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This vignette introduces the rrv package, a package for modelling portfolio returns as random vari-

ables. There’s a strong emphasis on modelling portfolios as functions of weight, and using empirical

distributions.

Introduction

This package is largely inspired by the early work of Markowitz (1952, 1959). Markowitz considered
the characteristics of portfolio returns, where both portfolio returns and individual security returns
are regarded as random variables. He emphasized selecting efficient sets of portfolios, giving a good
compromise between expected return and variance, under the assumption that security returns are
often dependent. He then creates geometric representations of portfolios (especially portfolios with
three securities), using isomean lines and isovariance curves. Here, we follow from Markowitz, however
with a few key differences:

1. We shall regard portfolios as functions of weight.
More precisely, we shall regard a portfolio as a function, that maps a vector of weights to a random

(portfolio) return variable.

2. We shall model returns using empirical distributions.

3. Extending point (1), instead of modelling weights in a cartesian space, we shall use a triangular
space.

4. Also extending point (1), we shall model conditional parameters of portfolio return (e.g. expected
portfolio return) as functions of weight.

5. Extending point (2), whilst we shall consider return variance (as a measure of symmetric risk), we
shall also consider quantile return (as a measure of asymmetric risk).

This package is still at an early stage. The author is hoping to later add support for:

� Constrained optimisation.

� Modelling isoquantile curves (i.e. the quantile equivalent to isovariance curves).

� Triangular contour plots.

We shall make use of the dataset from Markowitz (1959), it gives discounted returns for nine securities
over an eighteen year period.

> x = markowitz1959data ()

> x



Year Am.T. A.T. & T. U.S.S. G.M. A.T. & Sfe C.C. Bdn. Frstn. S.S.

1 1937 -0.305 -0.173 -0.318 -0.477 -0.457 -0.065 -0.319 -0.400 -0.435

2 1938 0.513 0.098 0.285 0.714 0.107 0.238 0.076 0.336 0.238

3 1939 0.055 0.200 -0.047 0.165 -0.424 -0.078 0.318 -0.093 -0.295

4 1940 -0.126 0.030 0.104 -0.043 -0.189 -0.077 -0.051 -0.090 -0.036

5 1941 -0.280 -0.183 -0.171 -0.277 0.637 -0.187 0.087 -0.194 -0.240

6 1942 -0.003 0.067 -0.039 0.476 0.865 0.156 0.262 1.113 0.126

7 1943 0.428 0.300 0.149 0.255 0.313 0.351 0.341 0.580 0.639

8 1944 0.192 0.103 0.260 0.290 0.637 0.233 0.227 0.473 0.282

9 1945 0.446 0.216 0.419 0.216 0.373 0.349 0.352 0.229 0.578

10 1946 -0.088 -0.046 -0.078 -0.272 -0.037 -0.209 0.153 -0.126 0.289

11 1947 -0.127 -0.071 0.169 0.144 0.026 0.355 -0.099 0.009 0.184

12 1948 -0.015 0.056 -0.035 0.107 0.153 -0.231 0.038 0.000 0.114

13 1949 0.305 0.038 0.133 0.321 0.067 0.246 0.273 0.223 -0.222

14 1950 -0.096 0.089 0.732 0.305 0.579 -0.248 0.091 0.650 0.327

15 1951 0.016 0.090 0.021 0.195 0.040 -0.064 0.054 -0.131 0.333

16 1952 0.128 0.083 0.131 0.390 0.434 0.079 0.109 0.175 0.062

17 1953 -0.010 0.035 0.006 -0.072 -0.027 0.067 0.210 -0.084 -0.048

18 1954 0.154 0.176 0.908 0.715 0.469 0.077 0.112 0.756 0.185

Expected values and covariances for the dataset, are given in appendices A and B respectively. These
allow us to verify some of the plots here.

Portfolios as Functions of Weight

Portfolio return Y , which is itself a random variable, can be regarded as the dot product of a vector of
weights w and a vector random variable X, with the weights summing to one. Equivalently, it can also
be regarded as the weighted average of multiple (often dependent) random variables X1, X2, ..., Xk.

Y = wX

= w1X1 + w2X2 + ... + wkXk

Traditionally, for k random variables, we would model our weights in cartesian space, with k − 1
dimensions. e.g. For three weights w1, w2, w3, we could use a two dimensional cartesian space, with
points in that spaces represented by (w1, w2), where we partly ignore w3, However, we shall mainly use
a triangular space.

Before we continue, we need to clarify two important notions, function valued functions and random
variable valued functions. Perhaps the most common example of a function valued function is differen-
tiation. When we differentiate a function, differentiation itself can be regarded as a function, say diff,
that maps a function to a function. So f ′ = diff(f). Just as functions can return functions, functions can
also return random variables. Perhaps the most common example is the mean (of random variables).
The mean of the elements of a vector variable random, can be regarded as function, that maps a vector
random variable to a scalar random variable. So X = mean(X).

In our case, we will construct a portfolio g, from a set of historical returns. We have a portfolio
constructor Cg, which is a function, that maps a matrix of historical returns x (the realised values of
X) to a portfolio. We shall regard a portfolio as a function that maps a vector of weights to portfolio
return. So:

g = Cg(x)

Y = g(w)
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The portfolio is based on the weighted sum given earlier, and treats the random variables as constants
(constant in the sense that their distributions are constant). Exactly what g, X and Y are, is discussed
later. For now, let’s take things a step further, and derive conditional parameters of Y .

Following the notion that a portfolio is a function of weight, we can also compute the expected value
of portfolio return as a function of weight. This function is constructed from a portfolio, so:

fE = CE(g)

E(Y |w) = fE(w)

We are going to be unorthodox, and denote variance using V and quantiles as Q. We compute can
compute them (and almost any conditional parameter) in the same manner, so:

fV = CV(g)

fQ = CQ(g, p)

V(Y |w) = fV(w)

Q(Y |w) = fQ(w)

Note that the p in the constructor for quantile return is probability, and is a number between zero and
one.

Using rrv we can construct a portfolio for the two investment (or two security) case, using say, the
first two securities in the dataset. We can then go on to create functions for expected return, return
variance and quantile return.

> g = portfolio (x [,2:3])

> portfolio.names (g)

[1] "Am.T." "A.T. & T."

> fe = expectedpr (g)

> fv = variancepr (g)

> fq.25 = quantilepr (g, 0.25)

> fq.50 = medianpr (g)

> fq.75 = quantilepr (g, 0.75)

If we want, we can compute the expected return of a portfolio, which contains equal weighting over both
investments.

> fe (c (0.5, 0.5) )

[1] 0.06375

We can also plot the expected return and return variance.

> plot (fe, main="expected return")

> plot (fv, main="return variance")
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As well as, the 0.25, 0.5 and 0.75 quantiles.

> plot (fq.25, main="quantile (0.25) return")

> plot (fq.50, main="median return")

> plot (fq.75, main="quantile (0.75) return")
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Note, that whilst both variance and quantiles can be used as measures of risk. An important difference
is that, in general, low variance values are good, where as in general, high quantile values are good. Also
note, that many financial distributions are asymmetric, hence portfolio return that is very attractive
with respect to quantile values with p < 0.5, may be very unattractive with respect to quantile values
with p > 0.5.

Many textbooks consider standard deviation versus expected return. Currently, the rrv package does
not offer a standard function for this, plus the implementation is not fully vectorised, so:
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> s = seq (0, 1, length=20)

> re = rsd = numeric (20)

> fsd = sdpr (g)

> for (i in 1:20)

{ w = c (1 - s [i], s [i])

re [i] = fe (w)

rsd [i] = fsd (w)

}

> plot (rsd, re, type="l", xlab="sdpr", ylab="expectedpr")

> points (rsd [c (1, 20)], re [c (1, 20)], pch=16, cex=1.5)

> meanrsd = mean (rsd)

> labs = portfolio.names (g)

> text (meanrsd, re [1], labs [1])

> text (meanrsd, re [20], labs [2])
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Visualising Portfolios over Triangular Spaces

We have suggested that weight exists in a triangular space (or equivalently, that portfolios are triangular
functions). This principle is most intuitive in the case of three investments.

The examples used in the previous section, works using three investments as well. Hopefully contour
plots will be implemented soon. Currently, this uses heat maps, with bright colours representing high
values and dark colours representing low values.

Note that each plot, uses a separate scale (in order to achieve maximum colour variation). Hence,
two points with the same colour, each from a separate plot, may represent quite different values.

> g = portfolio (x [,2:4])

> portfolio.names (g)

[1] "Am.T." "A.T. & T." "U.S.S."

> fe = expectedpr (g)

> fv = variancepr (g)

> fq.25 = quantilepr (g, 0.25)

> fq.50 = medianpr (g)

> fq.75 = quantilepr (g, 0.75)

> #expected portfolio return

> plot (fe)
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Am.T.

A.T. & T. U.S.S.

> #portfolio return variance

> plot (fv)

Am.T.

A.T. & T. U.S.S.

> #quantile (0.25) portfolio return

> plot (fq.25)
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Am.T.

A.T. & T. U.S.S.

> #median portfolio return

> plot (fq.50)

Am.T.

A.T. & T. U.S.S.

> #quantile (0.75) portfolio return

> plot (fq.75)
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Am.T.

A.T. & T. U.S.S.

Modelling Historical Returns with Empirical Distributions

Up to this point, we haven’t really discussed what X and Y really are. This package assumes that random
variables have an almost arbitrary distribution that can be modelled using an empirical cumulative
distribution function (ECDF). In the case of vector random variables, we assume a multivariate ECDF,
however at present this package does not make use of multivariate ECDFs (even though we will use the
mecdf function).

ECDFs are modelled using realised values of a random variable, and we can plot their distributions.
Using all our data:

> for (j in 2:10)

plot (mecdf (x [,j], continuous=FALSE), main=names (x) [j])
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Note that at the time of writing, there’s is a minor error in the mecdf package when computing continuous
ECDFs (which is the default in the univariate case).

Modelling Portfolio Returns with Empirical Distributions

Roughly speaking, we can compute a vector of realised values for Y , which we shall denote y. This uses
a trivial extension to the expression used at the beginning of section two (on modelling portfolios as
function). Remember that x is a matrix (not a regular vector).

y = xw

For clarity, let ri be the ith row vector of x, then

y1 = wr1

y2 = wr2

...

yn = wrn

In this package, we can create rrv (random return variable) objects from matrices (or any object that
can be converted to a matrix). We can also create rprv objects (random portfolio return objects), using
an rrv object and a vector of weights. rprv objects are what is returned by portfolio functions and are
based on the expression above.

rrv 0.3.0 Charlotte Maia 9



We can create a portfolio, then compute (and plot) different rprv objects.

> g = portfolio (x [,4:5])

> portfolio.names (g)

[1] "U.S.S." "G.M."

> prefix = paste (portfolio.names (g), collapse="+")

> plot (g (c (0.25, 0.75) ), main=paste (prefix, "(25:75)") )

> plot (g (c (0.75, 0.25) ), main=paste (prefix, "(75:25)") )
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APPENDIX A:

Expected Security Returns

Am.T. A.T. & T. U.S.S. G.M. A.T. & Sfe C.C. Bdn.

0.066 0.062 0.146 0.175 0.198 0.055 0.124

Frstn. S.S.

0.190 0.116

APPENDIX B:

Security Returns Covariance

Am.T. A.T. & T. U.S.S. G.M. A.T. & Sfe C.C. Bdn. Frstn. S.S.

Am.T. 0.057 0.023 0.030 0.052 0.017 0.034 0.026 0.042 0.038

A.T. & T. 0.023 0.016 0.020 0.026 0.009 0.011 0.015 0.027 0.022

U.S.S. 0.030 0.020 0.091 0.066 0.047 0.014 0.012 0.073 0.044

G.M. 0.052 0.026 0.066 0.101 0.055 0.031 0.022 0.096 0.040

A.T. & Sfe 0.017 0.009 0.047 0.055 0.135 0.014 0.024 0.108 0.048

C.C. 0.034 0.011 0.014 0.031 0.014 0.044 0.012 0.031 0.023

Bdn. 0.026 0.015 0.012 0.022 0.024 0.012 0.029 0.032 0.020

Frstn. 0.042 0.027 0.073 0.096 0.108 0.031 0.032 0.155 0.056

S.S. 0.038 0.022 0.044 0.040 0.048 0.023 0.020 0.056 0.084
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