package: rrv 0.4.1

Random Return Variables
(Rewrite, Rough Draft)

Charlotte Maia
October 26, 2011

This vignette gives an overview of the rrv package. The package is partly based on Markowitz (1952),
however considers empirical distributions. There’s a strong emphasis on modelling conditional portfolio
returns as functions of weight. Various “conditional parameters” are considered, including expected
returns and quantile returns.

Introduction

The rrv package provides an object oriented framework for modelling portfolio returns as random vari-
ables, with empirical distributions. It’s partly based on Markowitz (1952), who provides a theoretical
framework for modelling portfolio returns as random variables, with normal-like distributions.

The author defines a portfolio as a set of sources and a source as any process that generates return.
In general, sources are assumed to be weighted, with weights summing to one. Under this assumption,
a portfolio’s return is a weighted average of it’s source returns.

Currently, the package has the following over-arching goals:

1. To model portfolio returns as random variables.

2. To model conditional portfolio returns as functions of weight.
3. To consider various kinds of portfolios.

4. To consider portfolio optimisation.

The package is based on object oriented principles and contains two main classes of objects. Firstly,
random return variable (rrv) objects, representing unknown future returns, which are constructed from
known historical returns. Secondly, conditional portfolio return (cpr) objects/functions, representing
portfolio returns as functions of weight, which are also constructed from historical returns.

Future versions may also contain a portfolio class with summary methods.

The term “conditional portfolio returns” is used ambiguously and can refer to conditional random
variables (random variables with conditional distributions) or conditional parameters. The term “con-
ditional parameters” is used to describe parameters of conditional random variables, which can include
expected values, variances and quantiles.

Getting Started

First, we need to load the rrv package:

> library (rrv)

The package makes use of the dataset from Markowitz (1959), which gives discounted returns for nine
securities over an eighteen year period.

> data = read_package_data ("rrv", "markowitz.csv", FALSE)
> sample_deterministic (data)

Year Am.T. A.T. & T. U.S.S. G.M. A.T. & Sfe C.C. Bdn. Frstn. S.S.

1 1937 -0.305 -0.173 -0.318 -0.477 -0.457 -0.065 -0.319 -0.400 -0.435

1938 0.513 0.098 0.285 0.714 0.107 0.238 0.076 0.336 0.238
3 1939 0.055 0.200 -0.047 0.165 -0.424 -0.078 0.318 -0.093 -0.295
16 1952 0.128 0.083 0.131 0.390 0.434 0.079 0.109 0.175 0.062
17 1953 -0.010 0.035 0.006 -0.072 -0.027 0.067 0.210 -0.084 -0.048
18 1954 0.154 0.176 0.908 0.715 0.469 0.077 0.112 0.756 0.185

Consistent with Markowitz, lets consider expected values and variances.

> summary.table = data.frame (expected.values=apply (data [,-1], 2, mean),
variances=apply (data [,-1], 2, var))

> summary.table = summary.table [order (summary.table [,1], decreasing=TRUE),]

> round (summary.table, 3)

expected.values variances

A.T. & Sfe 0.198 0.135
Frstn. 0.190 0.155
G.M. 0.175 0.101
U.S.S. 0.146 0.091
Bdn. 0.124 0.029
S.S. 0.116 0.084
Am.T. 0.066 0.057
A.T. & T. 0.062 0.016
c.C. 0.055 0.044

A plot of variance versus expected values, supports the cliche notion in finance, that high return requires
high risk.

> plot (summary.table$variances, summary.table$expected.values)

—]
°
wn ©
[I
=2 O °
©
>
3 -
Q
‘C>'<r o
[—
g o
[}
&+ o
@ -
o o
8 o
>
S ©
IS
E —
>
m@ o
o 4 o
=} °

I I I I I I I I
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

summary.table$variances

rrv 0.4.1 Charlotte Maia 2

However, returns are often correlated, so lets consider pairwise correlations.

> correlation.matrix = cor (data [,-1])
> round (correlation.matrix, 1)

Am.T. A.T. & T. U.S.S. G.M. A.T. & Sfe C.C. Bdn. Frstn. S.S.

Am.T. 1.0 0.8 0.4 0.7 0.2 0.7 0.6 0.5 0.6
AT. & T. 0.8 1.0 0.5 0.7 0.2 0.4 0.7 0.5 0.6
U.S.8S. 0.4 0.5 1.0 0.7 0.4 0.2 0.2 0.6 0.5
G.M. 0.7 0.7 0.7 1.0 0.5 0.5 0.4 0.8 0.4
A.T. & Sfe 0.2 0.2 0.4 0.5 1.0 0.2 0.4 0.7 0.4
c.C. 0.7 0.4 0.2 0.5 0.2 1.0 0.4 0.4 0.4
Bdn. 0.6 0.7 0.2 0.4 0.4 0.4 1.0 0.5 0.4
Frstn. 0.5 0.5 0.6 0.8 0.7 0.4 0.5 1.0 0.5
S.S. 0.6 0.6 0.5 0.4 0.4 0.4 0.4 0.5 1.0

An important feature of this data, is that all pairwise combinations are positively correlated. Using the
first two sources (which are strongly correlated), we can create a timeseries plot.

> time = data [,1]
> plot (time, data [,2], type="1", ylab="return")
> lines (time, data [,3], lty=2)

04

0.2

return

0.0

1940 1945 1950

time

Alternatively, we can create a bivariate rrv object (from the data) and plot it.

> x = rrv (data [,2:3])
> plot (x)

rrv 0.4.1 Charlotte Maia 3

(32)
@ 0:89
~ 0-89
- 0.61
e 0.67
. —
EoS T 0.28 056 o5 067 0.72
; 0%44
= 0:22 0:33 0:39
< o
S
0.22
o 0.17
O' —
]
~ 0006
P T T T T
-0.2 0.0 0.2 0.4
Am.T.

Source returns are discussed in more detail later.

Conditional Portfolio Return

For a given portfolio, we shall denote source returns as X or (X1, Xo, ..., Xi), portfolio return as Y and
weights as w or (wy,ws,...wx). Both portfolio returns and source returns are random variables. k is
used to denote the number of sources. Portfolio return is weighted sum of source returns, so:

Yy = wX
= w1 Xy +weXo+ ...+ wp X

The rrv package implements cpr_rrv objects, for this purpose. A cpr_rrv object, follows some object
oriented conventions and is created using a constructor. However, these objects are also functions and
map a vector of weights to an rrv object. If we denote our constructor as G, our cpr_rrv object as f and
our data (a matrix or an rrv object) as x, then we have:

G : x—f
f @ weY

Whilst this may seem cumbersome at first, it’s important to note that the function f, only requires
one argument, weight.

Let’s consider an example. In practice, the package doesn’t use G, the constructor has the same
name as the class of the object so:

> #construct the object (also a function)
> f = cpr_rrv (x)

> f

FUNCTION (w)

{ rprv(.$x, w)

}

object attributes:

nv, names, X

We can evaluate this object, however rrv and rprv objects are discussed later, so the output probably
won’t make much sense at this stage.

rrv 0.4.1 Charlotte Maia 4

The rrv package also implements cppr objects. Which are similar to cpr_rrv objects, however simpler
and more practical. Instead of mapping a vector of weights to a rrv object, they make a vector of weights
to what we shall regard as a conditional parameter, such as expected return. There are a few subclasses,
each with a different constructor.

Let’s consider another example:

> #construct the object (also a function)
> f_expected = cpr_expected (x)

> f_expected

FUNCTION (w)

{ sum(w * .$x.mean)

}

object attributes:

nv, names, X.mean

We can plot and evaluate the object:

> #plot of expected return as function of weight
> plot (f_expected)

©
o
S
o
ITo)
©
S 4
o
B
<
3] ©
© O
g o
¢
=
™
o
©
o
o
©
S
o

Am.T. AT &T.

> #evaluate it, for an equally weighted portfolio
> f_expected (c (0.5, 0.5))

[1] 0.06375

Similarly for variance and quantiles, noting the cpr_quantile constructor has an extra argument.

> f_variance = cpr_variance (x)
> £_q0.25 = cpr_quantile (0.25, x)

> plot (f_variance)

rrv 0.4.1 Charlotte Maia 5

0.05
]

Q <

g 9 -

8 o

=

®©

2|

=
[s2]

& o 4
o
N
O__
o

Am.T. AT &T.

> plot (£_q0.25)

o
O__
o
@
=3 —
c
g
5 3
g 9
o
0]
S
?

Am.T. AT &T.

There are also a cpr_median and cpr_sd classes.

Conditional Portfolio Return for 3-Source Portfolios

In general, weight represents a triangle (potentially a hyper-triangle). This is the most intuitive in the
3-source case, where triangular heatmaps, show the value of a conditional parameter given a vector of
3 weights. In future contour plots may be used instead.

Note that each plot, uses a separate scale (in order to achieve maximum colour variation). Hence,
two points with the same colour, each from a separate plot, may represent quite different values.

> x = data [,2:4]
> sample_deterministic (x)

Am.T. A.T. & T. U.S.S.
1 -0.305 -0.173 -0.318

rrv 0.4.1 Charlotte Maia 6

2 0.513 0.098 0.285
3 0.055 0.200 -0.047
16 0.128 0.083 0.131
17 -0.010 0.035 0.006
18 0.154 0.176 0.908

> x = as.matrix (x)

f_expected = cpr_expected (x)
f_variance = cpr_variance (x)
£_q0.25 = cpr_quantile (0.25, x)
£_q0.50 = cpr_quantile (0.50, x)
f_q0.75 = cpr_quantile (0.75, x)

V V V V V

> #expected portfolio return
plot (f_expected)

\4

> #portfolio return variance
> plot (f_variance)

rrv 0.4.1 Charlotte Maia

> #quantile (0.25) portfolio return
> plot (£_q0.25)

> #median portfolio return
> plot (£_q0.50)

rrv 0.4.1 Charlotte Maia

> #quantile (0.75) portfolio return
> plot (£_q0.75)

Text Book Plots

Up until now, we have regarded conditional portfolio returns as functions of weight, plus plotted them
as functions. Most textbooks (on finance) plot standard deviation (or variance) versus expected return.
A prototype function, unimaginatively named, .textbookplot (with a dot), was added to the package,
just before releasing the current version.

Currently, the plot produces incorrect output. For 3-source and 4-source portfolios, it plots 2-source
subsets. Plus the function isn’t tested well.

Despite these problems, we will still consider some examples.

rrv 0.4.1 Charlotte Maia 9

> #2-source, first two variables
> .textbookplot (data [,2:3])

©
©
S T.
o
wn
O
s |
=}
Lo <t
) o
o
X
o ™
O
8 |
=}
N
(]
8
o
ATAT.
T T T T
0.10 0.15 0.20 0.25
sd

> #3-source, incorrect, giving 2-source subsets
> .textbookplot (data [,2:4])

> #superimpose equally-weighted portfolio

> m = as.matrix (data [,2:4])

>w=c (@, 1,1 /3

> x = cpr_sd (m)(w)

> y = cpr_expected (m) (w)

>

points (x, y, cex=1.5)

<t
—
o
N
-
o
ke]
10}
(8]
g g
5 o
(e
o 4
o
(=]
Q —
o I I I I I I
0.10 0.15 0.20 0.25 0.30 0.35
sd

More on Source Returns
In mainstream probability, a random variable is characterised by parameters (which in turn characterise

it’s distribution). However here (with empirical distribution functions), a random variable characterised
by its realisations.

rrv 0.4.1 Charlotte Maia 10

The rrv class, is used to represent random return variables, including random vector-return variables.
An rrv object is simply an extended matrix, containing the realised values.

Currently, the package provides little support for modelling source returns.

As mentioned earlier, a portfolio class, may be added to future versions, for summary or exploratory
purposes.

We can create rrv objects and plot them, here using an univariate example.

> r = rrv (data [,2])
> plot (r)

0.6 0.8 1.0
]]

Fh(x)

0.4

0.2

0.0

-0.2 0.0 0.2 0.4

More on Portfolio Returns

The rrv class is extended by the rprv class, which is univariate version of rrv, created from an rrv object
(or a matrix), along with vector of weights. Using the first three variables:

>y = rprv (as.matrix (data [,2:4]), ¢ (1, 1, 1) / 3)

The object y represents a conditional random return variable or a random portfolio return variable. We
can plot our rprv object, which looks similar to a univariate source return.

> plot (y)

rrv 0.4.1 Charlotte Maia 11

o
o
©
2
©
g
3
=
[
<
[=}
N
[=}
Q
o T T T T T T T
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
X

The values of y are trivial to compute. Let r; be the ith row vector of x, then

y1 = W
Y2 = WIg
Yn = WI'p

References

Markowitz, H.M. (1952). Journal of Finance. Portfolio Selection.
Markowitz, H.M. (1959). Cowles Foundation. Portfolio Selection Efficient Diversification of Investments.

rrv 0.4.1 Charlotte Maia 12

