
SAS7BDAT Database Binary Format

Matthew S. Shotwell

Contents

� Introduction

� SAS7BDAT Header

� SAS7BDAT Pages

� SAS7BDAT Subheaders

� SAS7BDAT Packed Binary Data

� Platform Differences

� Compression Data

� Software Prototype

� ToDo

Introduction

The SAS7BDAT file is a binary database storage file. At the time of this writing, no description of the
SAS7BDAT file format is publicly available. Hence, users who wish to read and manipulate these files
must obtain a license for the SAS software, or third party software with support for SAS7BDAT files.
The purpose of this document is to promote interoperability between SAS and other popular statistical
software packages, especially R (http://www.r-project.org/).

The information below was deduced by examining the contents of many SAS7BDAT databases down-
loaded freely from internet resources (see data/sources.csv). No guarantee is made regarding its ac-
curacy. No SAS software, nor any other software requiring the purchase of a license was used.

SAS7BDAT files consist of binary encoded data. Data files encoded in this format often have the
extension ’.sas7bdat’. The name ’SAS7BDAT’ is not official, but is used throughout this document to
refer to SAS database files formatted according to the descriptions below.

There appear to be significant differences in the SAS7BDAT format across operating systems (see
platform differences). The format described below applies to the majority of the collection of test files
referenced in data/sources.csv directory (i.e. files associated with Microsoft Windows).

The figure below illustrates the overall structure of the SAS7BDAT database. Each file consists of a
1024 byte header, followed by PC pages, each of length PS bytes (PC and PS are shorthand for ’page
count’ and ’page size’ respectively, and are used to denote these quantities throughout this document).:

----------

| 1024 | header

----------

| PS | page 1

----------

| PS | page 2

----------

...

1

http://www.r-project.org/


----------

| PS | page PC

----------

SAS7BDAT Header

The SAS7BDAT file header contains a binary file identifier (i.e. a magic number), the dataset name,
timestamp, the number pages (PC), their size (PS) and a variety of other values that pertain to the
database as a whole. The purpose of many header fields remain unknown, but are likely to include
specifications for data compression and encryption, password protection, and dates/times of creation
and/or modification. All files encountered encode multi-byte values little-endian (least significant byte
first). However, it is typical to specify endianness of multi-byte values in a file header.

The offset table below describes the SAS7BDAT file header as a sequence of bytes. Information stored
in the table is indexed by its byte offset (first column) in the header and its length (second column) in
bytes. Byte lengths having the form ’%n’ should read: ’the number of bytes remaining until byte n’. The
fourth column gives a short description of the data contained at this address. For example, ’LE uint,
page size := PS’ indicates that the data stored at the corresponding location is a little-endian unsigned
integer representing the page size, which we denote PS. The description ???????????? indicates that
the meaning of data stored at the corresponding location is unknown. The third column represents the
author’s confidence (low, medium, high) in the corresponding offset, length, and description. Each offset
table in this document is formatted in a similar fashion. Variables defined in an offset table are sometimes
used in subsequent tables.

Header Offset Table

offset length conf. description

0 32 high binary, magic number

32 3 low ????????????

35 3 low bitmasks (SAS host, SAS release)

38 1 low ????????????

39 1 low ascii, file format version (1-UNIX or 2-WIN)

40 52 low ????????????

92 64 high ascii, dataset name

156 8 medium ascii, file type

164 16 high 2x LE double, timestamp, secs since 1/1/60

180 16 low ????????????

196 20 low ????????????

200 4 high LE uint, page size := PS

204 4 high LE uint, page count := PC

208 8 low ????????????

216 8 high ascii, release

224 8 high ascii, host

232 56 low ????????????

288 48 low string with timestamps, license?

336 %1024 medium filler/zeros

The bitmasks at offsets 35, 36, and 37 appear to hold information regarding the offset of the ’release’
and ’host’ information. The following table describes the possible polymorphisms, where the first column
contains the hex values for bytes 35-37, the second column shows bytes 216-239 (’.’ represents a non-

2



ASCII character or ’0’, ’a’ represents an ASCII character), and the third column gives the type of
platform data observed there (’WIN *’ represents various Microsoft Windows types, such as ’WIN NT’
and ’WIN PRO’). Additional data files are needed to investigate this aspect further.

bytes 35-37 host + release data platform

32 22 01 aaaaaaaaaaaaaaaa........ WIN * and Linux

33 22 00 ....aaaaaaaaaaaa........ WIN

33 33 00 ........aaaaaaaaaaaaaaaa SunOS

The byte at offset 39 appears to distinguish the file format type, where ’1’ indicates that the file was
generated on a UNIX-like system, such as Linux or SunOS, and ’2’ indicates the file was generated on a
Microsoft Windows platform.

Magic Number

The SAS7BDAT magic number is the following 32 byte (hex) sequence.:

00 00 00 00 00 00 00 00

00 00 00 00 c2 ea 81 60

b3 14 11 cf bd 92 08 00

09 c7 31 8c 18 1f 10 11

SAS7BDAT Pages

Following the SAS7BDAT header are pages of data. Each page can be one of (at least) four types. The
first three are those that contain meta-information (e.g. field/column attributes), packed binary data, or
a combination of both. These types are denoted ’meta’, ’data’, and ’mix’ respectively. Meta-information
is required to correctly interpret the packed binary information. Hence, this information must be parsed
first. In test files (see data/sources.csv), pages containing meta-information always precede pages
consisting entirely of packed binary data. In some test data files (from a single source), there is a fourth
page type (04) which appears to encode additional meta information. This page usually occurs last, and
appears to contain amended meta information. It’s purpose is unclear.

The page offset table below describes each page type. Byte offsets appended with one of ’(meta/mix)’,
’(mix)’, or ’(data)’ indicate that the corresponding length and description apply only to pages of the listed
type.

Page Offset Table

offset length conf. description

0 4 low ???????????? (sometimes repeated)

4 8 low ???????????? (not critical)

12 4 low ???????????? row/col related (not critical)

16 1 low ????????????

17 1 low LE uint, page type meta/data/mix/? (0/1/2/4)

18 (meta/mix) 2 low ????????????

20 (meta/mix) 4 medium LE uint, number of subheader pointers := L

24 (meta/mix) L*12 medium L subheader pointers, 24+L*12 := M

M (meta) %PS medium subheader data

M+M%8 (mix) %PS medium SAS7BDAT packed binary data

... continued on next page

3



offset length conf. description

18 (data) 4 medium LE uint, page row count

24 (data) %PS medium SAS7BDAT packed binary data

If a page is of type ’meta’ or ’mix’, data beginning at offset byte 24 are a sequence of L 12-byte
subheader pointers, which point to an offset farther down the page. SAS7BDAT Subheaders stored at
these offsets hold meta information about the database, including the column names, labels, and types.

If a page is of type ’mix’, then packed binary data begin at the next 8 byte boundary
following the last subheader pointer. In this case, the data begin at offset 24+L*12 + (24+L*12)
% 8, where ’%’ is the modulo operator.

If a page is of type ’data’, then packed binary data begin at offset 24.

Subheader Pointers

The subheader pointers encode information about the offset and length of subheaders relative to the
beginning of the page where the subheader pointer is located. The purpose of the last four bytes of the
subheader pointer are uncertain, but may indicate that additional subheader pointers are to be found on
the next page, or that the corresponding subheader is not crucial.

offset length conf. description

0 4 high LE uint, offset from page start to subheader

4 4 high LE uint, length of subheader := H

8 1 low LE uint, optional (0/1)?

9 1 low LE uint, continue next page (0/1)?

10 2 low ????????????

SAS7BDAT Subheaders

Subheaders contain meta information regarding the SAS7BDAT database, including row and column
counts, column names, labels, and types. Each subheader is associated with a four-byte ’signature’ that
identifies the subheader type, and hence, how it should be parsed.

Row Size Subheader

The row size subheader holds information about row length (in bytes), their total count, and their count
on a page of type ’mix’.

offset length conf. description

0 4 medium binary, signature F7F7F7F7

4 16 low ????????????

20 4 medium LE uint, row length (in bytes)

24 12 medium LE uint, row count := r (12 bytes?)

36 12 medium LE uint, column count (12 bytes?)

48 4 low ????????????

52 4 low LE uint, page size?

56 4 low ????????????

60 4 medium LE uint, max row count on “mix” page

64 8 medium sequence of 8 FF, end of header

... continued on next page

4



offset length conf. description

72 %H low filler

Column Size Subheader

The column size subheader holds the column count.

offset length conf. description

0 4 medium binary, signature F6F6F6F6

4 8 medium LE uint, column count := CC

Signature 00FCFFFF Subheader

The purpose of the subheader with signature 00FCFFFF is unknown. This subheader might contain
pointers to column formatting information relative to the column text subheader.

offset length conf. description

0 4 medium binary, signature 00FCFFFF

4 %H low ????????????

Column Text Subheader

The column text subheader contains all text associated with columns, including the column name, label,
and formatting. However, this subheader is not sufficient to parse these information. Other subheaders
(e.g. the column name subheader), which point to specific elements relative to this subheader are also
needed.

offset length conf. description

0 4 medium binary, signature FDFFFFFF

4 12 medium LE uint, length of remaining subheader

16 60 medium ascii, proc name that generated data?

76 %H high ascii, combined column names, labels, formats

Column Name Subheader

The column name subheader contains a sequence of column name pointers to the offset of each column
name relative to the ‘column text subheader‘ .

offset length conf. description

0 4 medium binary, signature FFFFFFFF

4 8 medium LE uint, length of remaining subheader

12 8*CC medium column name pointers (see below)

12+8*CC 8 medium filler

Column Name Pointers

5



offset length conf. description

0 1 low LE uint, offset relative to page 04 subheader

0 1 low ?????????????

2 2 medium LE uint, column name offset w.r.t. FDFFFFFF

4 2 medium LE uint, column name length

6 2 low binary, zeros

If the first byte in the column name pointer is 01 (it is usually 00), this indicates that the column
name offset is relative to an ’amendment subheader’ (i.e. a subheader with the same signature, but found
on an amendment page (page type 04).

Column Attributes Subheader

The column attribute subheader holds information regarding the column offsets within a row, the column
widths, and the column types (either numeric or character). The column attribute subheader sometimes
occurs more than once (in test data). In these cases, column attributes are applied in the order they are
parsed.

offset length conf. description

0 4 medium binary, signature FCFFFFFF

4 8 medium LE uint, length of remaining subheader

12 12*CC medium column attributes (see below)

12+12*CC 8 medium filler

Column Attributes

offset length conf. description

0 4 medium LE uint, column offset in w.r.t. row

4 4 medium LE uint, column width

8 2 low ????????????

10 2 medium LE uint, column type (01-num, 02-chr)

Column Label Subheader

The column label subheader contains a column label pointer to the offset of a column label relative to
the ‘column text subheader‘ . Since the column label subheader only contains information regarding
a single column, there are typically as many column label subheaders as columns.

offset length conf. description

0 4 medium binary, signature FEFBFFFF

4 38 low ????????????

42 2 medium LE uint, column label offset wrt FDFFFFFF

44 2 medium LE uint, column label length

46 6 low ????????????

6



SAS7BDAT Packed Binary Data

SAS7BDAT packed binary data are stored by rows, where the size of a row (in bytes) is defined by the
row size subheader. When multiple rows occur on a single page, they are immediately adjacent. When a
database contains many rows, it is typical that the collection of rows (i.e. their data) is evenly distributed
to a number of ’data’ pages. However, in test files, no single row’s data is broken across two or more
pages. A single data row is parsed by interpreting the binary data according to the collection of column
attributes contained in the column attributes subheader. Binary data can be interpreted in two ways,
as ASCII characters, or as floating point numbers. The column width attribute specifies the number of
bytes associated with a column. For character data, this interpretation is straight-forward. For numeric
data, interpretation of the column width is more complex.

The common binary representation of floating point numbers has three parts; the sign (s), exponent
(e), and mantissa (m). The corresponding floating point number is s * m ^ e. Under the IEEE 754
floating point standard, the sign requires 1 bit, the exponent requires 11, and the mantissa requires 52
bits, for a total of 8 bytes. In SAS7BDAT file, numeric quantities can be 3, 4, 5, 6, 7, or 8 bytes in
length. For numeric quantities using less than 8 bytes, some number of bytes are absent from the most
significant part of the mantissa. The smaller width mantissa means that the range of possible values is
restricted. The table of numeric binary formats below describes how bits are distributed among the six
possible column widths in SAS7BDAT files.

Numeric Binary Formats

size 24bit 32bit 40bit 48bit 56bit 64bit1

bytes 3 4 5 6 7 8

sign 1 1 1 1 1 1

exponent 11 11 11 11 11 11

mantissa 12 20 28 36 44 52

Platform Differences

The test files referenced in data/sources.csv were examined over a period of time. Files with non-
Microsoft Windows markings were only observed late into the writing of this document. Consequently
(but not intentionally), the SAS7BDAT description above is specific to SAS datasets generated on the
most commonly observed platform: Microsoft Windows. The format of SAS7BDAT files generated on
other platforms are formatted differently.

In particular, the files natlerr1944.sas7bdat, natlerr2006.sas7bdat appear to be generated on
the ’SunOS’ platform. The header in these files appear to be 8196 bytes, rather than the 1024 seen on
Microsoft Windows platforms.

The files cfrance2.sas7bdat, cfrance.sas7bdat, coutline.sas7bdat, gfrance2.sas7bdat, gfrance.sas7bdat,
goutline.sas7bdat, xfrance2.sas7bdat, xfrance.sas7bdat, xoutline.sas7bdat appear to be gen-
erated on a ’Linux’ system.

Compression Data

The table below presents the results of compression tests on a collection of 142 SAS7BDAT data files
(sources in data/). The ’type’ field represents the type of compression, ’ctime’ is the compression time
(in seconds), ’dtime’ is the decompression time, and the ’compression ratio’ field holds the cumulative
disk usage (in megabytes) before and after compression. Although the xz algorithm requires significantly
more time to compress these data, the decompression time is on par with gzip.

1Only 64bit is IEEE 754 compliant!

7



type ctime dtime compression ratio

gzip -9 76.7s 2.6s 541M / 30.3M = 17.9

bzip2 -9 92.7s 11.2s 541M / 19.0M = 28.5

xz -9 434.2s 2.7s 541M / 12.8M = 42.3

Software Prototype

The prototype program for reading SAS7BDAT formatted files is implemented entirely in R (see file
src/sas7bdat.R). Files not recognized as having been generated under a Microsoft Windows platform
are rejected (for now). Implementation of the read.sas7bdat function should be considered a ’reference
implementation’, and not one designed with performance in mind.

There are certain advantages and disadvantages to developing a prototype of this nature in R.
Advantages:

1. R is an interpreted language with built-in debugger. Hence, experimental routines may be
implemented and debugged quickly and interactively, without the need of external compiler
or debugger tools (e.g. gcc, gdb).

2. R programs are portable across a variety of computing platforms. This is especially important
in the present context, because manipulating files stored on disk is a platform-specific task.
Platform-specific operations are abstracted from the R user.

Disadvantages:

1. Manipulating binary (raw) data in R is a relatively new capability. The best tools and
practices for binary data operations are not as developed as those for other data types.

2. Interpreted code is often much less efficient than compiled code. This is not major disadvan-
tage for prototype implementations because human code development is far less efficient than
the R interpreter. Gains made in efficient code development using an interpreted language
far outweigh benefit of compiled languages.

ToDo

� experiment further with ’amendment page’ concept

� consider header bytes -by- SAS host

� check that only one page of type“mix”is observed. If so insert“In all test cases (data/sources.csv),
there are exactly zero or one pages of type ’mix’.” under the Page Offset Table header.

� identify all missing value representations: missing numeric values appear to be represented as
’0000000000D1FFFF’ (nan) for numeric ’double’ quantities.

� identify purpose of subheader 00FCFFFF

� identify purpose of unknown header quantities

� determine other bytes in subheader with signature FEFBFFFF

� can SAS7BDAT files use non-ASCII encoding?

� identify SAS7BDAT compression and encryption methods (this is not the same as ’cracking’, or
breaking encryption): data files may be compressed using the RLE (CHAR) and RDC (BINARY)
algorithms.

8


	Contents
	Introduction
	SAS7BDAT Header
	Header Offset Table
	Magic Number

	SAS7BDAT Pages
	Page Offset Table
	Subheader Pointers

	SAS7BDAT Subheaders
	Row Size Subheader
	Column Size Subheader
	Signature 00FCFFFF Subheader
	Column Text Subheader
	Column Name Subheader
	Column Name Pointers

	Column Attributes Subheader
	Column Attributes

	Column Label Subheader

	SAS7BDAT Packed Binary Data
	Numeric Binary Formats

	Platform Differences
	Compression Data
	Software Prototype
	ToDo

