
A short tutorial on rrdf

Egon L. Willighagen

Copyright (C) January 1, 2014

This tutorial is licensed Creative Commons BY-SA.

1 Introduction

After RDF and SPARQL integration into Bioclipse was finished, I realized
that impact would even be larger if I would add support for that to R [3].
That was in 2011. This package does just that, and allows to work with RDF
data and perform SPARQL queries. I am indebted to Rajarshi Guha, whos
rcdk package provided me with a template to create this package from [1].

This tutorial will demo in two sections how RDF can be handles and how
SPARQL [2] functionality can be used.

But before we start, we first have to load the library:

> library(rrdf)

BTW, this package makes extensive use of Jena, and without this great
Open Source project this package would have had to use an alternative.

2 Handling triples

To handle triples, we first need a triple store. At this moment only in-
memory stores are supported, though the code shared with Bioclipse was
later been extended with on-disk stores, and I still need to port that code to
this package.

The package supports two kinds of stores, one that has minimal ontology
support, and one basically just handles triples. Both can be created with the
new.rdf command:

1



> ontStore = new.rdf()

> store = new.rdf(ontology=FALSE)

The store is in fact a Java object form the Jena library, so that simply
printing the object is somewhat uninformative:

> store

[1] "Java-Object{<ModelCom {} | >}"

But, we can use the summarize.rdf method instead:

> summarize.rdf(ontStore)

[1] "Number of triples: 40"

> summarize.rdf(store)

[1] "Number of triples: 0"

Possibly, we will get a store prefilled with some 40 triples, defining core
schema. When we later serialize the RDF into file formats, we normally no
longer see these triples.

With a store at hand, we can start playing with triples.

2.1 Minting triples

This package has two methods for adding triples. One has a resource-typed
object, the other is for triples with Literal values. Adding a triple with a
resource use this method:

> add.triple(store,

+ subject="http://example.org/Subject",

+ predicate="http://example.org/Predicate",

+ object="http://example.org/Object"

+ )

> summarize.rdf(store)

[1] "Number of triples: 1"

2



We can see now that we have one more triple than we had earlier. We
can also shorten this, by taking advantage of R magic, to:

> add.triple(store,

+ "http://example.org/Subject",

+ "http://example.org/Predicate",

+ "http://example.org/AnotherObject"

+ )

> summarize.rdf(store)

[1] "Number of triples: 2"

The second method for adding triples is for adding data triples, and now
the last parameter is a so-called Literal:

> add.data.triple(store,

+ subject="http://example.org/Subject",

+ predicate="http://example.org/Predicate",

+ data="Value"

+ )

This method also allows you to set the type of the Literal, but at this
time only using XML Schema data types using their local names:

> add.data.triple(store,

+ subject="http://example.org/Subject",

+ predicate="http://example.org/Predicate",

+ data="Value",

+ type="string"

+ )

2.2 Serialization to and from strings

It can be useful to serialize the storage to a string for introspection:

> store = new.rdf(ontology=FALSE)

> add.prefix(store, "idorg", "http://identifiers.org/pubmed/")

> add.prefix(store, "bibo", "http://purl.org/ontology/bibo/")

> add.data.triple(store,

3



+ "http://identifiers.org/pubmed/23657106",

+ "http://purl.org/ontology/bibo/pmid",

+ "23657106"

+ )

> cat(asString.rdf(store, format="N3"))

@prefix idorg: <http://identifiers.org/pubmed/> .

@prefix bibo: <http://purl.org/ontology/bibo/> .

idorg:23657106 bibo:pmid "23657106" .

And, one can also populate a storage from a string:

> store = fromString.rdf(paste(

+ "<http://example.org/Subject>",

+ "<http://example.org/Predicate>",

+ "<http://example.org/AnotherObject>",

+ "."

+ ), format="N-TRIPLES");

> summarize.rdf(store)

[1] "Number of triples: 1"

2.3 Serialization to files

A store is nice, but to interoperate with other tools, we commonly have
serialize the data. For this, we can use the save.rdf method (the filename is
POSIX-based):

> tmpfile = tempfile(fileext=".rdfxml")

> save.rdf(store, tmpfile)

[1] "/tmp/RtmpEJVolL/fileddf3d00801c.rdfxml"

This example shows that the methods takes the RDF/XML format as de-
fault. That is, the verbose RDF/XML. But you can also save as abbreviated
RDF/XML and as Notation3:

> save.rdf(store, tempfile(fileext=".ardfxml"), format="RDF/XML-ABBREV")

4



[1] "/tmp/RtmpEJVolL/fileddf11e7a120.ardfxml"

> save.rdf(store, tempfile(fileext=".n3"), format="N3")

[1] "/tmp/RtmpEJVolL/fileddf593d3aef.n3"

To customize the output, we can define prefixes:

> add.prefix(store, "ex", "http://example.org/")

> add.prefix(store, "xsd", "http://www.w3.org/2001/XMLSchema#")

> save.rdf(store, tempfile(fileext=".n3"), format="N3")

[1] "/tmp/RtmpEJVolL/fileddf59d30228.n3"

The output will then resemble:

ex:Subject

ex:Predicate "Value" , "Value"^^xsd:string , ex:Object .

2.4 Loading triple files

Minting triples one by one can be fun for a while, but soon you will want
to just load a set of triples from a data file. This is done with the load.rdf
method. Let’s read this file:

ex:Methane

rdfs:label "methane"^^xsd:string ;

ex:formula "CH4"^^xsd:string ;

ex:carbonCount "1"^^xsd:integer .

ex:Ethane

rdfs:label "ethane"^^xsd:string ;

ex:formula "C2H6"^^xsd:string ;

ex:carbonCount "2"^^xsd:integer .

ex:Propane

rdfs:label "propane"^^xsd:string ;

ex:formula "C3H8"^^xsd:string ;

ex:carbonCount "3"^^xsd:integer .

5



ex:Butane

rdfs:label "butane"^^xsd:string ;

ex:formula "C4H10"^^xsd:string ;

ex:carbonCount "4"^^xsd:integer .

This file contains information about a series chemical compounds, called
alkanes. For that, we use this code:

> exData = load.rdf("ex.n3", format="N3")

> summarize.rdf(exData)

[1] "Number of triples: 52"

Note that we have the additional 40 triples from the ontology model. It
therefore read 12 triples from the file.

And with this ability, we are ready to do the basic stuff: create, load, and
save RDF. We are ready to start analyzing the data contained in the RDF,
which starts with extracting the data we are interested in.

3 Querying RDF stores

To query RDF stores, the SPARQL query language was developed. The rrdf
package allows you to query local and remote stores. This tutorial will not
introduce the SPARQL language itself, for which there are plenty of resources
available on the web.

We demonstrate the SPARQL functionality with the alkane data loaded
in Section 2.4. For example, when we want to find all alkanes with more then
2 carbons we can do:

> sparql.rdf(exData,

+ paste(

+ "SELECT ?name ?carbons WHERE {",

+ " ?alkane <http://www.w3.org/rdf/schema/#label> ?name ; ",

+ " <http://example.org/carbonCount> ?carbons ",

+ "}"

+ )

+ )

6



name carbons

[1,] "butane" "4"

[2,] "propane" "3"

[3,] "ethane" "2"

[4,] "methane" "1"

The results will be stored in a matrix, and the variable names in the query
will be used as column names. We can even say which column should be used
as row names:

> sparql.rdf(exData,

+ paste(

+ "SELECT ?name ?carbons WHERE {",

+ " ?alkane <http://www.w3.org/rdf/schema/#label> ?name ; ",

+ " <http://example.org/carbonCount> ?carbons ",

+ "}"

+ ),

+ rowvarname="name"

+ )

carbons

butane "4"

propane "3"

ethane "2"

methane "1"

The latter has the added value that now the matrix is numeric.

3.1 Remote SPARQL

Similarly, we can do remote queries. We just replace the local store with a
string representation of the SPARQL end point URI, and slightly change the
method name:

sparql.remote(

"http://rdf.farmbio.uu.se/chembl/sparql",

paste(

"SELECT DISTINCT ?predict WHERE {",

" ?subject ?predict ?object ",

7



"}"

)

)

References

[1] R. Guha. Chemical informatics functionality in r. Journal of Statistical
Software, 18(5):1–16, 2007.

[2] A. Seaborne and S. Harris. SPARQL 1.1 query. W3C working draft,
W3C, Oct. 2009. http://www.w3.org/TR/2009/WD-sparql11-query-
20091022/.

[3] E. L. Willighagen, N. Jeliazkova, B. Hardy, and R. C. Grafström. Compu-
tational toxicology using the OpenTox application programming interface
and bioclipse. BMC Research Notes, 4(487), Nov. 2011.

8


