
Package ‘rules’
August 7, 2021

Title Model Wrappers for Rule-Based Models

Version 0.1.2

Description Bindings for additional models for use with the 'parsnip'
package. Models include prediction rule ensembles (Friedman and
Popescu, 2008) ¡doi:10.1214/07-AOAS148¿, C5.0 rules (Quinlan, 1992
ISBN: 1558602380), and Cubist (Kuhn and Johnson, 2013)
¡doi:10.1007/978-1-4614-6849-3¿.

License MIT + file LICENSE

URL https://github.com/tidymodels/rules, https://rules.tidymodels.org

Depends modeldata,
parsnip (¿= 0.1.4)

Imports dials,
dplyr,
generics (¿= 0.1.0),
purrr,
rlang,
stringr,
tibble,
tidyr

Suggests C50,
covr,
Cubist,
knitr,
recipes,
rmarkdown,
spelling,
testthat,
xrf (¿= 0.2.0)

Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1.9000

R topics documented:

C5 rules . 2

1

https://doi.org/10.1214/07-AOAS148
https://doi.org/10.1007/978-1-4614-6849-3
https://github.com/tidymodels/rules
https://rules.tidymodels.org

2 C5 rules

committees . 3

cubist rules . 4

mtry prop . 6

multi predict. C5 rules . 6

rules update . 7

rule fit . 9

tidy.cubist . 11

Index 14

C5 rules C5.0 rule-based classification models

Description

C5 rules() defines a model that derives feature rules from a tree for prediction. A single
tree or boosted ensemble can be used.

The engine for this model is:

� C5.0 (default)

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

C5_rules(mode = "classification", trees = NULL, min_n = NULL, engine = "C5.0")

Arguments

mode A single character string for the type of model. The only possible value
for this model is ”classification”.

trees A non-negative integer (no greater than 100 for the number of members
of the ensemble.

min n An integer greater than one zero and nine for the minimum number of
data points in a node that are required for the node to be split further.

engine A single character string specifying what computational engine to use for
fitting.

Details

C5.0 is a classification model that is an extension of the C4.5 model of Quinlan (1993). It
has tree- and rule-based versions that also include boosting capabilities. C5 rules() enables
the version of the model that uses a series of rules (see the examples below). To make a
set of rules, an initial C5.0 tree is created and flattened into rules. The rules are pruned,
simplified, and ordered. Rule sets are created within each iteration of boosting.

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

https://www.tidymodels.org/

committees 3

References

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.

https://www.tidymodels.org, Tidy Models with R

See Also

C50::C5.0(), C50::C5.0Control(), C5.0 engine details

Examples

show_engines("C5_rules")

C5_rules()

committees Parameter functions for Cubist models

Description

Committee-based models enact a boosting-like procedure to produce ensembles. committees
parameter is for the number of models in the ensembles while max rules can be used to
limit the number of possible rules.

Usage

committees(range = c(1L, 100L), trans = NULL)

max_rules(range = c(1L, 500L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest
possible values, respectively.

trans A trans object from the scales package, such as scales::log10 trans()
or scales::reciprocal trans(). If not provided, the default is used
which matches the units used in range. If no transformation, NULL.

Value

A function with classes ”quant param” and ”param”

Examples

committees()
committees(4:5)

max_rules()

https://www.tidymodels.org
https://www.tmwr.org/

4 cubist rules

cubist rules Cubist rule-based regression models

Description

cubist rules() defines a model that derives simple feature rules from a tree ensemble and
uses creates regression models within each rule.

The engine for this model is:

� Cubist (default)

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

cubist_rules(
mode = "regression",
committees = NULL,
neighbors = NULL,
max_rules = NULL,
engine = "Cubist"

)

Arguments

mode A single character string for the type of model. The only possible value
for this model is ”regression”.

committees A non-negative integer (no greater than 100 for the number of members
of the ensemble.

neighbors An integer between zero and nine for the number of training set instances
that are used to adjust the model-based prediction.

max rules The largest number of rules.

engine A single character string specifying what computational engine to use for
fitting.

Details

Cubist is a rule-based ensemble regression model. A basic model tree (Quinlan, 1992) is
created that has a separate linear regression model corresponding for each terminal node.
The paths along the model tree is flattened into rules these rules are simplified and pruned.
The parameter min n is the primary method for controlling the size of each tree while
max rules controls the number of rules.

Cubist ensembles are created using committees, which are similar to boosting. After the
first model in the committee is created, the second model uses a modified version of the
outcome data based on whether the previous model under- or over-predicted the outcome.
For iteration m, the new outcome y* is computed using

https://www.tidymodels.org/

cubist rules 5

If a sample is under-predicted on the previous iteration, the outcome is adjusted so that the
next time it is more likely to be over-predicted to compensate. This adjustment continues
for each ensemble iteration. See Kuhn and Johnson (2013) for details.

After the model is created, there is also an option for a post-hoc adjustment that uses the
training set (Quinlan, 1993). When a new sample is predicted by the model, it can be
modified by its nearest neighbors in the original training set. For K neighbors, the model
based predicted value is adjusted by the neighbor using:

where t is the training set prediction and w is a weight that is inverse to the distance to the
neighbor.

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

https://www.tidymodels.org, Tidy Models with R

Quinlan R (1992). ”Learning with Continuous Classes.” Proceedings of the 5th Australian
Joint Conference On Artificial Intelligence, pp. 343-348.

Quinlan R (1993).”Combining Instance-Based and Model-Based Learning.” Proceedings of
the Tenth International Conference on Machine Learning, pp. 236-243.

Kuhn M and Johnson K (2013). Applied Predictive Modeling. Springer.

See Also

Cubist::cubist(), Cubist::cubistControl(), Cubist engine details

Examples

cubist_rules()

--

data(car_prices, package = "modeldata")
car_rules <-

cubist_rules(committees = 1) %>%
fit(log10(Price) ˜ ., data = car_prices)

car_rules

summary(car_rules$fit)

https://www.tidymodels.org
https://www.tmwr.org/

6 multi predict. C5 rules

mtry prop Proportion of Randomly Selected Predictors

Description

Proportion of Randomly Selected Predictors

Usage

mtry_prop(range = c(0.1, 1), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest
possible values, respectively.

trans A trans object from the scales package, such as scales::log10 trans()
or scales::reciprocal trans(). If not provided, the default is used
which matches the units used in range. If no transformation, NULL.

Value

A dials with classes ”quant param” and ”param”. The range element of the object is
always converted to a list with elements ”lower” and ”upper”.

multi predict. C5 rules

multi predict() methods for rule-based models

Description

multi predict() methods for rule-based models

Usage

S3 method for class '`_C5_rules`'
multi_predict(object, new_data, type = NULL, trees = NULL, ...)

S3 method for class '`_cubist`'
multi_predict(object, new_data, type = NULL, neighbors = NULL, ...)

S3 method for class '`_xrf`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

rules update 7

Arguments

object An object of class model fit

new data A rectangular data object, such as a data frame.

type A single character value or NULL. Possible values are class” and ”prob”.

trees An numeric vector of trees between one and 100.

... Not currently used.

neighbors An numeric vector of neighbors values between zero and nine.

penalty Non-negative penalty values.

Details

For C5.0 rule-based models, the model fit may contain less boosting iterations than the
number requested. Printing the object will show how many were used due to early stopping.
This can be change using an option in C50::C5.0Control(). Beware that the number of
iterations requested

Value

A tibble with one row for each row of new data. Multiple predictions are contained in a list
column called .pred. That column has the standard parsnip prediction column names as
well as the column with the tuning parameter values.

rules update Updating a model specification

Description

Updating a model specification

Usage

S3 method for class 'C5_rules'
update(
object,
parameters = NULL,
trees = NULL,
min_n = NULL,
fresh = FALSE,
...

)

S3 method for class 'cubist_rules'
update(
object,
parameters = NULL,
committees = NULL,
neighbors = NULL,
max_rules = NULL,
fresh = FALSE,

8 rules update

...
)

S3 method for class 'rule_fit'
update(
object,
parameters = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
penalty = NULL,
fresh = FALSE,
...

)

Arguments

object A rule fit model specification.

parameters A 1-row tibble or named list with main parameters to update. If the indi-
vidual arguments are used, these will supersede the values in parameters.
Also, using engine arguments in this object will result in an error.

trees A non-negative integer (no greater than 100 for the number of members
of the ensemble.

min n An integer greater than one zero and nine for the minimum number of
data points in a node that are required for the node to be split further.

fresh A logical for whether the arguments should be modified in-place or re-
placed wholesale.

... Not used for update().

committees A non-negative integer (no greater than 100 for the number of members
of the ensemble.

neighbors An integer between zero and nine for the number of training set instances
that are used to adjust the model-based prediction.

max rules The largest number of rules.

mtry An number for the number (or proportion) of predictors that will be
randomly sampled at each split when creating the tree models.

tree depth An integer for the maximum depth of the tree (i.e. number of splits).

learn rate A number for the rate at which the boosting algorithm adapts from
iteration-to-iteration.

loss reduction A number for the reduction in the loss function required to split further .

sample size An number for the number (or proportion) of data that is exposed to the
fitting routine.

penalty L1 regularization parameter.

rule fit 9

Examples

--

model <- C5_rules(trees = 10, min_n = 2)
model
update(model, trees = 1)
update(model, trees = 1, fresh = TRUE)

--

model <- cubist_rules(committees = 10, neighbors = 2)
model
update(model, committees = 1)
update(model, committees = 1, fresh = TRUE)
--

model <- rule_fit(trees = 10, min_n = 2)
model
update(model, trees = 1)
update(model, trees = 1, fresh = TRUE)

rule fit RuleFit models

Description

rule fit() defines a model that derives simple feature rules from a tree ensemble and uses
them as features to a regularized model.

The engine for this model is:

� xrf (default)

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

rule_fit(
mode = "unknown",
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
penalty = NULL,
engine = "xrf"

)

https://www.tidymodels.org/

10 rule fit

Arguments

mode A single character string for the type of model. Possible values for this
model are ”unknown”, ”regression”, or ”classification”.

mtry An number for the number (or proportion) of predictors that will be
randomly sampled at each split when creating the tree models.

trees An integer for the number of trees contained in the ensemble.

min n An integer for the minimum number of data points in a node that are
required for the node to be split further.

tree depth An integer for the maximum depth of the tree (i.e. number of splits).

learn rate A number for the rate at which the boosting algorithm adapts from
iteration-to-iteration.

loss reduction A number for the reduction in the loss function required to split further .

sample size An number for the number (or proportion) of data that is exposed to the
fitting routine.

penalty L1 regularization parameter.

engine A single character string specifying what computational engine to use for
fitting.

Details

The RuleFit model creates a regression model of rules in two stages. The first stage uses
a tree-based model that is used to generate a set of rules that can be filtered, modified,
and simplified. These rules are then added as predictors to a regularized generalized linear
model that can also conduct feature selection during model training.

This function only defines what type of model is being fit. Once an engine is specified, the
method to fit the model is also defined.

The model is not trained or fit until the fit.model spec() function is used with the data.

References

Friedman, J. H., and Popescu, B. E. (2008). ”Predictive learning via rule ensembles.” The
Annals of Applied Statistics, 2(3), 916-954.

https://www.tidymodels.org, Tidy Models with R

See Also

xrf::xrf.formula(), xrf engine details

Examples

show_engines("rule_fit")

rule_fit()

https://www.tidymodels.org
https://www.tmwr.org/

tidy.cubist 11

tidy.cubist Turn regression rule models into tidy tibbles

Description

Turn regression rule models into tidy tibbles

Usage

S3 method for class 'cubist'
tidy(x, ...)

S3 method for class 'xrf'
tidy(x, penalty = NULL, unit = c("rules", "columns"), ...)

Arguments

x A Cubist or xrf object.

... Not currently used.

penalty A single numeric value for the lambda penalty value.

unit What data should be returned? For unit = 'rules', each row corresponds
to a rule. For unit = 'columns', each row is a predictor column. The
latter can be helpful when determining variable importance.

Details

An example:

library(dplyr)

data(ames, package = "modeldata")

ames <-
ames %>%
mutate(Sale_Price = log10(ames$Sale_Price),

Gr_Liv_Area = log10(ames$Gr_Liv_Area))

--

cb_fit <-
cubist_rules(committees = 10) %>%
set_engine("Cubist") %>%
fit(Sale_Price ˜ Neighborhood + Longitude + Latitude + Gr_Liv_Area + Central_Air,

data = ames)

cb_res <- tidy(cb_fit)
cb_res

A tibble: 157 × 5
committee rule_num rule estimate statistic
<int> <int> <chr> <list> <list>

12 tidy.cubist

1 1 1 (Central_Air == 'N') & (Gr_Liv. . . <tibble [4. . . <tibble [1. . .
2 1 2 (Gr_Liv_Area <= 3.0326188) & (. . . <tibble [4. . . <tibble [1. . .
3 1 3 (Neighborhood %in% c('Old_Town. . . <tibble [3. . . <tibble [1. . .
4 1 4 (Neighborhood %in% c('Old_Town. . . <tibble [4. . . <tibble [1. . .
5 1 5 (Central_Air == 'N') & (Gr_Liv. . . <tibble [4. . . <tibble [1. . .
6 1 6 (Longitude <= -93.652023) & (N. . . <tibble [4. . . <tibble [1. . .
7 1 7 (Gr_Liv_Area > 3.2284005) & (N. . . <tibble [4. . . <tibble [1. . .
8 1 8 (Neighborhood %in% c('North_Am. . . <tibble [4. . . <tibble [1. . .
9 1 9 (Latitude <= 42.009399) & (Nei. . . <tibble [3. . . <tibble [1. . .
10 1 10 (Neighborhood %in% c('College_. . . <tibble [4. . . <tibble [1. . .
. . . with 147 more rows

cb_res$estimate[[1]]

A tibble: 4 × 2
term estimate
<chr> <dbl>
1 (Intercept) -408.
2 Longitude -1.43
3 Latitude 6.6
4 Gr_Liv_Area 0.7

cb_res$statistic[[1]]

A tibble: 1 × 6
num_conditions coverage mean min max error
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2 154 4.94 4.11 5.31 0.0956

xrf_rule_res <- tidy(xrf_reg_fit)
xrf_rule_res$rule[nrow(xrf_rule_res)] %>% rlang::parse_expr()

(Gr_Liv_Area < 3.30210185) & (Gr_Liv_Area < 3.38872266) & (Gr_Liv_Area >=
2.94571471) & (Gr_Liv_Area >= 3.24870872) & (Latitude < 42.0271072) &
(Neighborhood_Old_Town >= -9.53674316e-07)

xrf_col_res <- tidy(xrf_reg_fit, unit = "columns")
xrf_col_res

A tibble: 149 × 3
rule_id term estimate
<chr> <chr> <dbl>
1 r0_1 Gr_Liv_Area -1.27e- 2
2 r2_4 Gr_Liv_Area -3.70e-10
3 r2_2 Gr_Liv_Area 7.59e- 3
4 r2_4 Central_Air_Y -3.70e-10
5 r3_5 Longitude 1.06e- 1
6 r3_6 Longitude 2.65e- 2
7 r3_5 Latitude 1.06e- 1
8 r3_6 Latitude 2.65e- 2
9 r3_5 Longitude 1.06e- 1
10 r3_6 Longitude 2.65e- 2
. . . with 139 more rows

tidy.cubist 13

Value

The Cubist method has columns committee, rule num, rule, estimate, and statistics.
The latter two are nested tibbles. estimate contains the parameter estimates for each term
in the regression model and statistics has statistics about the data selected by the rules
and the model fit.

The xrf results has columns rule id, rule, and estimate. The rule id column has the
rule identifier (e.g., ”r0 21”) or the feature column name when the column is added directly
into the model. For multiclass models, a class column is included.

In each case, the rule column has a character string with the rule conditions. These can
be converted to an R expression using rlang::parse expr().

Index

C5.0, 2
C5.0 engine details, 3
C50::C5.0(), 3
C50::C5.0Control(), 3, 7
C5 rules, 2
committees, 3
Cubist, 4
Cubist engine details, 5
Cubist::cubist(), 5
Cubist::cubistControl(), 5
cubist rules, 4

fit.model spec(), 2, 5, 10

max rules (committees), 3
mtry prop, 6
multi predict. C5 rules, 6
multi predict. cubist

(multi predict. C5 rules), 6
multi predict. xrf

(multi predict. C5 rules), 6

rlang::parse expr(), 13
rule fit, 9
rules update, 7

tidy.cubist, 11
tidy.xrf (tidy.cubist), 11

update.C5 rules (rules update), 7
update.cubist rules (rules update), 7
update.rule fit (rules update), 7

xrf, 9
xrf engine details, 10
xrf::xrf.formula(), 10

14

	C5_rules
	committees
	cubist_rules
	mtry_prop
	multi_predict._C5_rules
	rules_update
	rule_fit
	tidy.cubist
	Index

