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1 Introduction

The “Stem” class is a virtual class that is meant to form a basis for more descriptive subclasses.
The idea is to contain all the common information for, e.g., down logs and standing trees, within
this base class, then add more information as needed by generating new subclasses. This, of course,
could go on for any number of inheritance levels. Time will tell whether this ends up being a
reasonable approach, and it is possible that some of the information left for the subclasses might
be better moved to the base class, but this can be remedied later.

∗Phone: (603) 868-7667; Fax: (603) 868-7604.
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Currently, just the dual branches for downed logs (“downLog” class) and standing trees are envi-
sioned, but perhaps more will present themselves. In addition, the base “Stem” class, and thus
the subclasses, all rely on the sp package in R. It is used to provide a convenient platform for
graphical display that will allow not only user-defined coordinates, but also will support any co-
ordinate system defined in proj.4—with the exception of lat-long, since spatial coordinates must
be commensurate with log dimension units. The drawback to this approach, of course, is that
some familiarization with sp is required for extending classes. However, for the average user, the
spatial components are encapsulated within the objects, are generated automatically by the object
constructors, and plot naturally, as we shall see in the examples below.

The “Stem” class was created to be used within the sampling surface system of simulation. This
is detailed elsewhere in the package documentation (see, e.g., “The sampSurf Package Overview”),
and the class structure is contained within the R package sampSurf (see, e.g., package?sampSurf).

An overview of the “Stem” class structure is presented in Figure 1.

Stem

downLogstandingTree

downLogs

The Stem Class

Figure 1: An overview of the “Stem” class. The “standingTree” class has not been implemented yet
and the “downLogs” class is not really a subclass, but is instead a container class for a population
of “downLog” objects.
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2 The “Stem” Class

Again, this is a virtual class, so no objects can be directly created from it. However, some methods
for this class are defined to give basic functionality to subclasses if desired. The class definition is
given as. . .

R> getClass('Stem')

Virtual Class "Stem" [package "sampSurf"]

Slots:

Name: species units location spUnits description
Class: character character SpatialPoints CRS character

Name: userExtra
Class: ANY

Known Subclasses: "downLog"

We see from the above listing that there are several slots defined for this class. These are detailed
below.

2.1 Class slots

� species: This is some description of the species. It is entirely left to the user whether it might
be codes, common names, Latin names, all of the above, etc.

� units: A character string specifying the units of measure. Legal values are “English” and
“metric.”

� location: This is a “SpatialPoints” representation of the location of the object. For example,
in the “downLog” class, this is the center of the log, both longitudinally and radially.

� spUnits: A valid string of class “CRS” denoting the spatial units coordinate system (“?CRS”
for more information) as in package sp.

� description: A character vector with any comments about the stem if desired.

� userExtra: This can be anything else the user wants to associate with the object. Normally,
it might be in the form of a list object, but can be anything. The user has complete control
over this, it will not be used in any of the methods applied to the class, it is there for extra
information storage as desired.
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3 The “downLog” Class

This is a direct subclass of “Stem” as shown above, and is a general class for down coarse woody
debris. It should be general enough to contain data generated for simulation and those collected in
a field study, where the log locations are measured (locations could also be generated for measured
logs if missing).

One very important aspect of this class design came about mainly because of graphical considera-
tions. It is very important that the diameters be in the same units as length as stored within the
object. That means, if length is in meters, then diameters should be in meters, not centimeters.
We will present ways to handle this in object creation later so that it is not burdensome.

3.1 “downLog” class slots

The object slots are defined as. . .

R> showClass('downLog')

Class "downLog" [package "sampSurf"]

Slots:

Name: buttDiam topDiam logLen logAngle
Class: numeric numeric numeric numeric

Name: solidType logVol surfaceArea coverageArea
Class: numericNULL numeric numeric numeric

Name: biomass carbon conversions taper
Class: numeric numeric numeric data.frame

Name: profile rotLog spLog slNeedleAxis
Class: data.frame matrix SpatialPolygons SpatialLines

Name: species units location spUnits
Class: character character SpatialPoints CRS

Name: description userExtra
Class: character ANY

Extends: "Stem"
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Notice that the last six slots are inherited from “Stem.” The others are new and are defined as
follows. . .

� buttDiam: The large-end diameter, in the same units as length.

� topDiam: The small-end diameter, in the same units as length.

� logLen: The log length in meters or feet.

� logAngle: The angle of lie for the log. It should be relative to the log center, which is defined
as the center of the ‘needle’ that defines the long axis, and also with respect to cross-section—
the location slot in other words. Note that the canonical position is the log lying with tip
due east with center at (0, 0). Angles of rotation are counter-clockwise from this position.
This is an important point to consider if, for example, log angles have been taken for north,
they must first be converted to east as the origin.

� solidType: This is the taper, surface area, and volume equation exponent parameter. If one
measures taper and volume directly, it will not be used, but if either are computed, it should
be an appropriate approximation to log form. See below for more details on the default taper
equations.

� logVol : The log volume in cubic units of length.

� surfaceArea: The log surface area in square units of length.

� coverageArea: The log projected coverage area in square units of length. Essentially, if you
projected the widest portion of the log (i.e., the diameter) vertically onto the ground along
the entire log’s length and took the area of this polygon, it is what is termed coverage area
here.

� taper : The taper for the log. This can be measured and passed when creating the object.
Normally, however, it will be generated using the buttDiam, topDiam and a taper equation
with nSegs segments (see downLog constructor below). If the default equation is used, then it
will also rely on solidType. The taper must be a data frame with columns labelled diameter
and length. Finally, diameters must be in the same units as length.

� profile: The two-dimensional stem profile based on taper. This is always oriented as if the
log were standing (north) for ease of interpretation. It is a data frame with columns radius
and length. It is reflective, containing both sides of the log in a closed polygon in the sp
“SpatialPolygons” sense. The central longitudinal axis is located at x = 0, with the butt at
y = 0.

� rotLog : This is the profile rotated to its correct position in terms of logAngle and location.
It is a matrix in homogeneous coordinate form with columns x, y and hc. You can, for example,
plot these points to identify the location of the taper measurements on the log outline.
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� spLog : Both profile and rotLog (as well as taper) are intermediate steps to the “Spa-
tialPolygons” object of this name. It has the exact same data as rotLog, but in the “Spa-
tialPolygons” form. This allows the log to be easily plotted in the correct juxtaposition using
the sp package routines.

� slNeedleAxis: Holds the “SpatialLines” object defining the longitudinal ‘needle’ axis of the
log, again in the correct sense of location and rotation.

3.2 Object creation

An object of class “downLog” can be created using the S4 new operator. However, because the slot
specifications are rather lengthy, this approach is not recommended; but one can get a ‘dummy’
downed log from simply. . .

R> dl = new('downLog')

R> validObject(dl)

[1] TRUE

R> slot(dl, 'spLog')

An object of class "SpatialPolygons"
Slot "polygons":
list()

Slot "plotOrder":
integer(0)

Slot "bbox":
min max

[1,] NA NA
[2,] NA NA

Slot "proj4string":
CRS arguments: NA

Note that a valid object is created, but it is not of much use. For example, the taper slot is trivial
by default, being the entire log. The default object generated above, has random slots generated
in metric as 0.1 ≤ buttDiam ≤ 0.8, topDiam = runif(1,0,0.9) × buttDiam with length lying
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between 1 and 10 meters; logAngle is random over zero to 2π. As shown, there is no information
for plotting the log via the sp package. Clearly this is all just used to get a minimally valid object
and the user should have much more control. Now, one can certainly specify any other slots when
using new, but that becomes cumbersome. On the other hand, one can generate random dimensions
and angles for logs this way, and then use them subsequently in a call to the constructor to get a
complete “downLog” object if desired, though using sampleLogs (see below) is a much better choice
for this.

The “downLog” class has two constructor functions that have the same name as the class (see
(methods?downLog) for a complete list of arguments), that should be used in preference to new
in order to create new “downLog” objects. Essentially, the two constuctors allow one to generate
“downLog” objects from either simple measurements like the butt and tip diameters and the length,
or from detailed taper data. Examples are shown in what follows for each method.

3.2.1 Object creation with the default taper equation

First, we generate a “downLog” object using simple measurements. . .

R> dl = downLog(species='eastern white pine', logLen=8,

+ buttDiam=50, topDiam=0, centerOffset=c(x=3,y=2),

+ logAngle=pi/4, description='Durham, NH',

+ userExtra=list(decayClass=4))

The key (and first) argument in the “downLog” generic function is object, it defines the signature
of the constructor methods. If it is missing, as in the case above, then it is assumed that no taper
data exist, and that instead, taper is to be calculated for the log. In this case, the following taper
and volume equations are applied (Van Deusen, 1990). . .

d(l) = Du + (Db −Du)
(
L− l
L

) 2
r
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where Db is the large-end or butt diameter, with small-end diameter Du, 0 ≤ l ≤ L is the inter-
mediate log length for volume or diameter estimates, and r is a parameter such that 0 ≤ r < 2
generates a neiloid, r = 2 generates a cone, and r > 2 generates a paraboloid. The r parameter is
specified directly via the solidType argument, which defaults to r = 3. Note again that with these
taper and volume equations, the units for diameters must be the same as for length.
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In addition, the above equation for taper can be integrated to find the surface area of the log. The
general surface area integral is given as (Mizrahi and Sullivan, 1982, p. 690). . .

S = 2π
∫ b

a
y
√

1 + f ′(x)2 dx (4)

where y = f(x) is a function in terms of radius (for a surface of revolution) not diameter; and
the term

√
1 + f ′(x)2 when integrated is arc length (Mizrahi and Sullivan, 1982, p. 336). Williams

et al. (2005) put (4) in terms of diameter as. . .

S = π

∫ L

0
d(l)

√
1 +

d′(l)2

4
dl (5)

where d(l) is the taper function and d′(l) is its first derivative with respect to log length. Thus, we
require the derivative of the taper equation (1) to evaluate (5), which is given as. . .

d′(l) = −2
(Db −Du)(L− l)2/r−1

rL2r
(6)

The integral in (5) does not appear to have a closed-form solution. However, it is trivial in R
to numerically integrate, and this is what is done in the downLog constructor when the default
taper equation is used. Please note that surface area, like volume, is for an idealized log (round,
straight) and certainly does not take bark fissures, etc. into account. If that is important, one can
derive a subclass for “downLog” with finer calculation, or pass the pre-calculated surface area to
the constructor.

Like surface area, log coverage area can be derived from the taper equation (1). . .

C =
∫ L

0
d(l) dl (7)

=
(rDb + 2Du)

r + 2
L (8)

For individual section or bolt coverage, the solution to the integral is a little messier, but it is
closed-form, so quite workable in R. . .

C =
∫ b

a
d(l) dl (9)

=
1

(r + 2)L2/r

{
((b− a)Dur + (2b− 2a)Du)L2/r

+ (L− b)2/r((Du −Db)rL+ (bDb − bDu)r)

+(L− a)2/r((Db −Du)rL+ (aDu − aDb)r)
}

(10)

where a and b are the lower and upper lengths along the log for the segment in question. A little
algebra shows that when a = 0 and b = L, (10) does indeed reduce to (8). Again, the caveat that,
like surface area, coverage area is calculated for the ideal log.
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The rest of what goes on in generating the object slots is pretty straightforward. Once the taper
has been determined, a profile can be generated. Then the log is rotated and translated to its
final position as specified by logAngle and centerOffset. Log volume, surface and coverage area
can be passed to the constructor, in which case, those quantities override the taper function-based
version.1 Note that section volumes are not calculated or saved. If these are desired, one can use
the boltDimensions function (see ?boltDimensions) on a valid “downLog” object to generate all
log dimensions for each segment. A summary of the newly created object is supplied via. . .

R> summary(dl)

Object of class: downLog
------------------------------------------------------------
Durham, NH
------------------------------------------------------------

Stem...
Species: eastern white pine
units of measurement: metric
spatial units: NA
location...
x coord: 3
y coord: 2
(Above coordinates are for log center)

Spatial ID: log:s8e650nm

downLog...
Butt diameter = 0.5 meters (50 cm)
Top diameter = 0 meters (0 cm)
Log length = 8 meters
Log volume = 0.67319843 cubic meters
Log surface area = 7.542549 square meters
Log coverage area = 2.4 square meters
Log angle of lie = 0.78539816 radians (45 degrees)
Taper parameter = 3

Taper (in part)...
diameter length

1 0.50000000 0.0
2 0.48319126 0.4
3 0.46608488 0.8
4 0.44865856 1.2

1Be careful with this, all section volumes are based on the taper points and if your total log values are not based
on these, they may conflict with the sum of the section volumes.
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5 0.43088694 1.6
6 0.41274091 2.0

"Note: userExtra" slot is non-NULL

Finally, recall from the class definition presented earlier that the diameters stored internally within
the created object (i.e., buttDiam, topDiam, taper@diameter) are in the same units as length.
However, it is very imprtant to keep in mind that the constructor arguments for buttDiam and
topDiam are assumed to be in traditional measurement units (inches for “English” and cm for
“metric”), and are converted within the object constructor to feet or meters depending upon the
value of the argument units. This was done because it is more natural to think in these terms for
the two diameter arguments used here, and field measurements will not require prior conversion.

3.2.2 Object creation from taper measurements

The second constructor is automatically invoked when a data frame is provided by the user as the
method signature (first) argument. This argument must be a data frame specifying the log’s taper
values (see the taper slot in class “downLog” for details), presumably as measured in the field,
although it could just as easily have been generated from some other taper equation that is more
appropriate to the log in question. Please keep in mind that the taper data frame is assumed to
have all measurements (both diameter and length) in the same units as length. This is different
than the first constructor, as explained above, where the arguments will be converted internally.
We can see how this might work with the following simple example. . .

R> lt = dl@taper

R> nt = nrow(lt)

R> fdx = ifelse(1:nt%%2, TRUE, FALSE)

R> (oddTaper = lt[fdx,])

diameter length
1 0.50000000 0.0
3 0.46608488 0.8
5 0.43088694 1.6
7 0.39418676 2.4
9 0.35568933 3.2
11 0.31498026 4.0
13 0.27144176 4.8
15 0.22407024 5.6
17 0.17099759 6.4
19 0.10772173 7.2
21 0.00000000 8.0
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Next we can create a new object (obviously with the same overall dimensions as the log it was
taken from above, but with only every other taper measurement) using this taper information. . .

R> dl2 = downLog(oddTaper, species='eastern white pine',

+ centerOffset=c(x=2.5, y=2),

+ logAngle=3*pi/4, description='Durham, NH',

+ userExtra=list(decayClass=1) )

R> summary(dl2)

Object of class: downLog
------------------------------------------------------------
Durham, NH
------------------------------------------------------------

Stem...
Species: eastern white pine
units of measurement: metric
spatial units: NA
location...
x coord: 2.5
y coord: 2
(Above coordinates are for log center)

Spatial ID: log:s7j18hy4

downLog...
Butt diameter = 0.5 meters (50 cm)
Top diameter = 0 meters (0 cm)
Log length = 8 meters
Log volume = 0.67100624 cubic meters
Log surface area = 7.530322 square meters
Log coverage area = 2.3961038 square meters
Log angle of lie = 2.3561945 radians (135 degrees)
Taper parameter = NULL

Taper (in part)...
diameter length

1 0.50000000 0.0
3 0.46608488 0.8
5 0.43088694 1.6
7 0.39418676 2.4
9 0.35568933 3.2
11 0.31498026 4.0
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"Note: userExtra" slot is non-NULL

In the above example, we have essentially the same log, but with fewer sections derived from
measurements passed to the constructor as a data frame in the signature argument. The log angle
and offset are a little different than with the previous log. Notice that other downLog constructor
arguments such as buttDiam are missing here since these are assigned directly from the taper
information.2

If you are unfamiliar with S4 classes, this is a very simple illustration of how one can use the
signature argument(s) of the generic function to dictate the results using methods that key on each
defined signature. Note especially, that missing is a valid type for signature arguments (as in the
first constructor). A short introduction to S4 is provided in “The sampSurf Package Overview”
vignette. Note that in the above examples, the summary generic function has been extended with
methods for the “downLog” class.

In the current case where a set of taper measurements are used to construct the “downLog” object,
we obviously do not have a taper model available to work with for volume, surface and coverage area
calculation. A taper equation may have been used to generate the data frame, but it becomes too
complicated to include such a function in the object and expect that other forms such as volume and
surface area will be available as well. So the simplest approach in designing the“downLog”class was
to include just the data frame. We can use either geometric models or spline functions to calculate
the required volumes, coverage and surface areas from the taper data frame points. Currently, the
default method for calculating log volumes is to use Smalian’s formula on each segment in the taper
data frame and sum these for the log total. This is familiar to foresters and should be adequate for
most uses.3 For surface area, it is trivial in R to generate a cubic spline function that can be used
to evaluate (5) by numerical integration. Note particularly, that this method enables us to evaluate
the derivative (arc length) component in the integral, just like with the default taper equation.
Another option would be to use a geometric model like a conic frustrum, but in tests the splines
worked better and performed very well when taper points were generated from (1), in fact they are
almost exact in many cases. Coverage area is handled similarly via R’s spline mechanism.

3.2.3 Object creation for “simple” logs

A final example shows how we can create a valid “downLog” object in the absence of taper informa-
tion, and without using the default taper function. Such a case might arise from field measurements
where perhaps Smalian’s rule or some other has been used to calculate volumes based on the length
and two end diameters. Again, to bypass the internal taper and volume equations, simply supply
a “trivial” taper data frame containing the butt and top diameters and the length (a data frame of
2 rows) to the constructor. . .

2These arguments as well as logLen are just ignored if passed as they are gobbled into the “...” argument.
3This may change eventually, to put in spline volumes instead.



The “Stem” Class. . . §3 The “downLog” Class Gove 13

R> dim(lt)

[1] 21 2

R> dtaper = lt[c(1,10),]

R> dim(dtaper)

[1] 2 2

R> logLen = dtaper[2,'length']

R> logVol = sum(pi*dtaper[,'diameter']^2/4)*logLen/2

R> logSA = with( dtaper, pi*(diameter[1]/2 + diameter[2]/2)*

+ sqrt((diameter[1]/2 - diameter[2]/2)^2 + logLen^2) )

R> logCA = with( dtaper, logLen*(diameter[1] + diameter[2])/2 )

R> dl3 = downLog(dtaper, logVol=logVol, surfaceArea=logSA, coverageArea=logCA,

+ description = "Smalian's")

R> dl3

Object of class: downLog
------------------------------------------------------------
Smalian's
------------------------------------------------------------

Stem...
Species:
units of measurement: metric
spatial units: NA
location...
x coord: 0
y coord: 0
(Above coordinates are for log center)

Spatial ID: log:61hvy30d

downLog...
Butt diameter = 0.5 meters (50 cm)
Top diameter = 0.33564367 meters (33.564367 cm)
Log length = 3.6 meters
Log volume = 0.5126938 cubic meters
Log surface area = 4.7266847 square meters
Log coverage area = 1.5041586 square meters
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Log angle of lie = 0 radians (0 degrees)
Taper parameter = NULL

Taper (in part)...
diameter length

1 0.50000000 0.0
10 0.33564367 3.6

R> dl3 = downLog(dtaper, description = "Smalian's check")

R> c(logVol, dl3@logVol, .StemEnv$SmalianVolume(dl3@taper)$logVol)

[1] 0.5126938 0.5126938 0.5126938

R> c(logSA, dl3@surfaceArea, .StemEnv$splineSurfaceArea(dtaper, 0, logLen))

[1] 4.7266847 4.7266847 4.7266847

R> c(logCA, dl3@coverageArea, .StemEnv$splineCoverageArea(dtaper, 0, logLen))

[1] 1.5041586 1.5041586 1.5041586

R> dl3@solidType

NULL

Remember, the diameters in the taper data frame are always in the same units as length (in this case
meters), so we apply Smalian’s rule to the two end diameters to approximate log volume, the area
of a trapezoid to approzimate coverage area, and then the geometric formula for a conic frustrum
to calculate surface area. The constructor next created a valid object with these volume, coverage
and surface area estimates that can be plotted and used in simulation like any other. The fact that
it is less informative with regard to taper is common to many data sets taken from down coarse
woody debris inventories. The next step shows that if one had left out the logVol, coverageArea
and surfaceArea arguments, then the constructor would have calculated the volume via Smalian’s,
and surface and coverage area via splines automatically (as long as solidType=NULL (the default)
in the method call), as described above. We then compare the geometric model estimates and the
constructor estimates with those from the built-in package functions (see ?.StemEnv).4 The volume

4The latter two comparisons are redundant as they are using the same functions, but illustrate how to call the
internal functions if desired.
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estimate for Smalian’s is exactly the same as it is used in both cases; the surface area from the
conic frustrum and the spline also agree in this case exactly, as do those for coverage area.5

In most cases, one will probably just want to use the default taper and volume equations with
appropriate solid type for the equations. The above example shows how we can circumvent that
if you only want to use something like Smalian’s rule to get a simple estimate of log volume.
Alternatively, one can code their own taper and or volume equations and pass the taper data frame
and calculated volumes to the constructor. This flexibility allows for a number of different log
generation scenarios beyond what is supplied in the default taper-volume equations.

3.2.4 Generating log segment dimensions

It was mentinoed earlier that log segment (section or bolt) dimensions such as volume, coverage and
surface area are not stored with the object. There really is no need for this, as they can be generated
at any time using the methods based on the two scenarios presented in the previous sections for
object creation. The function that accomplishes this is boltDimensions, which is demonstrated as
follows. . .

R> bd3 = boltDimensions(dl3)

Summary of bolts in taper data frame...
----------------------------------------
Units = metric
Number of segments = 1
Solid type = NULL
Total Length = 3.6 meters
Total volume = 0.5126938 cubic meters (from Smalian's)
Total biomass = NA
Total carbon = NA
Total surface area = 4.7266847 square meters (from spline fit)
Total coverge area = 1.5041586 square meters (from spline fit)

R> format(bd3, dig=4)

botDiam topDiam botLen topLen boltLen volume surfaceArea coverageArea biomass
1 0.5 0.3356 0 3.6 3.6 0.5127 4.727 1.504 NA
carbon

1 NA
5This will rarely be the case, they are exact here because the two points in the “simple” log make a conic frustrum,

and the spline approximates this almost exactly to machine precision.
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R> bd = boltDimensions(dl)

Summary of bolts in taper data frame...
----------------------------------------
Units = metric
Number of segments = 20
Solid type = 3
Total Length = 8 meters
Total volume = 0.67319843 cubic meters (from taper equation)
Total biomass = NA
Total carbon = NA
Total surface area = 7.5425487 square meters (from taper equation)
Total coverge area = 2.4 square meters (from taper equation)

R> format(head(bd), dig=4)

botDiam topDiam botLen topLen boltLen volume surfaceArea coverageArea
1 0.5000 0.4832 0.0 0.4 0.4 0.15229 0.6179 0.1966
2 0.4832 0.4661 0.4 0.8 0.4 0.12339 0.5966 0.1899
3 0.4661 0.4487 0.8 1.2 0.4 0.09882 0.5749 0.1830
4 0.4487 0.4309 1.2 1.6 0.4 0.07811 0.5528 0.1759
5 0.4309 0.4127 1.6 2.0 0.4 0.06084 0.5302 0.1687
6 0.4127 0.3942 2.0 2.4 0.4 0.04661 0.5072 0.1614
biomass carbon

1 NA NA
2 NA NA
3 NA NA
4 NA NA
5 NA NA
6 NA NA

There is only one bolt in our “simple” log, and the estimates agree with those calculated above.
Similarly, for our more complicated log that was originally generated from the default taper model,
the dimensions agree with those shown in previous sections. In general, bolt dimensions are calcu-
lated as described above using the default taper equations (if solidType is not NULL), or using the
approximation methods when taper data has been provided by the user (solidType is NULL).

3.2.5 Biomass and carbon

Biomass and carbon estimates are obviously an area of some importance now adays. However, the
calculation of these quantities on an individual log basis has purposely been left up to the user in
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terms of conversions used, because the quantities can be reported in a number of different ways. One
may want to calculate either dry or green/fresh weight and not care about carbon. Alternatively,
one may want an estimate of carbon from woody dry matter. The downLog constructor allows one
to either enter biomass and carbon directly, or to use conversion factors to go from cubic volume
to biomass, and then from biomass to carbon content. The routines make no assumption as to the
units of mass (e.g., kg, tons) in regard to either quantity and simply reports the quantities; the
user is responsible for the correct dimensional analysis of the conversion factors.

As an example, assume that we are interested in woody dry mass in pounds and associated carbon
content. If we are not subsampling cores for bulk density in the woods (e.g., Valentine et al., 2008),
then one simple approach is to use average specific gravity of wood for a given species, or what
amounts to the same thing, some average mass per unit volume figures. In the U.S. Miles and
Smith (2009) have compiled an extensive list of average conversions for common North American
trees that can be used for this purpose. Define the following. . .

Quantity English Metric Interpretation

ρ = M
V

lb
ft3

kg
m3 bulk density (mass per unit volume)

Sg = ρ
ρw

lb
ft3
lb
ft3

kg

m3
kg

m3

specific gravity

ρw 62.4 lb
ft3

1000 kg
m3 density of water (at ≈ 4◦ C)

B = ρV = V × Sg × ρw lb wood kg wood woody biomas

ψc ≈ 0.5 lb C
lb wood

kg C
kg wood biomass to carbon conversion

C ≈ ψcB lb C kg C mass of carbon

Again, ρ could be either fresh or dry mass in general, but in the example below, since we also would
like an estimate of carbon, we assume dry weight. In addition, as mentioned above, the final units
for reporting are up to the user. One is free to use bulk density conversions based on other units of
weight than are shown in the above table, just be consistent in all logs in a collection (see below).

Returning to the example, consider an eastern white pine log with the following average figures
taken from Miles and Smith (2009). . .

R> rho = 21.8 #bulk density

R> rho.w = 62.4 #density of H2O

R> (Sg = rho / rho.w) #just a check

[1] 0.34935897
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R> #create the log...

R> dlC = downLog(buttDiam=16, topDiam=2, logLen=8, units='English', solidType=4,

+ vol2wgt=rho, wgt2carbon=0.5)

R> c(dlC@conversions, dryBiomass=dlC@biomass, carbon=dlC@carbon,

+ volume=dlC@logVol)

volumeToWeight weightToCarbon dryBiomass carbon volume
21.8000000 0.5000000 132.5344856 66.2672428 6.0795636

There are two ways one can specify the biomass and carbon, either directly in the downLog object
constructor through the biomass and carbon arguments, or through conversion factors as we have
done above. The vol2wgt conversion is the bulk density, (ρ), and the wgt2carbon conversion, (ψc)
is self-explanatory; both are defined in the above table. Both biomass and carbon are optional
quantities in a “downLog” object. They can be missing (NA) and it will not affect anything—
simply do not specify any of the four above arguments for this default to be used in the downLog
constructor.

3.3 Plotting the object

The plot generic function has also been extended to be able to handle plotting of the objects of
the “downLog” class. The arguments are detailed in the help page, but here is a simple example. . .

R> plot(dl, axes=TRUE, showLogCenter=TRUE)

R> plot(dl2, add=TRUE, showNeedle=TRUE, showLogCenter=TRUE, cex=3)

R> points(dl2@rotLog, pch=4, col='gray60')

Note in Figure 2 that the logs are in their correct position and rotation. Here we have just used
user-defined coordinates based on meters, but other CRS projections could be used.

3.3.1 Coordinate reference systems (CRS)

If other coordinate reference systems supported by “CRS” are used, one must be very careful
to have everything about the log commensurate with the system or something will be incorrect
when plotting. It is up to the user to monitor this when creating logs, especially when they are
subsequently to be used in the later sampling surface interface. That is, if the ‘CRS’ units are
in metric, then your log measurements better be as well. If you use, geographic (lat-long) for
spatial coordinates, you should convert them first to some system based on meters or feet—though
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Figure 2: Two downed logs generated from the examples; the second log shows the points (‘x’)
where measurements are available in the taper slot, using the rotated log point profile.

this should not normally be a concern as the spatial scale does not require the use of geographic
coordinates.

Please note that you can enter any character string into the spUnits slot via the constructor and
have it be accepted if the rgdal package is not installed on your system. Otherwise, it must be
a legal CRS specification accepted by rgdal, which is what does all the spatial coordinate system
checks.6

6As of this writing, nothing has been checked yet with respect to the use of rgdal in sampSurf.
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4 Creating Synthetic Log Specifications

The routine sampleLogs is a very simple function that can be used to create simulated logs for use
in studying sampling methods for down coarse woody debris. Its use is detailed within the help
pages, but its use in the following sections requires a little introduction here. First, the arguments
are similar to what we have seen in the basic slots of the “downLog” class. . .

R> args(sampleLogs)

function (nLogs = 2, buttDiams = c(8, 40), topDiams = c(0, 0.9),
logLens = c(1, 10), logAngles = c(0, 2 * pi), solidTypes = c(1,

10), species = .StemEnv$species, sampleRect = NULL, startSeed = NA,
runQuiet = FALSE, ...)

NULL

However, the obvious difference lies in the observation that almost all of the arguments take a
vector of lower and upper bounds from which the population is simulated. Notable differences
appear in: (i) species, which can be any character vector of species names, codes, or other
identifier; (ii) sampleRect, which is a matrix in the form of an sp bounding box (bbox). This
bounding box is used as the enclosing area from which to randomly draw the log center location
coordinates in x and y. Note also that topDiams, is a proportion multiplier to buttDiams. Finally,
the startSeed parameter is used for adjusting the random number stream within R, through the
function initRandomSeed (see the help file for this function—?sampleLogs—where more details
are provided).

As an example, draw a population of logs from the default settings except for species identifiers. . .

R> sl = sampleLogs(5, species=c('RM','ewp','red oak'))

Note: logs generated within [0,1] bbox!

R> class(sl)

[1] "data.frame"

R> format(sl, digits=3)
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species logLen buttDiam topDiam solidType x y logAngle logAngle.D
1 RM 4.33 23.6 4.65 2.6 0.8401 0.3745 6.048 346.5
2 red oak 1.21 28.1 14.92 6.6 0.0858 0.0845 1.323 75.8
3 red oak 3.33 29.9 5.36 7.2 0.7019 0.0473 0.722 41.4
4 ewp 5.61 36.1 3.08 8.3 0.9391 0.0598 2.069 118.5
5 ewp 9.13 30.1 14.04 7.3 0.6332 0.0791 3.986 228.4

sampleLogs returns a data frame with many columns the same as the slots in “downLog”. The
columns x and y define the center point location of the logs, and logAngle.D is simply the log
angle in degrees. Because no enclosing bounding box was specified through sampleRect, the log
center locations all lie within a [0, 1] rectangle as reported (since runQuiet is FALSE by default).

One important thing to note in this routine is that the bounds one specifies for, e.g., diameters
and length, should make sense in the units you are working in. In other words, if you want to
generate diameters in cm, you can, and you can also generate diameters in m, it all depends on
the bounds for buttDiam. Since the constructor for “downLog” objects expects to see diameters in
either inches or cm and later converts to feet or meters, you should specify your ranges in inches
or cm in general, if the intent is to later create “downLog” objects.

5 Container Classes

This idea essentially comes from C++ and Java. There needs to be a mechanism to have multiple
versions of, e.g., “downLog” objects stored in a population or collection. One could, of course, store
these objects within a list structure. However, this would not allow generics and methods to be
written to act on the objects, since lists can contain anything. Thus we make this a class of its
own so we can impart an inherent functionality to its objects. This means there also needs to be
class definition and associated constructor methods, along with summary, plot, etc. methods to
work with these container objects.

At present, only the container for multiple down logs is established. We might want to make a
virtual container class if we extend this to other “Stem” subclasses, or combinations of subclasses
(i.e., standing and down material).

5.1 Class “downLogs”

This container holds a collection of “downlog” objects. . .

R> showClass('downLogs')
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Class "downLogs" [package "sampSurf"]

Slots:

Name: logs units bbox stats
Class: list character matrix data.frame

This is a very simple class. At present, it holds a list of“downLog”objects and the overall bounding
box for the collection or population, along with measurement units and simple statistics. . .

� logs: This is a normal R list holding the individual “downLog” objects. Please see the caveat
below concerning deleting or adding to this list in your code.

� units: The units of measurement. Note that all logs in the collection must share the same
units of measurement. This is checked at object creation.

� bbox : The overall bounding box for the collection, it is useful in plotting the entire collection.

� stats: Some simple statistics for the collection in a data frame. Please note that all statistics
are calculated using na.rm=TRUE, and so represent the values for the logs in the collection
with non-missing values of the quantities caluclated.

Please note that at the present time this class only partially meets the requirements of a true
“container class” in object oriented programming. This is because it does not as yet have methods
for object deletion, editing, or addition to the list of down logs. Because the statistics and bounding
box are tied to the collection, a caution is in order regarding changing in any way the objects within
the logs list: if you add to or delete from the list, the bbox and stats slots will be incorrect
unless also updated to reflect whatever changes have been made on the logs list slot. The best
way to handle this is to simply extract the list from the object, do whatever editing has to be
done to it, then use the constructor below to make a new object. Then everything will be correctly
represented within the object. Eventually, routines for editing may be added.

5.1.1 Class construction

In keeping with the previous naming convention, the constructor function for this class is downLogs,
matching the class name. A collection can be created in two main ways: synthetically, or from
existing valid “downLog” objects. However, there are several actual constructor variants of the
same name that differ in function based on their signatures as described in the following (with
signature arguments object and container). . .
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1. object→list, container→missing: This is the base constructor, all of the following con-
structors just reformat their inputs into a list containing “downLog” objects and then call this
constructor to make the object.

2. object→numeric, container→matrix: Here the object specifies the number of logs that
should be generated in the population and the container argument specifies a bounding
box (bbox) matrix in the sense of the sp package, with row names c(’x’, ’y’) and column
names c(’min’,’max’), from which the log centers will be drawn at random.

3. object→numeric, container→missing: This is similar to the previous, but the bounding
“box” from which log centers are drawn is specified by the xlim and ylim arguments. These
specify the range in x and y and are internally converted to a matrix so that the second
constructor can be called.

4. object→numeric, container→bufferedTract: Similar to the last two, where “buffered-
Tract” is a subclass of class “Tract” (see: The Tract Class vignette for details). The log
centers are drawn from within the buffer of the object passed in this argument.

5. object→data.frame, container→missing: This will accept a previous collection of logs
complete with locational information in the form of a data frame returned from sampleLogs.
Note that these do not have to be synthetic logs, one can make such a data frame out
of observed measurements. This constructor calls the “downLog” constructor for each log
generated. Therefore, one can pass on arguments to this constructor such as nSegs.

In each case, there are other arguments to the constructors that may be passed. These are all
detailed in the help files—please see methods?downLogs for more details.

In the following, we demonstrate a couple of these constructors. The rest are simple enough to try
once the general idea is demonstrated. First, generate a population of random logs from within a
default set of x and y limits specified in xlim and ylim arguments—this corresponds to the third
constructor in the previous list (i.e., object is numeric and container is missing). . .

R> dlp = downLogs(15, xlim=c(0,20), ylim=c(10,40), buttDiams=c(10,35))

R> summary(dlp)

Object of class: downLogs
------------------------------------------------------------
Container class object...
There are 15 logs in the population
Units of measurement: metric
Population log volume = 3.3093218 cubic meters
Population log surface area = 56.478982 square meters
Population log coverage area = 17.969550 square meters
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Population log biomass = 0
Population log carbon = 0
Average volume/log = 0.22062145 cubic meters
Average surface area/log = 3.7652654 square meters
Average coverage area/log = 1.1979700 square meters
Average length/log = 5.816 meters

(**All statistics exclude NAs)

Encapulating bounding box...
min max

x -0.24304015 22.425976
y 10.30755770 40.499164

R> plot(dlp, axes=TRUE, showNeedle=TRUE)

R> plot(perimeter(dlp), add=TRUE, border='grey60', lty='dashed')

There are several things going on here. First, the limits for the area from which the log centers
are drawn are specified in meters (default) via xlim and ylim. Second, and most importantly, one
can pass several of the arguments to this constructor that are used to specify log characteristics in
sampleLogs7, because these constructors actually use sampleLogs to generate the logs. Figure 3
illustrates the population of logs that were drawn using the constructor in the code above.

As a second example, we use the data frame constructor to generate a collection from a set of logs.
In this case, they were generated using sampleLogs, but as long as we use the same column names
as appear in the resulting data frame from sampleLogs, these could just as easily be logs from a
field inventory. The use of this method is shown in the following example. . .

R> buff = matrix(c(0,100,0,100), nrow=2, byrow=TRUE,

+ dimnames=list(c('x','y'),c('min','max')))

R> sl = sampleLogs(10, buttDiam = c(1,25), sampleRect = buff)

R> dlp2 = downLogs(sl)

R> summary(dlp2)

Object of class: downLogs
------------------------------------------------------------
Container class object...
There are 10 logs in the population
Units of measurement: metric
Population log volume = 1.0835229 cubic meters

7buttDiams, topDiams, logLens, logAngles, solidTypes and species—startSeed can also be passed in the ...

argument list.
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Figure 3: Synthetic population of downed logs generated from the examples along with the bounding
box that encloses the entire collection.

Population log surface area = 26.757156 square meters
Population log coverage area = 8.5143147 square meters
Population log biomass = 0
Population log carbon = 0
Average volume/log = 0.10835229 cubic meters
Average surface area/log = 2.6757156 square meters
Average coverage area/log = 0.85143147 square meters
Average length/log = 6.422 meters

(**All statistics exclude NAs)

Encapulating bounding box...
min max

x 9.2038261 101.230681
y 11.5393277 99.842254
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Note that in this and other methods, the encapsulating bounding box for the log population does not
necessarily correspond to the extents passed in the sampleRect argument (in this last example, the
tract buffer area). In fact, it can be significantly larger than this rectangle because it encompasses
the entire log for every log in the population. The sampleRect argument, on the other hand,
specifies the rectangle from which the log centers will be drawn.

Note that we can set the random number seed in a couple different ways, to get the repeatable
results; this is explained in more detail in the help files (?initRandomSeed). . .

R> slogs = sampleLogs(10, sampleRect=buff, startSeed=10)

R> dlgs1 = downLogs(slogs)

R> dlgs2 = downLogs(10, buff, startSeed=10)

R> identical(dlgs1@stats, dlgs2@stats)

[1] TRUE

R> identical(dlgs1, dlgs2)

[1] TRUE

Note that not only are the summary statistics identical, but all of the information contained in the
two sets of logs are identical, including spatial data.

As a final example, to make a population of down logs from already existing “downLog” objects, say
from logs measured in the field, we could use the above method for data.frames, or we could use
the constructor with the list signature. For the latter method, first just create a list containing
“downLog” objects, then create the collection. . .

R> ml = dlp@logs[1:2] #a list of 2 logs as an example

R> dlp2 = downLogs(ml)

R> summary(dlp2)

Object of class: downLogs
------------------------------------------------------------
Container class object...
There are 2 logs in the population
Units of measurement: metric
Population log volume = 0.70130018 cubic meters
Population log surface area = 8.9811408 square meters
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Population log coverage area = 2.8568655 square meters
Population log biomass = 0
Population log carbon = 0
Average volume/log = 0.35065009 cubic meters
Average surface area/log = 4.4905704 square meters
Average coverage area/log = 1.4284327 square meters
Average length/log = 4.64 meters

(**All statistics exclude NAs)

Encapulating bounding box...
min max

x -0.24304015 10.197008
y 26.36761845 37.073381

The advantage of making a separate class for the container objects lies, of course, in the auto-
matic validity checking, and the association of plot, summary, etc. methods to the object and its
advantages over just collection “downLog” objects into a list is evident. For example, in validity
checking, each log must be a valid “downLog” object or R will not construct the container object.
Other constraints on the “downLogs” collection include that each log must be measured in the same
units. If for some reason one had to mix units, one could just make two subpopulations, one for
English and one for metric. Everything would work fine on those subpopulations.

5.1.2 Object coercion

It is sometimes useful to be able to convert backwards from a “downLogs” collection to a data frame
in the form of that generated by sampleLogs. There is a simple facility for doing this using basic
R coercion on the object; e.g.,

R> format( as(dlp2, 'data.frame'), digits=2)

species logLen buttDiam topDiam solidType x y logAngle logAngle.D
1 Picea glauca 8.2 35 16 9.9 8.90 30 5.0 287
2 wp 1.1 26 15 5.6 0.14 37 2.2 125

6 Some Hidden Knowldege

There is a “hidden” environment (see ?environment) within the sampSurf package name space
that holds a number of constants that are useful in working with objects that are subclasses of the



The “Stem” Class. . . §6 Some Hidden Knowldege Gove 28

“Stem” class. Originally, the intent was to hide this information form the user, so it would not be a
disctraction. But the more that was added, the less plausible this idea became. Here we just look
briefly at a couple objects within that environment that are useful for, e.g., “downLog” objects.
The methods described can be applied by the user to snoop around a bit more into objects within
this environment as the need arises (and it may not).

First, we can look at the environment’s contents. . .

R> ls(.StemEnv)

[1] "alphaTrans" "baFactor" "blue.colors"
[4] "cm2m" "deg2rad" "deg2Rad"
[7] "ft2in" "gray.colors" "gridCenterColor"
[10] "gridLineColor" "in2ft" "izBorderColor"
[13] "izCenterColor" "izColor" "logAngles"
[16] "logAttributeColor" "logBorderColor" "logColor"
[19] "m2cm" "msrUnits" "pdsTypes"
[22] "puaEstimates" "rad2deg" "rad2Deg"
[25] "randomID" "sampleLogsNames" "sfpAcre"
[28] "SmalianVolume" "smpHectare" "solidTypes"
[31] "species" "splineCoverageArea" "splineSurfaceArea"
[34] "underLine" "wbCoverageArea" "wbSurfaceArea"
[37] "wbTaper" "wbVolume"

For example, to see the range of legal values for the taper parameter solidType and some plausible
species names. . .

R> .StemEnv$solidTypes

[1] 1 10

R> .StemEnv$species

[1] "wp" "rm" "sm" "hemlock"
[5] "Picea glauca" "shagbark hickory" "BW"

The functions beginning with “wb” are for the default taper equation, those for taper data begin
with either “spline” or “Smalian” and can be accessed directly. There is currently no documentation
for these as they were never meant for general use, so one will have to look at the functions and
their use in, e.g., the downLog constructor to see how to use them correctly.
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