette("secr-sound")
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The web page www.otago.ac.nz/density should be checked for news of bug
fixes and new releases.

Models in secr

A family of capture–recapture models, such as the Cormack-Jolly-Seber models
for survival, may include submodels3 that allow for contingent variation in core
parameters, including the effects of covariates. Annual survival, for example,
may vary with the severity of winter weather, so it often makes sense to include
a measure of winter severity as a covariate. Gary White’s MARK software has
been particularly successful in packaging open-population models for biologists,
and secr aims for similar flexibility.

The language of generalised linear models is convenient for describing sub-
models (e.g. Huggins 1989, Lebreton et al. 1992). Each parameter is treated as
a linear combination of effects on its transformed (‘link’) scale. This is useful
for combining effects because, given a suitable link function, any combination
maps to a feasible value of the parameter. The logit scale has this property for
probabilities in (0, 1), and the natural log scale works for positive parameters
i.e. (0, +∞). These are the link functions used most often in secr, but there
are others, including the identity (null) link.

Submodels are defined symbolically in secr using R formula notation. A
separate linear predictor is used for each core parameter. Core parameters are
‘real’ parameters in the terminology of MARK, and secr uses that term to
reduce confusion. Four real parameters are commonly modelled in secr 1.3;
these are denoted D (for density), g0, sigma and z. Only the last three real
parameters, which jointly define detection probability as a function of location,
can be estimated directly when the model is fitted by maximizing the conditional
likelihood (CL = TRUE in secr.fit). D is then a derived parameter that
is computed from an secr object with the function derived. ‘z’ is a shape
parameter that is used only when the detection function has the ‘hazard-rate’
form (Hayes and Buckland 1983).

For each real parameter there is a linear predictor of the form y = Xβ,
where y is a vector of parameter values on the link scale, X is a design matrix
of predictor values, and β is a vector of coefficients. Each element of y and
corresponding row of X relates to the value of the real parameter in a particular
circumstance (e.g. density at a particular point in space, or detection probabil-
ity of an animal on a particular occasion). The elements of β are coefficients
estimated when we fit the model. In MARK these are called ‘beta parameters’
to distinguish them from the transformed ‘real’ parameter values in y. secr
acknowledges this usage, but also refers to beta and real parameters as ‘coeffi-
cients’ and ‘fitted values’, a usage more consistent with modelling in R. X has
one column for each element of β. Design matrices are described in more detail
in the next section.

Design matrices

A design matrix is specific to a ‘real’ parameter. Each design matrix X contains
a column of ‘1’s (for the constant or intercept term) and additional columns as

3This use of ‘submodel’ is non-standard – maybe we’ll find a better term
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needed to describe the effects in the submodel for the parameter. Depending on
the model, these may be continuous predictors (e.g. air temperature to predict
occasion-to-occasion variation in g0), indicator variables (e.g. 1 if animal i was
caught before occasion s, 0 otherwise), or coded factor levels. Within secr.fit,
each design matrix is constructed automatically from the input data and the
model formula in a 2-stage process.

First, a data frame is built containing ‘design data’ with one column for
each variable in the formula. Second, the R function model.matrix is used to
construct the design matrix. This process is hidden from the user. The design
matrix will have at least one more column than the design data; there may be
more if the formula includes interactions or factors with more than two levels.
For a good description of this general approach see the documentation for RMark
(Laake and Rexstad 2008). The necessary design data are either extracted from
the inputs or generated automatically as explained in later sections. ‘Real’
parameters fall into two groups: density (D) and detection (g0, sigma and z).
Density and detection parameters are subject to different effects, so they use
different design matrices as described in the next three sections.

Detection submodels

For SECR, we want to model the detection of each individual i on occasion s at
detector k. Given n observed individuals on S occasions at K detectors, there
are therefore nSK detection probabilities of interest. We treat these as elements
in a 3-dimensional array. Strictly, we are also interested in the detection proba-
bilities of unobserved individuals, but these are estimated only by extrapolation
from those observed so we do not include them in the array.

In a null model, all nSK detection probabilities are assumed to be the same.
The conventional sources of variation in capture probability (Otis et al. 1978)
appear as variation either in the n dimension (‘individual heterogeneity’ h), or
in the S dimension (‘time variation’ t), or as a particular interaction in these two
dimensions (‘behavioural response to capture’ b). Combined effects are possible.
SECR introduces additional complexity.

Detection probability in SECR is no longer a scalar (even for a particular
animal-occasion-detector combination); it is described by a ‘detection function’.
The detection function may have two parameters (e.g. g0, sigma for a half-
normal function), three parameters (e.g. g0, sigma, z for the Hayes and Buck-
land hazard-rate function), or potentially more. Any of the parameters of the
detection function may vary with respect to individual (subscript i), occasion
(subscript s) or detector (subscript k).

The full design matrix for each detection submodel has one row for each
combination of i, s and k. Allowing a distinct probability for each animal (the
n dimension) may seem excessive, and truly individual-specific covariates are
feasible only when a model is fitted by maximizing the conditional likelihood (cf
Huggins 1989). However, the full nSK array is convenient for coding both group
membership (Lebreton et al. 1992, Cooch and White 2008) and experience of
capture, even when pure individual-level heterogeneity cannot be modelled.

The programming gets even more complex. Analyses may combine data from
several independent samples, dubbed ‘sessions’. This adds a fourth dimension
of length equal to the number of sessions. When finite mixture models are used
for detection parameters there is even a fifth dimension, with the preceding
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structure being replicated for each mixture class. Fortunately, secr handles all
this and the user need be concerned only with the model specification, which
we describe next.

Specifying effects on detection parameters

Effects on parameters of detection probability are specified with R formulae.
The variable names used in formulae are either names for standard effects (Table
3) or the names of user-supplied covariates.

Table 3: Automatically generated predictor variables used in detection models

Variable Description Notes

g group interaction of the capthist individual covari-
ates listed in argument groups of secr.fit

t time factor one level for each occasion
T time trend linear trend over occasions on link scale
b learned response step change in parameter after first detection

of animal
B transient response parameter depends on detection at previous

occasion (Markovian response)
session session factor one level for each session
h2 2-class mixture finite mixture model with 2 latent classes

Any name in a formula that is not in Table 3 is assumed to refer to a
user-supplied covariate. secr.fit looks for user-supplied covariates in data
frames embedded in the capthist argument or supplied in the timecov and
sessioncov arguments, using the first match (Table 4).

The formula for any detection parameter (g0, sigma, z) may be constant
(∼1, the default) or some combination of terms in standard R formula notation
(see help(formula)). For example, g0 ∼ b + T specifies a model with a learned
response and a linear time trend in g0; the effects are additive on the link scale.
See Table 5 for other examples.

For other effects, the design matrix for detection parameters may also be pro-
vided manually in the argument dframe of secr.fit. This feature is untested.

Table 4: User-provided covariates used in detection models. The names of
columns in the respective dataframes may be used in model formulae

Covariate type Data source Notes

Individual covariates(capthist) conditional likelihood
Time timecov argument
Detector covariates(traps(capthist))

Session sessioncov argument
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Table 5: Some examples of the model argument in secr.fit

Model Description

g0 ∼ 1 g0 is constant across animals, occasions and detec-
tors

g0 ∼ b learned response affects g0
list(g0∼b, sigma∼b) learned response affects both g0 and sigma
g0 ∼ h2 2-class finite mixture for heterogeneity in g0
g0 ∼ b + T learned response in g0 combined with trend over oc-

casions
sigma ∼ g detection scale sigma differs between groups
sigma ∼ g*T group-specific trend in sigma
D ∼ cover density varies with ’cover’ given in covari-

ates(mask)

list(D∼g, g0∼g) both density and g0 differ between groups
D ∼ session session-specific density

Density submodels

The SECR log likelihood is evaluated by summing values at points on a ‘habitat
mask’ (the mask argument of secr.fit). Each point in a habitat mask repre-
sents a grid cell of potentially occupied habitat (their combined area may be
almost any shape). The full design matrix for density (D) has one row for each
point in the mask. As for the detection submodels, the design matrix has one
column for the intercept (constant) term and one for each predictor.

Predictors may be based on Cartesian coordinates (e.g. ‘x’ for an east-west
trend), a continuous habitat variable (e.g. vegetation cover) or a categorical
(factor) habitat variable. Predictors must be known for all points in the mask
(non-habitat excluded). The variables ‘x’ and ‘y’ are the coordinates of the
habitat mask and are automatic. Other spatial covariates should be named
columns in the covariates attribute of the habitat mask.

Model fitting and estimation

Models are fitted in secr.fit by numerically maximising the likelihood. The
likelihood involves integration over the unknown locations of the animals’ range
centres. This is achieved in practice by summation over points in the habitat
mask, which has some implications for the user. Computation may be slow,
especially if there are many points in the mask, and estimates may be sensitive
to the particular choice of mask (either explicitly in make.mask or implicitly via
the buffer argument).

The default maximisation algorithm is Newton-Raphson in the function
stats::nlm. By default, all reported variances, covariances, standard errors
and confidence limits are asymptotic and based on a numerical estimate of the
information matrix. Use confint.secr for profile likelihood intervals and sim-

ulate.secr for parametric bootstrap intervals (slow).
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Appendix 1. A simple secr analysis

A simple analysis might look like this. We start by loading the package and
constructing an object myCH that contains both the captures and the trap loca-
tions.

> library(secr)

> mytraps <- make.grid(nx = 10, ny = 10, spacing = 30,

originxy = c(365, 365))

> mycapt <- read.captures(file = "capt.txt")

> myCH <- make.capthist(mycapt, mytraps, fmt = "XY")

Next we fit two simple models and compare them with AIC. We set trace =

FALSE to reduce the volume of output, but the default trace = TRUE is usually
better.

> secr0 <- secr.fit(myCH, model = g0 ~ 1, trace = FALSE)

> secrb <- secr.fit(myCH, model = g0 ~ b, trace = FALSE)

> AIC(secr0, secrb)

model detectfn npar logLik AIC AICc

secr0 D~1 g0~1 sigma~1 halfnormal 3 -759.0198 1524.040 1524.373

secrb D~1 g0~b sigma~1 halfnormal 4 -759.0106 1526.021 1526.584

dAICc AICwt

secr0 0.000 0.7513

secrb 2.211 0.2487

A model with learned trap response (g0∼b) showed no improvement in fit
over a null model (g0∼1). In this instance the estimates of density from the
two models were also very close (not shown) and we rely on the null model for
estimation.

> secr0

secr.fit( capthist = myCH, model = g0 ~ 1, trace = FALSE )

secr 1.3.0, 20:08:48 11 Mar 2010

Detector type multi

Detector number 100

Average spacing 30 m

x-range 365 635 m

y-range 365 635 m

N animals : 76

N detections : 235

N occasions : 5

Mask area : 22.09 ha

Model : D~1 g0~1 sigma~1

Fixed (real) : none

Detection fn : halfnormal
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Distribution : poisson

N parameters : 3

Log likelihood : -759.0198

AIC : 1524.040

AICc : 1524.373

Beta parameters (coefficients)

beta SE.beta lcl ucl

D 1.7008900 0.11763036 1.470339 1.9314413

g0 -0.9786458 0.13625081 -1.245692 -0.7115991

sigma 3.3799591 0.04444661 3.292845 3.4670729

Variance-covariance matrix of beta parameters

D g0 sigma

D 0.0138369005 0.0001609861 -0.0009948866

g0 0.0001609861 0.0185642841 -0.0033465283

sigma -0.0009948866 -0.0033465283 0.0019755014

Fitted (real) parameters evaluated at base levels of covariates

link estimate SE.estimate lcl ucl

D log 5.4788216 0.64671155 4.3507088 6.8994472

g0 logit 0.2731606 0.02705176 0.2234467 0.3292456

sigma log 29.3695698 1.30602285 26.9193494 32.0428111

The density estimate is 5.48 ha–1 (95% confidence interval 4.35–6.90 ha–1).
The calculation used a default habitat mask with a buffer of 100 m around the
detectors; this is reasonable in the light of the estimate of sigma (29.4 m).
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Appendix 2. Software feature comparisons

� full implementation; � incomplete or inferior implementation.

Feature DENSITY 4.4 secr 1.2 secr 1.3

General
Graphical interface � � �

Inverse prediction (IP SECR) � � �

Maximum likelihood estimation (ML SECR) � � �

Non-spatial open-population models (CJS etc.) �

Simulation of spatial sampling � � �

Build detector arrays � � �

Control of random number generator � � �

ML SECR
Jackknife confidence intervals �

Profile likelihood confidence intervals � � �

Set of detectors used may vary with occasion � � �

Fixed parameters � � �

Parametric bootstrap � � �

Between-session models � � �

Mixture models for individual heterogeneity � �

Confidence ellipses � �

Formula-based model notation � �

Density models (inhomogeneous 2-D Poisson) � �

Terminology consistent with MARK1
� �

Groups (e.g. males & females) � �

Score tests for model selection � �

Model averaging � �

Within-session variation in hazard-rate z � �

‘pdot’ criterion for region of integration � �

Structural relationships between real parame-
ters

� �

Detector types
Single-catch trap (not MLE) � � �

Multi-catch trap � � �

Proximity � � �

Signal strength (acoustic)2 �

Count2 �

Polygon3
�

Transect3 �

1‘groups’, ‘real’ parameters, ‘beta’ parameters
2Efford, Dawson & Borchers (2009) Ecology 90, 2676–2682
3Efford in prep.
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Appendix 3. Functions in secr arranged accord-
ing to use

This list groups the main functions of secr 1.3. Many functions for data ma-
nipulation and plotting are omitted. S3 methods are marked with an asterisk *

Manipulate core objects

make.grid construct detector array
read.traps input detector locations from text file
read.captures input detection (capture) data in Density format
make.capthist form capthist from traps and detection data
make.mask construct habitat mask (mesh)
sim.capthist simulate capture histories
verify* check capthist, traps or mask for internal consistency

Extract or replace attributes of traps object

covariates* detector-level covariates
detector* detector type (‘multi’, ‘proximity’ etc.)
usage* disable detectors (occasion- and detector-specific )

Extract or replace attributes of capthist object

covariates* individual-level covariates, including grouping factors
session* session identifier(s)
traps* embedded traps object(s)

Fit SECR model

secr.fit maximum likelihood fit; result is a fitted secr object
ip.secr fit simple SECR model by simulation & inverse prediction

Operate on fitted secr object(s)

AIC* model selection, model weights
coef* ‘beta’ parameters
collate tabulate estimates from several models
confint* profile likelihood confidence intervals
derived density from conditional likelihood models
deviance* model deviance
df.residual* degrees of freedom for deviance
LR.test likelihood-ratio test of two models
model.average combine estimates using AICc weights
plot* plot detection functions with confidence bands
predict* ‘real’ parameters for arbitrary levels of predictor variables
score.test model selection with score statistic using observed informa-

tion
simulate* generate realisations of fitted model
sim.secr parametric bootstrap
vcov* variance-covariance matrix of ‘beta’ or ‘real’ parameters
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Miscellaneous

autoini generate starting values of D, g0 and sigma for secr.fit
counts summary data from capthist object
dbar a simple (and unreliable) home-range measure
distancetotrap from an arbitrary set of points
nearesttrap from an arbitrary set of points
pdot location-specific net probability of detection
RPSV another simple and unreliable home-range measure

Datasets [restore with data(xxx)]

rawdata dataframes of raw data
captdata rawdata as a capthist object
secrdemo secr.fit applied to some simulated data
ovenbird multi-year mist-netting study of ovenbirds Seiurus auro-

capilla at a site in Maryland, USA.
ovensong acoustic detections of ovenbirds (Dawson & Efford Journal

of Applied Ecology 46, 1201–1209)
possum brushtail possum Trichosurus vulpecula live trapping at

Waitarere, North Island, New Zealand April 2002 (Efford
et al. 2005 Wildlife Society Bulletin 33, 731–738)
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