rqPen: An R package for penalized quantile

regression
Ben Sherwood Shaobo Li Adam Maidman
University of Kansas University of Kansas Airbnb
Abstract

Quantile regression directly models a conditional quantile of interest. A wide variety
of penalties have been introduced to improve regression estimation and many all provide
simultaneous estimation and model selection. The R package rqPen provides penalized
quantile regression for lasso, elastic net, adaptive lasso, SCAD and MCP penalties, along
with extensions to group penalties. The backbone of the package is the elastic net and
group lasso methods, which are of interest in their own right and can be used to approx-
imate the nonconvex penalties. The traditional approach to solving penalized quantile
regression problems is to frame it as a linear programming, similar to what is done with
unpenalized quantile regression. For large data sets this approach can be computationally
burdensome. The package rqPen provides these traditional linear programming solutions,
along with coordinate descent algorithms and algorithms based on approximating the
quantile loss with a Huber-type approximation.

Keywords: quantile regression, penalized regression, model selection.

1. Introduction

Koenker and Bassett (1978) proposed quantile regression as robust alternative to mean regres-
sion that directly models a conditional quantile of interest without the need for assumptions
about the distribution or variance of the error term. Since the seminal paper of (Tibshirani
1996), introducing the lasso penalty, investigating the combination of different penalties and
loss functions has been an active area of interest. Penalties provided in rqPen are lasso, elastic
net (Zou and Hastie 2005), SCAD (Fan and Li 2001), MCP (Zhang 2010), adaptive lasso (Zou
2006), group lasso (Yuan and Lin 2005) and other group extensions of the previously stated
penalties (Wang, Chen, and Li 2007; Huang, Breheny, and Ma 2012; Breheny and Huang
2009), with the exception of elastic net for which a group generalization has not been imple-
mented. Extending the theoretical results of penalized estimators to the quantile regression
setting has been an active area of research. Examples include deriving the rate of conver-
gence for lasso (Belloni and Chernozhukov 2011) and group lasso (Kato 2012) and deriving



2 rqPen: Penalized quantile regression

oracle properties for non-convex penalties such as SCAD and MCP (Wang, Wu, and Li 2012).
Discussed in these papers is how minimizing the penalized objective functions for quantile
regression can be framed as linear programming problems or, in the case of group lasso, sec-
ond order cone programming problems. The linear programming formulation is particularly
familiar to researchers in quantile regression because this is the most common approach for
solving quantile regression problems, including in the quantreg package (Koenker and D’Orey
1987, 1994). While a second order cone programming problem can be solved using convex
optimization software, including the R package Rmosek (Koenker and Mizera 2014).

The ability to analyze large data sets is one of the major appeals of penalized regression
methods. However, linear programming and second order cone programming becomes com-
putationally burdensome for large data sets. Further complicating matters, is the quantile
loss function is non-differentiable, while popular algorithms for penalized objective functions
rely on a differentiable loss function, for instance Friedman, Hastie, and Tibshirani (2010)
(elastic net), Breheny and Huang (2011) (non-convex penalties), Breheny and Huang (2015)
(group non-convex penalties), and Yang and Zou (2015) (group lasso). Yi and Huang (2017)
proposed using a Huber-type approximation of quantile loss and coordinate descent algorithm
for solving elastic net penalized quantile regression which is implemented in the R package
hgreg. Peng and Wang (2015) proposed a coordinate descent algorithm (QICD) for noncon-
vex penalties that relies on an initial estimator being provided, implemented in qicd. Other
approaches, albeit without active R packages, for penalized quantile regression include using
ADMM algorithms (Yu and Lin 2017; Yu, Lin, and Wang 2017; Gu, Fan, Kong, Ma, and Zou
2018).

The package rqPen provides implementation of the Huber based approximation, linear pro-
gramming and QICD. It allows users to fit quantile regression models with all of the penalty
functions discussed in the first paragraph. It also provides tools for using cross validation or
information criterion for parameter selection. In addition, it provides plots for how cross val-
idation results and coefficient estimation change with A, the main sparsity tuning parameter.
The package allows for estimation of multiple quantiles and provides plots for how coefficient
values change with the quantile being modeled, 7. The packages quantreg and hqreg are
other alternative for penalized quantile regression in R. The package rqPen provides access
to the same penalties these packages provide, plus additional penalties. For instance, neither
of these packages include group penalties. In addition, rqPen provides more tools that are
directly catered to penalized regression. Such as the previously mentioned trace plots and
using information criterion for parameter selection. While hrqglaso provides penalized group
lasso, it does not provide any of the other group penalties, nor does it allow for simultaneous
estimation of multiple quantiles. On the other hand that package and hqreg are also setup to
allow for robust mean regression using the Huber loss function, something rqPen is not setup
to do.

2. Penalized estimation of quantile regrssion
Consider observations {y;, x;} ;, where x; € RP, and the model
yi = x; Bg + €, (1)

where P(e; < 0|x;) = 7. Define p;(u) = u[r — I(u < 0)] and Koenker and Bassett (1978)



rqPen Vignette 3

proposed estimating (1) by minimizing

n
-
ZPT(yi_xi 18)7 (2)
i=1
which is available in the package quantreg. The package rqPen provides functions for esti-
mating B by minimizing

*ZPT Yi TB +)‘P (B)

The penalty function P,(8) can take on the form of a group or individual penalty.

2.1. Individual Penalties

The package rqPen supports four different forms of individual penalties. The SCAD, pf\@(),
and MCP, pgfa() penalty functions are

aX|z| — (2% + \?)/2

-1
x2 al?
Pallel) = Mlel — )0 < [o] < ad) + - 1(Ja] > o),

(a+ 1)A\?

(] > an),

Az I(0 < |z] < X) +

PRallz]) I\ < |z < a)) +

where a > 2 for the SCAD penalty function and a > 1 for MCP.

The following are the four different penalty functions, plus two important special cases.

L. Elastic net: Py(8) = A ¥"_; w; [a!ﬁj\ + (1 - a)ﬁﬂ, where a € [0,1].
(a) LASSO: special case with a = 1.
(b) Ridge: special case with a = 0.

2. Adaptive LASSO: P,(8) = A Y. w;|5;/7|3;|, where a > 0.

3. SCAD: Pu(8) = 7_, i nalB51), where a > 2.

4. MCP: Po(B) = 327_1 Py, 2,0 (185]), where a > 1.

The weights, w;, allow for different weights for each predictor and most be non-negative.
If w; = 0 then that variable will be unpenalized and thus is guaranteed to be included in
the model. In rqPen these weights are refereed to as penalty.factors or group.penalty.factors.
The value Bj is the coefficient of the Ridge estimator with the same value of A. The LASSO
estimator provides the backbone for the algorithm of the three non-elastic net penalties. As
pr(z) + pr-(—z) = |x|, the LASSO estimator minimizes,

1< P
= o — % B)+ D pr(Mw;By) + pr(—Iw;B;). (3)
nia j=1

For i € {1,...,n} define §; = y; and X; = x;. Let e; € RPT! represent a unit vector with a

value of one in the jth position and zero in all other entries. For i € {n+1,...,n+2p}, X; =



4 rqPen: Penalized quantile regression

—nAwje; or X; = nAw;e;, where each definition is used once for each value of j € {1,...,p}.
While, g; =0 for i € {n+1,...,n + 2p}. Then minimizing (3) is equivalent to minimizing

1 n+2p ) =
n Z pr(Ji — %; B), (4)
=1

which, with the exception of the scaling constant of L, has the same form as (2). This
approach of creating the augmented 2p samples and then using standard quantile regression
is implemented in rqPen where the problem is solved using the r¢() function from quantreg.
Note this approach is different than using method=“lasso” within quantreg. Below is code
for fitting a lasso penalized estimator to the barro data set from rqPen using the “br” and
“fn” algorithms from quantreg. Where the “br” implementation is described in Koenker and
D’Orey (1987) and Koenker and D’Orey (1994), while implementation of “fn” is decribed in
?. Our experience is that “br” performs better and is more likely to provide a sparse solution.

R> library(rqPen)

R> #quantreg is required for rqPen, but call directly here
R> #because we need the barro data set

R> library(quantreg)

R> data(barro)

R> y <- barro$y.net

R> x <- as.matrix(barro[,-1])

R> gbr <- rq.pen(x,y,alg="br")

R> gfn <- rq.pen(x,y,alg="fn")

For large values of n and p the linear programming algorithms become computationally bur-
densome. To decrease computational complexity, Yi and Huang (2017) proposed approxi-
mating the quantile loss function with a Huber-like function and proposed a new coordinate
descent algorithm that requires a differentiable loss function. Define the Huber loss function
proposed by Huber (1964) as
2
= if [t] <7,
hv(t) =32
It — % if [¢] > 7.

Note pr(u) = u[r — I(u < 0)] = 4(Ju| + (27 — 1)u) and for sufficiently small v, |u| ~ hy(u).
We define the Huber-approximated quantile loss as

h2(u) = hy(u) + (27 — 1)u, (5)

and for small v, p;(u) = %h;(u) The package hqreg implements the approach of Yi and
Huang (2017) and the function hgreg(), with method=“quantile” solves the problem of

1 & P
5 25 wi =% B) + A3 wlB;1. (6)
i=1

=1

This implementation can be used in rqPen by the following code.



rqPen Vignette

R> ghuber <- rq.pen(x,y,alg="huber")

Setting alg="huber" calls hqreg::hqreg(), and thus hqreg is another required package for rqPen.
The Huber approximation is the default and will be used if the algorithm is not specified.
The LASSO penalty provides the backbone for the three non-elastic net algorithms. For the
adaptive LASSO the connection is straight forward, as it is a special case of a LASSO problem
with different weights for each coefficients. The initial estimators necessary for the weights
are determined by a ridge estimator with the same value of A. The SCAD and MCP functions
are approximated by a local linear approximation (LLA) as proposed by Zou and Li (2008).
Let pu;xa(|Bj]) represent a generic penalty function and pj, , ,(|8;]) be the derivative with

respect to ;. In addition let Bj be the LASSO estimator for the same value of A and weights.
The LLA approach uses the following approximation,

p p B
Y pupnalBi) = D v, xa (1811551 (7)
j=1 j=1

Again, the problem becomes a special case of a LASSO estimator with specific weights for each
predictor. Thus all the non-elastic net penalties can be solved using the linear programming
or the Huber approximation algorithms. Peng and Wang (2015) proposed a coordinate de-
scent algorithm for penalized objective functions with quantile loss and a non-convex penalty
(QICD). This approach has been implemented for the SCAD and MCP functions. That pro-
posed algorithm requires a good initial estimator and rqPen uses a lasso estimator. For this
reason the algorithm was not implemented for the LASSO penalty. For larger values of p and
n this algorithm is faster than linear programming approaches. The Huber based algorithm
will be faster than QICD, but the trade-off there is using an approximation for the quantile
loss function.

The elastic net penalty of
RS T . 2
=3 pelyi = x{ B) + 2D w; [aly] + (1 - )57 (8)
i=1 j=1

cannot be framed as a linear programming problem because of the ridge penalty. Thus for a #
1, the rqPen implementation of elastic net uses the Huber approximation approach provided in
hqreg. While hqreg provides a computational backbone, rqPen provides additional functions
that will be described later. In addition the next section includes group penalties, that are
not implemented in hqreg. For some group penalties hqreg will still provide a computational
backbone, but for other penalties it will not be used.

2.2. Group Penalties

Group penalties are useful when there is a group structure to the predictors. Common ex-
amples of this are non-binary categorical variables or polynomial transformations of single
predictor. This section assumes the p predictors are partitioned into G groups and B, repre-
sents the coefficients associated with the gth group of predictors. Group penalized quantile
regression estimators minimize

1 G
~ 2 prly =% B)+ D PugnalllBylle)- (9)
i=1 g=1



6 rqPen: Penalized quantile regression

Group penalties are implemented for four penalty functions: (1) LASSO; (2) Adaptive LASSO;
(3) SCAD; and (4) MCP. Currently, there is no implementation of a group elastic net or ridge
penalty. For the latter there does not exist a group version of the ridge penalty. For the for-
mer, that would be a convex combination of a group lasso penalty and ridge. Implementing
this would require generalizing the group lasso penalty algorithm and has not been done, yet.
All four functions use the same form presented in the previous subsection, but the scalar j3;
is replaced with the scalar [|B|[;. The choice q is limited to ¢ € {1,2}. If ¢ = 2 then group
variable selection will be all-or-nothing, that is all variables within a group will be selected
or none of them will be. The choice of ¢ = 1, allows for bi-level variable selection, that is it
is possible to have zero and non-zero estimates for coefficients within a group. Consider the
case of the LASSO penalty for ¢ =1 (9) is

17 G
;Zpr(yi—xjﬁwrzwg“ﬁg\lh (10)
=1 g=1
while for ¢ = 2 it is
1 - G
LS el X B) Y w8 ()
=1 g=1

Note that (10) is a special case of the individual LASSO penalty where the weights within each
group are the same, while (11) is the standard group lasso penalty introduced by Yuan and
Lin (2005). The estimator that minimizes (10) is not guaranteed to have variable selection
agreement within a group, where this is guaranteed for the estimator that minimizes (11).
Due to (10) being a special case of the individual lasso estimator it is not implemented as a
group penalty, but for all other penalty functions users can choose between ¢ = 1 or ¢ = 2.
These other three penalties are partially motivated by a desire to have the oracle property.
However, for ¢ = 1 it has been shown that the oracle property only holds at the group level
and not at the individual level, although these results do not explore the non-differentiable
quantile loss function or the adaptive lasso penalty (Sherwood, Molstad, and Singha 2020).
For an excellent review of group penalties, including a discussion of the use of ¢ = 1 the
reader is referred to Huang et al. (2012). Breheny and Huang (2009) provides a more detailed
exploration of group penalties with ¢ = 1.

Choosing ¢ = 1 for quantile regression estimators has the additional benefit of being solved
using linear programming, the most commonly used approach for quantile regression prob-
lems. As mentioned previously the group LASSO estimator becomes a special case of the
individual LASSO estimator, and this is also true for the adaptive LASSO penalty. For the
SCAD and MCP penalties the same LLA will be used. Again let 8 ¢ be an initial group
LASSO estimator and the penalized objective function is approximated by

1 n < / P
n Z - pr(yi — %] B) + lewa&a(”ﬁg!\q)!\ﬁg\Iq‘ (12)
1= 9=

For the case of ¢ = 1 this becomes an individual LASSO problem and the algorithms discussed
in the previous section apply, though with some minor differences that will be discussed in the
following section. While for ¢ = 2 this becomes a special case of the group LASSO problem.
These group LASSO problems are not linear programming problems, but second-order cone



rqPen Vignette

programming problems. Therefore they can be solved by existing convex optimization soft-
ware such as Rmosek (Koenker and Mizera 2014). However, there are some barriers to a user
in using Rmosek. A user needs to correctly define all the variables of the convex optimization
problem and they need to have a copy of Mosek installed on their computer. In addition,
similar to linear programming problems, second-order cone programming problems can be
computationally burdensome for large values of n or p. For ¢ = 2, the Huber approximation
described in the previous subsection is used. However, hqreg cannot be used to solve this
problem because the approach of Yi and Huang (2017) is not for a group penalty. Instead
the algorithm of Yang and Zou (2015) is implemented.

2.3. Estimation of Multiple Quantiles

The previous two subsections considers only one quantile, but, similar to quantreg, rqPen
accommodates estimation of multiple quantiles. Consider B quantiles and let 7, be the bth
quantile of interest. Let 8™ be the regression coefficients for the bth quantile. For individual
penalties the estimator minimizes,

1 B n B p
m o 2o (v =187+ 303 puanalIFFD: (13)

b=1i=1 b=1j=1

While for group penalties it is

1 B n B G
- ZZpT (yZ — X?ﬂ”) + Z prgdbk,a(Hﬁqu)- (14)

b=1i=1 b=1g=1

The main difference is the introduction of quantile specific weights for the penalty terms.
Belloni and Chernozhukov (2011) provide one example of specific weights for each quantiles
and use d, = \/7p(1 — 1) /n. Dividing by n is simply a difference in the scale of A, but the
V(1 — 1) term provides a quantile dependent weight. The optimization of (13) and (14)
consist of B different optimization problems that have been discussed in Sections 2.1 and 2.2.

2.4. Tuning parameter selection

There are two tuning parameters, A and a, that need to be set. The value of a defaults to
commonly used values for each penalty: (1) elastic-net (a=1); (2) adaptive LASSO (a=1);
(3) SCAD (a=3.7); and (4) MCP (a=3). Users can also specify their own value of a or a
sequence of potential values of a to be considered. Users can specify their own sequence
for values of A, otherwise a sequence will be automatically generated. Define H7 (B) =
% i1 W (yi — x; B). Define @ = a if the elastic net penalty is used and zero otherwise.

The default value for individual penalties is Apax = max;y 1.05 ‘a%jH?(OpH)’ (w;dpd) " and

iy P 0p)

for the group penalties is Apax = maxg 1.05‘ ‘ (wgdb)_l. Without the 1.05

multiplier, these values of Apax provide a totally sparse solution qfor LASSO and group LASSO
under the KKT conditions of the Huber approximation. However, not all algorithms use the
Huber approximation and the 1.05 multiplier is used to make it more likely that Apax will
provide a totally sparse solution for any estimator. If any predictors or groups are unpenalized
at a given quantile then they are excluded from these calculations.



8 rqPen: Penalized quantile regression

Both cross-validation and information criterion are provided as tools for selecting the optimal
pair of (A,a). For a given quantile 7 and pair of tuning parameters (A, a) with estimator
B;a with kia non-zero coefficients, including the intercept, define the quantile information
criterion (QIC) as

QIC(, M\ a) =log | Y pr(yi — %] BLa) | +mkS (15)
=1

where the value of m depends on the criterion being used. In rqPen the user can select
between AIC (m = 2), BIC [m = log(n)] and a version of the large p BIC proposed by Lee,
Noh, and Park (2014) [m = log(n) log(p)]. Using the barro data set used previously, below is
code for modeling the .25 quantile using elastic net and results for using both AIC and BIC
to select the pair of (A, a).

R> rqe <- rq.pen(x,y,tau=.25,penalty="ENet",a=seq(0,1,.1),alg="huber")
R> aicm <- qgic.select(rqe, method="AIC")

R> #BIC is the default method

R> bicm <- gic.select(rqge)

R> #following returns the coefficients of the selected model

R> coefficients(bicm)

tau=0.25
[1,] -0.040226686
[2,] -0.023893370

[3,] 0.006519105
[4,] 0.003225629
[5,1] 0.000000000
[6,1 0.000000000
[7,] 0.059605464

[8,]1 -0.001406846
[9,] -0.215479802
[10,] 0.090625321
[11,] -0.140849188
[12,] -0.025810735
[13,] -0.029461310
[14,]1 0.079574971

R> #provides information about the selected model
R> bicm$modelsInfo

tau modelIndex a minQIC lambdalIndex lambda
1: 0.25 11 1 6.388936 100 0.001960444

R> #provides IC values for all possible models
R> bicm$ic[1:5,1:5]



rqPen Vignette

tau0.25a0 tau0.25a0.1 tau0.25a0.2 tau0.25a0.3 tau0.25a0.4

L1 22.27022 10.87212 9.657005 8.883748 8.441887
L2 22.26040 10.87212 9.657005 8.883748 8.441887
L3 22.25236 10.87212 9.657005 8.883748 8.441887
L4 22.24375 10.87212 9.657005 8.883748 8.441887
L5 22.23495 10.87212 9.657005 8.883748 8.441887

For the case of multiple, B, quantiles being modeled, rqPen offers two different approaches
for selecting the tuning parameters. One approach is to select B pairs of (A, a) that minimize
the B different versions of (15). Define B weights of (wy,...,wg). The other approach is to
select a single pair of (A, a) that minimizes,

B
ZwalC(Tb,)\,a). (16)

b=1

The weights offer flexibility to a user who wants to provide more weight to a specific quantile.
The default value for all the weights is one thus giving equal weight to each quantile. Below is
code implementing both approaches. Note in this case the two approaches provide identical
results, that is optimizing A uniquely for each 7 provides the same A for all values of 7.
However, this is not guranteed to happen.

R> #lasso model for 9 quantiles

R> tvals <- seq(.1,.9,.1)

R> rgmt <- rq.pen(x,y,tau=tvals)

R> #default is to find the optimal value of

R> # lambda for each quantile separately

R> rgmt_st <- qic.select(rqmt)

R> # alternative option is to find one value of

R> # lambda best for all tau. Below code

R> # also provides different weights for the models

R> rqmt_g <- qic.select(rqmt,septau = FALSE,weights=sqrt (tvals*(1-tvals)))
R> # first one will have different values of lambda for each quantile

R> # second approach will provide the same value for lambda for all quantiles
R> rqmt_st$modelsInfo

tau modellndex a minQIC lambdaIndex lambda
1: 0.1 11 11.202792 100 0.001995633
2: 0.2 2 1 13.345651 100 0.001995633
3: 0.3 3 1 14.039835 100 0.001995633
4: 0.4 4 1 14.254535 100 0.001995633
5: 0.5 5 1 14.190048 100 0.001995633
6: 0.6 6 1 14.935143 100 0.001995633
7: 0.7 7 1 14.262631 100 0.001995633
8: 0.8 8 1 12.989257 100 0.001995633
9: 0.9 91 9.611465 100 0.001995633

R> rqmt_g$modelsInfo



10 rqPen: Penalized quantile regression
modelIndex a tau minQIC lambdalIndex lambda
tau0.1lal 110.1 11.202792 100 0.001995633
tau0.2al 2 1 0.2 13.345651 100 0.001995633
tau0.3al 31 0.3 14.039835 100 0.001995633
tau0.4al 4 1 0.4 14.254535 100 0.001995633
tau0l.bal 51 0.5 14.190048 100 0.001995633
tau0.6al 6 1 0.6 14.935143 100 0.001995633
taul.7al 7 1 0.7 14.262631 100 0.001995633
tau0.8al 8 1 0.8 12.989257 100 0.001995633
tau0.9al 91 0.9 9.611465 100 0.001995633

R> #below command gets coefficients for the selected model optimized for each quantile

R> coefficients(rqmt_st)

[1,]
[2,]
[3,]
(4,]
[5,]
[6,]
(7,1
[8,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
[9,]
[10,]
[11,]
[12,1]
[13,]
[14,]

tau=0.1

.046024550
.026284237
.012328949
.002104772
.024627664
.009512346
.042289169
.0010566290
.362402003
.088922202
.205922592
.024300727
.026985871
.108965090

tau=0.5

.030427445
.025921439
.010717433
.000000000
.000000000
.005652769
.061545816
.002032809
.053542693
.079649154
.096936333
.026219888
.029603500
.150465797

tau=0.9

.031105032
.032783674

tau=0.2

.025349510
.024599504
.008081397
.005166707
.025607695
.008764757
.058181214
.001910715
.307690904
.079340696
.167878400
.024496546
.031168065
.113462718

tau=0.6

.027667070
.027154054
.012767446
.000000000
.004500418
.012718075
.064704621
.003109405
.118189204
.078695159
.101068296
.029832149
.023199084
.193290866

-0.

-0.
0.006480841
0.002814568
0.
0
0

-0.
-0.
.086755769
.144565626
.029762941
.0315636259
.090556363

tau=0.3
007628702
024662593

007792513

.000000000
.053186347

001721006
094324088

tau=0.7

.036468569
.027049752
.020075468
.0056597457
.000000000
.008847529
.066847390
.003002686
-0.

0.
-0.
-0.
-0.

0.

097732410
069455746
098374165
027298837
017604570
203671322

tau=0.4

.0509099459
.0269258058
.0064768621
.0000000000
.0006238768
.0040800327
.0687972724
.0009412972
.0775372750
.0830892163
.1236879324
.0285998471
.0321213531
.1079694258

tau=0.8

.059369918
.029731119
.020387034
.007651144
.017975998
.012003063
.077466640
.002238763
.099465610
.054449904
.079401138
.029925264
.006516214
.217579350



rqPen Vignette 11

[3,] 0.019155652
[4,] -0.005962290
[5,] -0.001556920
[6,] 0.004491901
[7,] 0.078839376
[8,] -0.002483301
[9,]1 -0.047988988
[10,] 0.062508461
[11,] -0.090451700
[12,]1 -0.032571747
[13,] 0.003103054
[14,] 0.227296281

R> #code is the same for a group penalty

R> # This is not a great use of a group penalty and only for
R> # example

R> g <- c(rep(1,4),rep(2,3),rep(3,3),rep(4,3))

R> rqgroup <- rq.group.pen(x,y,groups=g,tau=seq(.1,.9,.1))
R> rqgroup_ic <- gic.select(rqgroup)

Cross-validation is the other implemented approach for choosing the optimal pair of (A, a).
Consider the case of K folds, let n; be the number of observations in the kth fold, yf and
x¥ be the ith response and predictor vector for the kth fold and ,(:331c ra be the fit for the
bth quantile excluding the kth fold for given values of A and a. By default, even if Huber
approximations are used, cross-validation is done with respect to quantile loss. However,
this can be changed by setting cvFunc, for instance cvFunc=abs will use absolute value loss
regardless of the quantile being modeled. For simplicity of presentation the following assumes
quantile loss is used. The average quantile loss at a given fold is

- 1 e TAaT
Ci(A\a) = . > or Wi — x5 Blpaa)- (17)
i=1

The cross-validation functions return two summaries of the cross validation for selecting (), a).
The return value bir provides a table of the values of a and A\ that minimize

K
(A a) = % S C7(Ma). (18)
k=1

In addition it provides the A\ that provides the sparsest solution that is within one standard
error of the value that minimizes (18), with a fixed. The standard error is calculated as

K_lk:1

1 & 2
T 1 [Cl:()" a) - CT()‘a a)] ) (19)
The average summary can be replaced by changing the parameter cvSummary, for instance
cvSummary=median would use the median values of CJ (), a). The return value gtr provides

results for the value of A and a that minimize

B
C(\a) = Z wpC™ (A, a). (20)
b=1



12 rqPen: Penalized quantile regression

Thus, again, providing the option to optimize the tuning parameters jointly or separately
across quantiles.

By setting groupError=FALSE each cross-validation error is weighted equally and (18) and
(20) are replaced by

K
> muCL(X,a), (21)
k=1
and
B K
Z wy Y npCrL(A a), (22)
b=1 k=1
respectively.

2.5. Additional notes on Huber approximation

For Huber approximation an appropriate value of 7 is needed. If the value is too large then
the estimator will have a large amount of bias, but if the value is too small the algorithms
will become unstable. The values of v are updated for each value of . Let r* be the vector
of residuals corresponding to the estimator using the kth value of A, A*, and Q.1(|r*|) be
the 10th percentile of the absolute values of these residuals. For the individual penalties we
use the approach outlined by Yi and Huang (2017), with differences only coming from later
changes that were made in hqreg,

~F = I(]1 - 7| < .05) max {.0001,min [V’H, Q,01(|rk\)}}
+I(|1 — 7| >= .05) max {.OOl,min {’yk_l,Q,l(|rk|)}} :

For the group penalties
A* = min {4, max {.001, Ql(\rk|)” :

Generally speaking, v needs to be small, but not too small. For larger values of ~ the
approximation becomes closer to a least squares or expectile loss function (Newey and Powell
1987). As expectile regression is not the same as quantile regression and least squares is only
the same if the errors are symmetric, this can result in biased estimators. For values of  that
are too small the algorithms become unstable as the differentiable loss function becomes for
practical purposes non-differentiable. Our experience has been that the automated methods
work well. The cautious user can specify a fixed value of v for rq.group.pen, but hqreg does
not offer this flexibility and thus only the automatic values of v are used for rq.pen.

One reason the linear and second-order cone programming problems are computationally slow
for larger values of p is they optimize with respect to all the potential covariates. Tibshirani
et al. (2012) proposed a strong rule for discarding predictors that can greatly decrease the
computational complexity of penalized optimization. The strong rule assumes a differentiable
loss function and thus is only implemented for the Huber approximations. In addition the
Huber approximation approaches use warm starts across a path of potential A values. It
starts with the largest potential value of A then uses that solution as the initial value for the
next largest potential value of A. This iterative process is continued until all solutions have
been found. The linear programming approaches rely on quantreg::rq() that does not have an
option for initial values. Thus warm starts are not implemented for those approaches. For



rqPen Vignette 13

the individual penalties, the calculations of the strong rule are down in the package hqreg,
and details can be found in Yi and Huang (2017). A similar approach has been used for the
group penalties.

3. Description of functions
Below are the main functions of rqPen and an S3 method that is unique to rqPen, bytau.plot,

e rq.pen() provides estimates of a quantile regression model, for potentially multiple
quantiles, using an individual penalty of either elastic-net, adaptive LASSO, SCAD
or MCP. If not specified, will automatically generate a sequence of A values. Returns
an ‘rq.pen.seq’ S3 object that works bytau.plot, coef, plot, predict, and print
methods.

e rq.group.pen() is a group penalty version of rq.pen(). Users have access to group
versions of LASSO, adaptive LASSO, SCAD and MCP. The LASSO penalty is restricted
to the L2-norm, but for other penalties users can choose between the L1 or L2 norm.
It also returns an an ‘rq.pen.seq’ S3 object and can be used with the same methods
listed above.

e rq.pen.cv() automates K-folds cross-validation for selection of the tuning parameters
A and a. A sequence of \ will be automatically generated. However, for a a sequence
needs to be supplied, otherwise a single default value will be used. If multiple quantiles
are modeled then finds the optimal pair of (A, a) for each quantile and the optimal pair
across all quantiles. Returns an ‘rq.pen.seq.cv’ S3 object that works with bytau.plot,
coef, plot, predict, and print methods.

e rq.group.pen.cv() is the group version of rq.pen.cv(). It does everything listed
above, but for group penalties. It also returns an ‘rq.pen.seq.cv’ object.

e QIC.select() takes a ‘rq.pen.seq’ object and provides the optimal values of (A, a)
using information criterion explained in the previous section. It returns a ‘qic.select’
S3 object that works with coef, predict and print methods.

e bytau.plot() plots coeflicients estimates for each predictor as a function of .

Below are descriptions of rq.pen and rq.pen.cv and their arguments. These functions are
very similar to rq.group.pen and rq.group.pen.cv. In addition, some of the arguments in
rq.pen.cv are simliar to those of qic.select. The next section includes examples of using
all of these functions.

Below is the rq.pen function, followed by its arguments.

rq.pen(x, y, tau = 0.5, lambda = NULL, penalty = c("LASSO", "Ridge", "ENet", "aLASSO",
"SCAD", "MCP"), a = NULL, nlambda = 100, eps = ifelse(nrow(x) < ncol(x), 0.05,

0.01), penalty.factor = rep(1l, ncol(x)), alg ifelse(sum(dim(x)) < 200, "br",
"huber"), scalex = TRUE, tau.penalty.factor = rep(l, length(tau)), coef.cutoff

= 1e-08, max.iter = 10000, converge.eps = 1e-07, lambda.discard = TRUE,...)

x Matrix of predictor values.



14 rqPen: Penalized quantile regression

y Vector of response.
tau Vector of quantiles being modeled, default is to only model the median.

lambda Vector of lambda values. If not specified then a sequence will be automatically generated
based on the data and rules described in previous section.

penalty Penalty used, choices are LASSO, Ridge, elastic-net ("ENet"), adaptive LASSO ("aLASSO"),
SCAD or MCP.

a Additional tuning parameter, not used for lasso or ridge penalties. However, will be
set to the elastic net values of 1 and 0 respectively. Defaults are ENet(0), aLASSO(1),
SCAD(3.7) and MCP(3).

nlambda The number of lambdas generated. This is ignored if lambda is set manually.

eps Multiplied by Apax to define A, when the sequence of lambda values is generated
automatically. If n < p it defaults to .05, otherwise it defaults to .01.

penalty.factor Weights for the penalty for each predictor, the value w; from (13). Default is to provide
a value of one for each predictor, thus weighting them all equally.

alg The algorithm used. Default is “huber”; the algorithm described in Yi and Huang
(2017). Linear programming solutions can be obtained using “br” or “fn” corresponding
to the same algorithms available in quantreg: :rq. Our experience has shown "br" to
perform better than “fn” because it tends to provide a sparse solution, but it can be
slow. The “QICD” algorithm is available for MCP or SCAD. For elastic net, Ridge or
adaptive LASSO the choice must be "huber".

scalex If set to TRUE, the default, the x matrix will be centered and scaled to have mean zero
and standard deviation of one. Coefficients are returned on the original scale of the
data.

tau.penalty.factor Weights for the coefficients of each quantile, the value d; from (13). Default provides
equal weight, of one, for each quantile

coef.cutoff Some of the linear programming algorithms will provide very small, but not sparse
solutions. Estimates below this number will be set to zero. This is ignored if a non-
linear programming algorithm is used.

max.iter Maximum number of iterations of non-linear programming algorithms.
converge.eps Convergence threshold for non-linear programming algorithms.

lambda.discard Algorithm may stop for small values of lambda if the coefficient estimates are not
changing drastically. One example of this is it is possible for the LLA weights of the
non-convex functions, see (7), to all become zero and smaller values of lambda are
extremely likely to produce the same zero weights.

Below is the rq.pen.cv followed by its arguments.
rq.pen.cv(x, y, tau = 0.5, lambda = NULL, penalty = c("LASSO", "Ridge", "ENet",
"alLASSO", "SCAD", "MCP"), a = NULL, cvFunc = NULL, nfolds = 10, foldid = NULL,



rqPen Vignette 15

nlambda = 100, groupError = TRUE, cvSummary = mean, tauWeights = rep(l, length(tau)),
printProgress = FALSE, ...)

x Matrix of predictor values.
y Vector of response.
tau Vector of quantiles being modeled, default is to only model the median.

lambda Vector of lambda values. If not specified then a sequence will be automatically generated
based on the data and rules described in previous section.

penalty Penalty used, choices are LASSO, Ridge, elastic-net ("ENet"), adaptive LASSO ("alLASSO"),
SCAD or MCP.

a Additional tuning parameter, not used for lasso or ridge penalties. However, will be
set to the elastic net values of 1 and 0 respectively. Defaults are ENet(0), aLASSO(1),
SCAD(3.7) and MCP(3).

cvFunc Loss function for cross-validation. Defaults to quantile loss, but user can specify their
own function.

folds Number of folds, K, used for K-folds cross validation.
foldid A vector of length n of fold assignments. If this is set, then folds is ignored.
nlambda The number of lambdas generated. This is ignored if lambda is set manually.
groupError If true then tuning parameters the by tau results, btr, are found to minimize (?7?).

. Additional arguments passed to rq.pen.

4. Applications

This section details fitting using the aforementioned barro data set and the Ames housing
data (De Cock 2011).

4.1. barro

The barro data set, available in quantreg, contains GPD growth rates and 13 other potential
explanatory variables. See Koenker and Machado (1999) for more details. The following will
provide code on fitting an elastic net model with potential 11 potential a values from 0 to 1
and equally spaced out by .1. Similarly, we will model 9 quantiles equally spaced out from .1 to
.9. The below code fits models for the 9 different models, automatically generates a sequence
of A and considers the 11 potential a values using the Huber approximation algorithm.

R> quants <- seq(.1,.9,.1)
R> r1 <- rq.pen(x,y,a=seq(0,1,.1),tau=quants,penalty="ENet",alg="huber")
R> #Below plots the coefficient values for .1 quantile with a=.1



16 rqPen: Penalized quantile regression

R> plot(rl,a=.1,tau=.1,loglLambda = TRUE)
R> #Below code would provide plots for all possible values of a and tau
R> #plot(rl,logLambda=TRUE)

Plot fortau= 0.1 anda= 0.1

—
O__J\
O_&
o P
R
g 9
IS
Q0
L N
T 9]
o
O
)
d_
T
<
d_
T
I I I I I I
-6 -4 -2 0 2 4

4.2. Group Penalty Example

The Ames Housing data contains many factor variables and is available in AmesHousing.
Below is an example of cross validation code used to fit a model for the median using the
group lasso penalty. The plot demonstrates the cross-validation error as a function of .

R> library(AmesHousing)

R> ames <- make_ames()

R> x_g <- cbind(model.matrix(~ Lot_Shape+Garage_Type+Full_Bath
+ +Fireplaces+Lot_Config - 1,ames))
R> y_g <- log(ames$Sale_Price)

R> g <- c(rep(1,4),rep(2,6),3,4,rep(5,4))

R> r2 <- rq.group.pen.cv(x_g,y_g,8roups=g)

R> plot(r2)

\2



rqPen Vignette

Cross validation results for tau = 0.5

0.15

Cross Validation Error
0.10

0.05
|

0.00
|

I I I I I I
0.05 0.10 0.15 0.20 0.25 0.30

5. Conclusion

The rqPen provides tools for penalized estimators of quantile regression models. The package
supports elastic-net, adaptive LASSO, SCAD and MCP penalty functions for both individual
and group penalties, though for group penalties only the special case of LASSO is available
for elastic-net. It provides three different approaches for estimating these models: (1) linear
programming; (2) QICD based approaches; and (3) Huber-like approximation of the quantile
loss function with coordinate descent algorithms. The package is currently available on CRAN
and github, see https://github.com/bssherwood/rgpen for the most recent updates.

References

Belloni A, Chernozhukov V (2011). “L1-Penalized quantile regression in high-dimensional
sparse models.” Ann. Statist., 39(1), 82-130.

Breheny P, Huang J (2009). “Penalized methods for bi-level variable selection.” Statistics and
its Interface, 2, 369-380.

17


https://github.com/bssherwood/rqpen

18 rqPen: Penalized quantile regression

Breheny P, Huang J (2011). “Coordinate descent algorithms for nonconvex penalized regres-
sion, with applications to biological feature selection.” The Annals of Applied Statistics,
5(1), 232 — 253.

Breheny P, Huang J (2015). “Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors.” Stat. Comput., 25, 173-187.

De Cock D (2011). “Ames, lowa: Alternative to the Boston housing data as an end of semester
regression project.” J. Stat. Educ., 19(3).

Fan J, Li R (2001). “Variable selection via nonconcave penalized likelihood and its oracle
properties.” J. Amer. Statist. Assoc., 96(456), 1348-1360.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” J. Stat. Softw., 33(1), 1-22.

GuY, Fan J, Kong L, Ma S, Zou H (2018). “ADMM for High-Dimensional Sparse Penalized
Quantile Regression.” Technometrics, 60(3), 319-331.

Huang J, Breheny P, Ma S (2012). “A selective review of group selection in high-dimensional
models.” Statistical Science, 27(4), 481-499.

Huber PJ (1964). “Robust Estimation of a Location Parameter.” Ann. Math. Statist., 35(1),
73-101.

Kato K (2012). “Group Lasso for high dimensional sparse quantile regression models.”
Https://arxiv.org/pdf/1103.1458.

Koenker R, Bassett G (1978). “Regression Quantiles.” Econometrica, 46(1), 33-50.

Koenker R, D’Orey V (1994). “A Remark on Algorithm AS 229: Computing Dual Regression
Quantiles and Regression Rank Score.” J. R. Stat. Soc. Ser. C. Appl. Stat., 43(2), 410-414.

Koenker R, Machado JAF (1999). “Goodness of Fit and Related Inference Processes for
Quantile Regression.” Journal of the American Statistical Association, 94(448), 1296-1310.
doi:10.1080/01621459.1999.10473882. https://www.tandfonline.com/doi/pdf/
10.1080/01621459.1999.10473882, URL https://www.tandfonline.com/doi/abs/10.
1080/01621459.1999.10473882.

Koenker R, Mizera I (2014). “Convex Optimization in R.” J. Stat. Softw., 60(5), 1-23. ISSN
1548-7660.

Koenker RW, D’Orey V (1987). “Computing Regression Quantiles.” J. R. Stat. Soc. Ser. C.
Appl. Stat., 36(3), 383-393.

Lee ER, Noh H, Park BU (2014). “Model Selection via Bayesian Information Criterion for
Quantile Regression Models.” Journal of the American Statistical Association, 109(505),
216-229. ISSN 01621459. URL http://www.jstor.org/stable/24247149.

Newey WK, Powell JL (1987). “Asymmetric Least Squares Estimation and Testing.” Econo-
metrica, 55(4), 819-847. ISSN 00129682, 14680262.


https://doi.org/10.1080/01621459.1999.10473882
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1999.10473882
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1999.10473882
https://www.tandfonline.com/doi/abs/10.1080/01621459.1999.10473882
https://www.tandfonline.com/doi/abs/10.1080/01621459.1999.10473882
http://www.jstor.org/stable/24247149

rqPen Vignette 19

Peng B, Wang L (2015). “An iterative coordinate descent algorithm for high-dimensional
nonconvex penalized quantile regression.” J. Comput. Graph. Statist., 24(3), 676—694.

Portnoy S, Koenker R (1997). “The Gaussian hare and the Laplacian tortoise: computability
of squared-error versus absolute-error estimators.” Statist. Sci., 12(4), 279-300.

Sherwood B, Molstad AJ, Singha S (2020). “Asymptotic properties of concave L1-norm group
penalties.” Statistics & Probability Letters, 157, 108631. ISSN 0167-7152.

Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” J. R. Stat. Soc.
Ser. B. Stat. Methodol., 58(1), 267—288.

Tibshirani R, et al. (2012). “Strong rules for discarding predictors in lasso-type problems.”
J. R. Stat. Soc. Ser. B. Stat. Methodol., 74(2), 245-266.

Wang L, Chen G, Li H (2007). “Group SCAD regression analysis for microarray time course
gene expression data.” Bioinformatics, 23(12), 1486-1494.

Wang L, Wu Y, Li R (2012). “Quantile regression of analyzing heterogeneity in ultra-high
dimension.” J. Amer. Statist. Assoc., 107(497), 214-222.

Yang Y, Zou H (2015). “A fast unified algorithm for solving group-lasso penalize learning
problems.” Stat. Comput., 25(6), 1129-1141. ISSN 1573-1375.

Yi C, Huang J (2017). “Semismooth Newton Coordinate Descent Algorithm for Elastic-Net
Penalized Huber Loss Regression and Quantile Regression.” J. Comput. Graph. Statist.,
26(3), 547-557.

Yu L, Lin N (2017). “ADMM for Penalized Quantile Regression in Big Data.” International
Statistical Review, 85(3), 494-518.

Yu L, Lin N, Wang L (2017). “A Parallel Algorithm for Large-Scale Nonconvex Penalized
Quantile Regression.” Journal of Computational and Graphical Statistics, 26(4), 935-939.

Yuan M, Lin Y (2005). “Model selection and estimation in regression with grouped variables.”
J. R. Stat. Soc. Ser. B. Stat. Methodol., 68(1), 49-67.

Zhang CH (2010). “Nearly unbiased variable selection under minimax concave penalty.” Ann.
Statist., 38(2), 894-942.

Zou H (2006). “The adaptive Lasso and its oracle properties.” J. Amer. Statist. Assoc.,
101(476), 1418-1429.

Zou H, Hastie T (2005). “Regularization and variable selection via the Elastic Net.” J. R.
Stat. Soc. Ser. B. Stat. Methodol., 67, 301-320.

Zou H, Li R (2008). “One-step sparse estimates in nonconcave penalized likelihood models.”
Ann. Statist., 36(4), 1509-1533.



20 rqPen: Penalized quantile regression

Affiliation:

Ben Sherwood

School of Business

University of Kansas

1654 Naismith Drive

Lawrence, KS, USA 66045

E-mail: ben.sherwood@ku.edu

URL: https://business.ku.edu/people/ben-sherwood


mailto:ben.sherwood@ku.edu
https://business.ku.edu/people/ben-sherwood

	Introduction
	Penalized estimation of quantile regrssion
	Individual Penalties
	Group Penalties
	Estimation of Multiple Quantiles
	Tuning parameter selection
	Additional notes on Huber approximation

	Description of functions
	Applications
	barro
	Group Penalty Example

	Conclusion

