
Introduction to the scuba package

Adrian Baddeley

October 2008

This is an introduction to the features of scuba, a package in R that
performs theoretical calculations about scuba diving. The package supports

� creation, manipulation and plotting of dive profiles

� decompression models

� gas toxicity calculations.

Section 1 gives a quick tour of the package’s functionality. Section 2
explains how to install and run the package. Section 3 is a legal disclaimer.
Then the remaining sections 4–6 explain the package commands in greater
detail.

1 Quick tour

A dive profile gives the diver’s depth as a function of elapsed time during a
scuba dive. See Figure 1.

1



Time (minutes)

D
ep

th
 (

m
et

re
s)

0 5 10 15 20 25

20
15

10
5

0

Time (minutes)

D
ep

th
 (

m
et

re
s)

0 10 20 30 40 50 60 70

40
30

20
10

0

Figure 1: Examples of dive profiles. Left: square dive plan with safety stop.
Right: real dive profile, uploaded from a dive computer.

Using the dive function in the scuba package, the user can create a
dataset that represents any dive profile. A simple dive profile, such as a
recreational dive plan or a therapeutic table, can be created by typing the
depths and durations of each stage. For example a ‘square’ dive to 18 metres
for 45 minutes (without a safety stop) is specified by:

> d <- dive(c(18, 45))

Real dive profile data, uploaded from a dive computer, can also be con-
verted into a dive profile dataset.

A dive profile dataset d can be plotted simply by typing plot(d). Dive
profiles can be manipulated easily, for example they can be cut-and-pasted
together.

The scuba package performs the mathematical calculations of classical
decompression theory. For any dive profile d, the package can compute the
quantity of nitrogen dissolved in the diver’s body at the end of the dive, or
at each time during the dive, using the command haldane(d). For example,
for a dive to 18 metres for 45 minutes,

> d <- dive(c(18, 45))

> haldane(d)

N2
1 2.115516
2 2.106403
3 1.901867

2



4 1.707818
5 1.562281
6 1.370893
7 1.253765
8 1.119592

The output gives the nitrogen tension (in atmospheres) in each of the 8
tissue compartments of the PADI DSAT model, at the end of the dive.

The command showstates(d) displays an interactive graphical window.
When the user clicks on a point in the dive profile, the nitrogen tissue
saturation at that time is displayed as a bar chart. Here is a screenshot:

Time= 35 min
 Accumulated oxygen toxicity 26.9

Tissues (ZH−L16A)

R
el

at
iv

e 
sa

tu
ra

tio
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fast Slow

pedro902

Time (minutes)

D
ep

th
 (

m
et

re
s)

0 10 20 30 40 50

20
15

10
5

0

It is also possible to plot the tissue saturations at each time during the
dive, as a surface in three dimensions:

3



Tim
e

Tissue

R
elative saturation

The theoretical No Decompression Limit (maximum duration of a no-
decompression dive to a specified depth) can be computed by the command
ndl. For a dive to 24 metres:

> ndl(24)

[1] 31.46958
attr(,"controlling")
[1] 3

This says that the NDL is 31.5 minutes, and the controlling tissue (the
tissue that determines the NDL) is tissue 3.

In the scuba package, a breathing gas such as air, nitrox or trimix is
represented by a special dataset. These gas objects are easy to specify: for
example the command nitrox(0.32) specifies Nitrox 32 (containing 32%
oxygen and 68% nitrogen).

> nitrox(0.32)

EANx 32

4



> nitrox(1)

100% O2

Standard nitrox calculations are available, for example to compute the
equivalent air depth, maximum operating depth, and richest nitrox mix for
a given depth. To find the maximum operating depth for EAN 32:

> mod(nitrox(0.32))

[1] 33.75

A dive profile contains information about the breathing gas or gases used
in the dive. For example, we can specify that a dive was conducted on Nitrox
EAN 32:

> nd <- dive(nitrox(0.32), c(18, 45))

The dive can be conducted using multiple tanks (cylinders) containing
different breathing gases, and the diver can switch between these tanks at
any time.

> d <- dive(trimix(0.18, 0.45), c(40, 20), c(30, 10), 9, nitrox(0.6),

+ c(9, 3), c(6, 5), c(3, 11))

> plot(d)

d

Time (minutes)

D
ep

th
 (

m
et

re
s)

0 10 20 30 40 50

40
30

20
10

0

trimix 18/45

trimix 18/45

EANx 60

EANx 60

EANx 60

tr
im

ix
 1

8/
45

tr
im

ix
 1

8/
45

tr
im

ix
 1

8/
45

E
A

N
x 

60

E
A

N
x 

60

E
A

N
x 

60

5



The decompression calculations work with nitrox and trimix gases. The
total oxygen toxicity incurred during a nitrox or trimix dive can be computed
by oxtox.

The breathing gas or gases in a dive profile can be changed easily, so it is
easy to evaluate how a different choice of breathing gas would have affected
nitrogen saturation, helium saturation and oxygen toxicity.

6



2 Getting started

To use the scuba package, you will first need to install the R system on your
computer, and then install the scuba package within R(follow the installa-
tion instructions at r-project.org).

With all the software installed, start an R session and type library(scuba).
You should get a message like this:

> library(scuba)

scuba 1.2-3
Type "help(scuba)" for an introduction
Read the warnings in "help(scuba.disclaimer)"

The message asks you to read the disclaimer, so here it is:

3 Disclaimer

The scuba software library is intended for use in research and education
about the mathematical and statistical basis of decompression theory. It
is not designed for actual use in scuba diving and related activities. It is
emphatically not suitable for use in actual diving.

Scuba diving is a dangerous activity with inherent risks of death and
serious injury. No-one should attempt scuba diving without professional
training, certification, supervision and regular medical assessment.

It is also dangerous for trained scuba divers to exceed the limitations
of their training. Diving at altitudes above sea level, and breathing mixed
gases other than air, carry increased risk and additional types of risk. Divers
should seek additional, professional training and certification for such activ-
ities.

This software is not suitable for use in actual scuba diving. The soft-
ware will yield numerical results for any diving activity, without giving any
warning if the activity would be dangerous or fatal. Each function in the
scuba library calculates the predictions of one theoretical model (a law of
physics, a decompression model or another empirical relationship). In doing
so, it does not take account of safety restrictions, other physical laws, or
other important information.

The software is provided for academic interest only. It should not be used
to generate diving tables or protocols related to diving. No output from this
software should be misconstrued as a diving table. Only persons qualified to

7



supervise diving activities or qualified in hyperbaric medicine should attempt
to design diving tables. Although existing published diving tables are based
on theoretical models, such tables have been extensively field-tested and
modified before approval. Existing tables are more conservative than the
models from which they were originally derived.

The author does not warrant that the software is correct in any sense
whatsoever. Even if correctly computed, the predictions of a theoretical
physical model may not be correct predictions.

8



4 Dive profiles

In the rest of this document, we will go through the features of the scuba
package in more detail.

A dive profile gives the diver’s depth as a function of elapsed time dur-
ing a scuba dive. See Figure 1. This section explains how to create and
manipulate dive profiles in the scuba package.

4.1 The dive command

The command dive creates an object representing a dive profile. For exam-
ple, the following command creates a dive to 18 metres for 45 minutes with
a 3-minute safety stop at 5 metres:

> d <- dive(c(18, 45), c(5, 3))

The resulting dataset d is an object of class "dive". It can be plotted
as a conventional dive profile graph by executing the command plot(d).

> plot(d)

d

Time (minutes)

D
ep

th
 (

m
et

re
s)

0 10 20 30 40 50

15
10

5
0

A dive object can be printed as a table of waypoint depths and times by
simply typing its name:

> d

9



Dive profile
gas: air

time depth
1 0:00 0
2 0:36 18
3 45:36 18
4 46:19 5
5 49:19 5
6 49:36 0

A summary of the dive (with such information as the average depth,
maximum depth and the main stages of the dive) can be printed by typing
summary(d).

> summary(d)

Dive to 18 metres on air
Total dive time: 49.6 minutes
Stages:
depth time

1 18 45
2 5 3
Mean depth 16.9 metres

4.2 Creating a synthetic dive profile

A dive profile is piecewise linear: it is a series of stages that join successive
waypoints. Each waypoint is specified by the depth and elapsed time when
it is reached. The stage between two waypoints is either a sojourn at a fixed
depth, or an ascent or descent at a constant rate.

To create a dive plan or a synthetic dive profile, use the function dive,
typing in the depths of each waypoint and the duration of time between each
successive waypoint.

The function dive interprets its arguments as a sequence of actions or
events occurring during the dive. If an argument is a vector of length 2, it is
interpreted as c(depth,time) specifying the depth and duration of a stage
of the dive. If the argument is a single number, it is interpreted as a depth,
meaning that the diver ascends or descends to this depth. For example,

> d2 <- dive(c(18, 45), c(5, 3))

10



specifies a dive to 18 metres for 45 minutes followed by a safety stop at
5 metres for 3 minutes:

> plot(d2)

> d2

Dive profile
gas: air

time depth
1 0:00 0
2 0:36 18
3 45:36 18
4 46:19 5
5 49:19 5
6 49:36 0

d2

Time (minutes)

D
ep

th
 (

m
et

re
s)

0 10 20 30 40 50

15
10

5
0

Multilevel dives with any number of stages can be specified in the same
way. A dive object may also include periods spent at the surface (depth
zero) and may therefore represent a succession of dives separated by surface
intervals. For example,

> d3 <- dive(c(30, 15), c(9, 1), c(5, 5), c(0, 60), c(12, 60),

+ c(5, 5))

represents two dives (with safety stops) separated by a one-hour surface
interval:

11



> plot(d3)

d3

Time (minutes)

D
ep

th
 (

m
et

re
s)

0 50 100 150

30
25

20
15

10
5

0

By default, the function dive fills in some details about the dive. It
assumes that the diver breathes compressed air; the dive starts and ends
at the surface (depth zero); the diver descends at the default descent rate
of 30 metres per minute; and the diver ascends at the default ascent rate
of 18 metres per minute. These defaults can be changed by giving extra
arguments to the function dive.

Dive profiles can also be modified after they are created: see below.

4.3 Real Dive Profiles

Dive profiles may also be uploaded from your dive computer and studied in
the scuba package. There are three steps:

1. read the data from a file into R

2. convert the dataset into the right format in R

3. pass the dataset as an argument to the function dive.

Read the data from a file into R

To read data from a file into an R session, we use the basic capabilities of
R. If you are not familiar with R, please consult one of the many basic user
guides to R.

Typically you will use one of the functions read.table or read.csv to
read data from a text file. If your data are stored in a text file, as columns

12



of data separated by white space, use read.table. If your data are stored
as numbers separated by commas, use read.csv.

If your data are in a spreadsheet file, use your spreadsheet program to
Export or Write the data as a csv (comma-separated values) text file. Then
in R use read.csv to read the data into R.

For example, suppose your data are stored in a text file myfile.txt.
The top of the file looks like this:

time depth temp bar RBT WL
"0:00" 0.00 24.8 199.0 99 14
"0:04" 1.90 24.8 198.8 99 14
"0:08" 2.76 24.8 198.8 99 14
"0:12" 3.70 24.8 198.8 99 14
"0:16" 4.66 24.8 198.5 98 14
"0:20" 5.50 24.8 198.5 96 14
"0:24" 6.82 24.8 198.5 93 14

To read these data into R, type

> mydata <- read.table("myfile.txt", header = TRUE, as.is = TRUE)

The argument header=TRUE tells R that the first line of the file is a
header, containing text labels for the columns. The argument as.is=TRUE
ensures that the character strings representing the elapsed time ("0:04"
and so on) will be stored as character strings and not converted to another
format.

Convert to the right format in R

The uploaded profile data should now be converted to a data.frame with
two columns, the first column containing the elapsed time and the second
column containing the depth (in metres) recorded at each time.

The elapsed times can be either a vector of character strings in minutes-
and-seconds format mm:ss or hours-minutes seconds hh:mm:ss, or a vector
of integer times measured in seconds of elapsed time, or an object of class
difftime containing the elapsed times in any time unit.

Continuing our example, the dataset mydata is already a data frame in
R, but it has too many columns:

> head(mydata)

13



time depth temp bar RBT WL
1 0:00 0.00 24.8 199.0 99 14
2 0:04 1.90 24.8 198.8 99 14
3 0:08 2.76 24.8 198.8 99 14
4 0:12 3.70 24.8 198.8 99 14
5 0:16 4.66 24.8 198.5 98 14
6 0:20 5.50 24.8 198.5 96 14

All we need to do is to extract the first two columns, which contain the
elapsed time and the depth:

> mydf <- mydata[, 1:2]

Note the comma. As a last check:

> head(mydf)

time depth
1 0:00 0.00
2 0:04 1.90
3 0:08 2.76
4 0:12 3.70
5 0:16 4.66
6 0:20 5.50

> is.character(mydf[, 1])

[1] TRUE

We have confirmed that the data frame mydf is in the required format.

Pass data to the function dive

Finally we pass this data frame as an argument to the function dive:

> d <- dive(mydf)

Another example of such a data frame, uploaded from a dive computer,
is provided in the baron dataset supplied with the package. This is a profile
from a dive on the Baron Gautsch wreck in Croatia, conducted by Vittorio
Broglio. Try the following:

> data(baron)

> mydf <- baron[, 1:2]

> baronprof <- dive(mydf[, 1:2])

14



4.4 Installed dive profiles

The package also provides 11 real dive profiles that have already been con-
verted to "dive" objects. They were kindly supplied by Pedro Antonio
Neves.

> data(pedro)

> plot(pedro902)

pedro902

Time (minutes)

D
ep

th
 (

m
et

re
s)

0 10 20 30 40 50

20
15

10
5

0

4.5 Manipulating dive profiles

Dive profiles can also be manipulated after they are created. This allows
you, for example, to modify the deepest portion of a dive (diving to a deeper
depth or for a longer duration), to abort a dive prematurely, to cut-and-
paste several dives together, or to consider the tissue saturation incurred by
a particular segment of a dive.

The commands depths.dive and times.dive extract the depths and
elapsed times at each waypoint during the dive.

> d <- dive(c(30, 20), c(5, 3))

> depths.dive(d)

[1] 0 30 30 5 5 0

> times.dive(d)

15



[1] 0.00000 1.00000 21.00000 22.38889 25.38889 25.66667

The depths can be modified using depths.dive<-. In the example above,
d is a dive to 30 metres for 20 minutes, starting and finishing at the surface.
To change the depth of the bottom stage to 35 metres, we could type

> depths.dive(d) <- c(0, 35, 35, 5, 5, 0)

> d

Dive profile
gas: air

time depth
1 0:00 0
2 1:00 35
3 21:00 35
4 22:23 5
5 25:23 5
6 25:40 0

Thanks to the wonderful features of R, we could alternatively have typed

> depths.dive(d)[2:3] <- 35

which means that the depths of the second and third waypoints are reset
to 35 metres.

Similarly the elapsed times can be modified using times.dive<-. It may
be more convenient to use the functions durations.dive and durations.dive<-
which give the duration of each stage (the time between two successive way-
points). For example

> durations.dive(d)[2] <- 25

means that the diver now spends 25 minutes at the bottom instead of
20 minutes.

To extract only part of a dive profile, use chop.dive:

> chop.dive(d, 0, 10)

Dive profile
gas: air

time depth
1 0:00 0
2 1:00 35
3 10:00 30

16



To paste together two dive profiles or fragments of dive profiles, simply
give them as arguments to dive. For example, suppose we want to explore
the effect of adding an extra safety stop at 9 metres in the dive pedro902.

> data(pedro)

> tim <- times.dive(pedro902)

> dep <- depths.dive(pedro902)

> plot(pedro902)

pedro902

Time (minutes)

D
ep

th
 (

m
et

re
s)

0 10 20 30 40 50

20
15

10
5

0

We need to determine the time point at which the safety stop should be
inserted. This is the last time at which the diver is deeper than 9 metres:

> t9 <- max(tim[dep >= 9])

> t9

[1] 45

Cut the dive into two pieces:

> before <- chop.dive(pedro902, 0, t9)

> after <- chop.dive(pedro902, t9)

Finally paste them together with the new safety stop:

> newdive <- dive(before, c(9, 5), after)

> plot(newdive)

17



newdive

Time (minutes)

D
ep

th
 (

m
et

re
s)

0 10 20 30 40 50 60

20
15

10
5

0

18



5 Decompression Calculations

5.1 Overview

The scuba package performs the mathematical calculations of decompression
theory:

� the theoretical No Decompression Limit (maximum duration of a no-
decompression dive to a specified depth) can be computed by ndl(depth)

� the quantity of nitrogen dissolved in the diver’s body after a dive d
can be computed by haldane(d)

� the quantity of nitrogen dissolved in the diver’s body at each instant
during a dive d can be computed by haldane(d, progressive=TRUE)
or plotted interactively by showstates(d).

These calculations are based on the classical theory of decompression
originated by Haldane (Boycott et al, 1908).

Bubble theory calculations are not yet implemented.

5.2 Model parameters

In ‘Haldane’ calculations, the diver’s body is idealised as a set of independent
compartments, each connected directly to the breathing gas, and governed
by classical (exponential) diffusion.

The model parameters (the number of compartments, their diffusion
rates, and the maximum tolerated nitrogen tension in each compartment)
may be chosen by the user. By default, the model parameters are taken from
the DSAT model which is the basis of the PADI Recreational Dive Planner.
Alternatively, the user can choose from a variety of standard compartment
models using the command pickmodel, or construct a new model using hm.

> m <- pickmodel("USN")

> m

Haldane type decompression model
Name: USN
6 compartments
inert gas: N2
N2.HalfT N2.M0 N2.dM

1 5 3.185689 2.27
2 10 2.695583 2.01

19



3 20 2.205477 1.67
4 40 1.715371 1.34
5 80 1.592844 1.26
6 120 1.562213 1.19

5.3 No-decompression limits

No-decompression limits (the maximum duration of a no-decompression dive
to a given depth) can be calculated using the function ndl. For example
ndl(30) gives the theoretical NDL for a dive to 30 metres, predicted by the
DSAT model. To use the classical US Navy model instead, type ndl(30,
model="USN") or ndl(30, model=pickmodel("USN")).

> ndl(30, model = "USN")

[1] 23.51394
attr(,"controlling")
[1] 2

The result states that the NDL is 23.5 minutes and the controlling tissue
(the tissue which reaches saturation at 23.5 minutes) is tissue number 2 in
the USN model.

5.4 Tissue saturations

The nitrogen tension (the quantity of dissolved nitrogen, in atmospheres
absolute) in the diver’s body after a dive, can be calculated using the func-
tion haldane. If d is a dive object then haldane(d) returns a data frame
containing the nitrogen tissue tensions (ata) at the end of the dive, in each
of the 8 tissue compartments of the DSAT model.

> d <- dive(c(18, 60), c(5, 5))

> haldane(d)

N2
1 1.647518
2 1.861677
3 1.884928
4 1.777946
5 1.664692
6 1.485508
7 1.361945
8 1.209198

20



To use the US Navy model instead, type haldane(d, "USN") or haldane(d,
pickmodel("USN")).

The relative tissue tension is the tissue tension expressed as a fraction of
the maximum tissue tension tolerated at the surface (the surfacing M -value).
To obtain relative tissue tensions, use the argument relative=TRUE:

> haldane(d, relative = TRUE)

[1] 0.5428430 0.7350787 0.9199488 0.9715908 0.9751578 0.9427660 0.9035170
[8] 0.8411569

To compute the nitrogen tissue tensions at each waypoint during the dive,
use haldane(d, progressive=TRUE). This produces an array of numbers,
which is best visualised as a surface or as a colour image:

> data(pedro)

> h <- haldane(pedro902, progressive = TRUE, relative = TRUE)

> tim <- times.dive(pedro902)

> tiss <- row.names(as.data.frame(pickmodel("D")))

> ntiss <- length(tiss)

> image(tim, 1:ntiss, h, xlab = "Time", ylab = "Tissue", axes = FALSE)

> axis(1)

> axis(2, at = 1:ntiss, labels = tiss)

Time

T
is

su
e

0 10 20 30 40 50

1
2

3
4

5
6

7
8

21



> persp(tim, 1:ntiss, h, theta = -45, shade = 0.5, col = "yellow",

+ border = NA, xlab = "Time", ylab = "Tissue", zlab = "Relative saturation")

Tim
e

Tissue

R
elative saturation

Alternatively, to visualise the nitrogen tissue tensions during the dive,
use the interactive function showstates. This plots the dive and waits for
you to click on a position in the graph. The tissue tensions at that instant
are displayed as a bar plot. Here is a screenshot:

22



Time= 35 min
 Accumulated oxygen toxicity 26.9

Tissues (ZH−L16A)

R
el

at
iv

e 
sa

tu
ra

tio
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fast Slow

pedro902

Time (minutes)
D

ep
th

 (
m

et
re

s)

0 10 20 30 40 50

20
15

10
5

0

5.5 Oxygen toxicity

The total (pulmonary) oxygen toxicity incurred during a dive can be com-
puted by oxtox.

> oxtox(pedro902)

[1] 33.86758

This returns a number in the mysterious OTU (oxygen toxicity units).
The maximum tolerable dose per day is usually reckoned as 1500 OTU.
Allowing 650 OTU for recompression therapy implies a working maximum
of 850 OTU per day.

23



6 Technical diving

6.1 Gases

A breathing gas is represented by an object of class "gas". The object
air is a representation of compressed air (21% oxygen, 79% nitrogen) as an
object of this class. (Don’t reassign another value to this object!!!)

Nitrox mixtures (mixtures of oxygen and nitrogen) can be represented
using the function nitrox.

> nitrox(0.36)

EANx 36

> nitrox(1)

100% O2

> nitrox(0.21)

air

Trimix (a mixture of oxygen, nitrogen and helium) can also be repre-
sented, using the command trimix. For example, Trimix 15/50 (containing
15% oxygen, 50% helium and 35% nitrogen) is represented by trimix(0.15,
0.5).

> trimix(0.18, 0.45)

trimix 18/45

There are methods for print and summary for gas objects. The print
method just prints the name of the gas, as shown above. The summary
method is a bit more informative:

> summary(nitrox(0.36))

EANx 36 (36% oxygen, 64% nitrogen)
Maximum operating depth 28.9 metres

Standard nitrox calculations are also available:
ead equivalent air depth
mod maximum operating depth
maxmix richest nitrox mix for a given depth

To find the equivalent air depth for Nitrox 32 at 24 metres,

24



> ead(24, nitrox(0.32))

[1] 19.26582

To find the maximum operating depth for Nitrox 36, with the partial pres-
sure of oxygen at most 1.5 ata,

> mod(nitrox(0.36), 1.5)

[1] 31.66667

To find the richest Nitrox mix for a dive to 40 metres

> maxmix(40, 1.5)

EANx 30

6.2 Diving on different gases

Every "dive" object contains information about the breathing gas or gases
used in the dive. The default breathing gas is air.

As mentioned earlier, the function dive interprets its arguments as a
sequence of actions or events occurring during the dive. If an argument is a
vector of length 2, it is interpreted as c(depth,time) specifying the depth
and duration of a stage of the dive. If the argument is a single number, it is
interpreted as a depth, meaning that the diver ascends or descends to this
depth.

Each argument to dive may also be a ”gas” object, like nitrox(0.32),
which means that the diver switches to this gas. For example,

> dive(nitrox(0.32), c(30, 20))

Dive profile
gas: EANx 32

time depth
1 0:00 0
2 1:00 30
3 21:00 30
4 22:40 0

means a dive to 30 metres for 20 minutes conducted on EAN 32 (Nitrox
0.32) from start to finish. The command

25



> dive(c(30, 20), 5, nitrox(0.36), c(5, 3))

Dive profile
time depth gas

1 0:00 0 air
2 1:00 30 air
3 21:00 30 air
4 22:23 5 EANx 36
5 25:23 5 EANx 36
6 25:40 0 EANx 36

creates a dive on air to 30 metres for 20 minutes, ascending to 5 metres
while breathing air, then switching to EAN 36 for a safety stop at 5 metres
for 3 minutes.

6.3 Important tip

If you specify a dive profile on nitrox or trimix, and if part of the dive profile
is at the surface (depth zero), then the package will not assume you breathe air at the surface.
The package doesn’t automatically know whether you continued breathing
from the regulator when you reached the surface. It is equally plausible that
the diver removed the regulator and began breathing air at the surface, or
switched to a snorkel for a surface swim, or breathed from the regulator for a
surface swim. It’s perfectly sensible for a diver to conduct a decompression
stop on pure oxygen at 3 metres, then to surface and continue breathing
pure oxygen at the surface. So the following two dive profiles are different:

> dive(nitrox(0.25), c(30, 20), c(5, 3), c(0, 20))

Dive profile
gas: EANx 25

time depth
1 0:00 0
2 1:00 30
3 21:00 30
4 22:23 5
5 25:23 5
6 25:40 0
7 45:40 0

> dive(nitrox(0.25), c(30, 20), c(5, 3), 0, air, c(0, 20))

26



Dive profile
time depth gas

1 0:00 0 EANx 25
2 1:00 30 EANx 25
3 21:00 30 EANx 25
4 22:23 5 EANx 25
5 25:23 5 EANx 25
6 25:40 0 air
7 45:40 0 air

The user must decide whether the breathing gas at the surface is air or some
other gas.

6.4 Tank list

A dive object has a tank list which is a list of the tanks of breathing gas
that were used (or were available to be used) during the dive. The function
tanklist returns this list, and the function tanklist<- changes the list.

For example,

> d <- dive(c(30, 20), c(5, 5))

is a dive conducted using air. To modify it to a dive that used nitrox EANx
32, simply type

> tanklist(d) <- list(nitrox(0.32))

Here is a dive conducted using air (tank 1) for the deep section and EANx
50 (tank 2) for the decompression stops at 6 metres and 3 metres.

> d <- dive(air, c(30, 40), 6, nitrox(0.5), c(6, 3), c(3, 3))

To change the contents of tank 1 to EANx 32, type

> tanklist(d) <- list(nitrox(0.32), nitrox(0.5))

or just

> tanklist(d)[[1]] <- nitrox(0.32)

You can also associate a meaningful name with each tank. Just give names
to the entries in the tank list, for example

27



> tanklist(d) <- list(deep = nitrox(0.32), deco = nitrox(0.5))

or

> names(tanklist(d)) <- c("deep", "deco")

Perhaps the most readable way to specify the gases in a dive is to give
them as arguments to the dive command. You specify the tank list as the
argument tanklist, and switch between tanks by including an argument of
the form tank=number or tank=name.

> TL <- list(travel = trimix(0.18, 0.45), deco = nitrox(0.6))

> d <- dive(tanklist = TL, tank = "travel", c(30, 40), 6, tank = "deco",

+ c(6, 3), c(3, 3))

6.5 Tank switching

Tank switching and selection, i.e. which tank is actually used at each stage of
the dive, is specified by the function whichtank. The command whichtank(d)
returns a vector of integers or character strings, identifying which tank in the
tank list is in use at each waypoint during the dive. That is, whichtank(d)[i]
is the tank in use at the ith waypoint during the dive. The vector whichtank(d)
has the same length as the vectors depths.dive(d) and times.dive(d).

> whichtank(d)

[1] travel travel travel deco deco deco deco deco
Levels: travel deco

To change the selection of tanks at each stage during the dive, use the
function whichtank<-. For example, to change the dive d so that the deco
gas is only used at the 3-metre stop, type

> whichtank(d) <- ifelse(depths.dive(d) < 3, "travel", "deco")

Alternatively

> whichtank(d)[depths.dive(d) > 3] <- "travel"

would select the travel gas for all parts of the dive deeper than 3 metres.

28



6.6 Decompression calculations

Decompression calculations (haldane, ndl, showstates) also work with ni-
trox and trimix dives.

Decompression calculations with trimix require a Haldane model that
includes parameters for Helium diffusion. Use pickmodel("Z") to select
the Buehlmann ZH-L16A model, or hm to create a new model that includes
Helium diffusion.

The total oxygen toxicity incurred during a nitrox or trimix dive can also
be computed by oxtox.

Acknowledgements

The package was written by Adrian Baddeley <adrian@maths.uwa.edu.au>
with generous contributions and feedback from Vittorio Broglio and Pedro
Antonio Neves.

29


	Quick tour
	Getting started
	Disclaimer
	Dive profiles
	The dive command
	Creating a synthetic dive profile
	Real Dive Profiles
	Installed dive profiles
	Manipulating dive profiles

	Decompression Calculations
	Overview
	Model parameters
	No-decompression limits
	Tissue saturations
	Oxygen toxicity

	Technical diving
	Gases
	Diving on different gases
	Important tip
	Tank list
	Tank switching
	Decompression calculations


