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Abstract

With advancements in technology and data storage, the availability of functional data whose
sample observations are recorded over a continuum, such as time, wavelength, space grids, and
depth, progressively increases in almost all scientific branches. Accordingly, the functional linear
regression models, including scalar-on-function and function-on-function, have become popular
tools for exploring the functional relationships between the scalar response-functional predictors
and functional response-functional predictors. However, most of the existing estimation strate-
gies are based on the non-robust estimators that are seriously hindered by outlying observations,
which are common in empirical applications. In the case of outliers, the non-robust methods lead
to undesirable estimation and prediction results. Using a readily-available R package robflreg,
this paper presents several robust methods build upon the functional principal component anal-
ysis for modeling and predicting scalar-on-function and function-on-function regression models
in the presence of outliers. The methods are demonstrated via simulated datasets.

Keywords: function-on-function linear regression; functional principal component analysis; robust
estimation; scalar-on-function linear regression.

Introduction

Our aim with this paper is to present a hands-on tutorial for the implantation of readily-available R
package robflreg. This package is designed for robustly modeling and predicting scalar-on-function
and function-on-function linear regression models (abbreviated as SFLRM and FFLRM, respectively).
This article is motivated by recent advances in data collection tools, causing (ultra) high dimensional
and complex data structures, such as ultra-dense curves.

In the last few decades, the interest and need for developing statistical methods to analyze functional
data has been tremendously increased. Consult Ramsay and Dalzell (1991), Ramsay and Silverman
(2002, 2006), Ferraty and Vieu (2006), Horváth and Kokoszka (2012), Cuevas (2014), Hsing
and Eubank (2015), and Kokoszka and Reimherr (2017) for many theoretical developments and
applications in functional data analysis tools. Among many others, the SFLRM, where the response
is scalar-valued and predictor(s) consist of random functions, and FFLRM, where both the response
and predictor(s) consist of random curves, have received considerable attention among researchers to
explore the functional relationship between a scalar response-functional predictors and a functional
response-functional predictors, respectively. Consult Cardot, Ferraty, and Sarda (1991, 2003), James
(2002), Reiss and Ogden (2007), Chen, Hall, and Müller (2011), Jiang and Wang (2011), Dou,
Pollard, and Zhou (2012), and Beyaztas and Shang (2022) for the SFLRM and Yao, Müller, and
Wang (2005), Harezlak, Coull, Laird, Magari, and Christiani (2007), Şentürk and Müller (2008),
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Matsui, Kawano, and Konishi (2009), Ivanescu, Staicu, Scheipl, and Greven (2015), Chiou, Yang,
and Chen (2016), and Beyaztas and Shang (2020) for the FFLRM.

Most of the existing methods developed to estimate the SFLRM and FFLRM are non-robust to
outlying observations, which are generated by a stochastic process with a distribution different from
that of the vast majority of the remaining observations (see, e.g., Raña, Aneiros, and Vilar 2015).
In the case of outliers, the non-robust methods produce biased estimates; thus, predictions obtained
from the fitted model become unreliable (see, e.g., Zhu, Brown, and Morris 2011; Maronna and
Yohai 2013; Shin and Lee 2016; Kalogridis and Aelst 2019; Boente, Salibian-Barrera, and Vena 2020;
Hullait, Leslie, Pavlidis, and King 2021; Beyaztas and Shang 2022). In this paper, we provide a
hands-on tutorial for the implementation of several robust approaches, which are readily available
in the R package robflreg, for robustly modeling and predicting the SFLRM and FFLRM in the
presence of outliers.

The methods available in the robflreg package are centered on the robust functional principal
component analysis (RFPCA) approach of Bali, Boente, Tyler, and Wang (2011). It uses the robust
projection pursuit approach of Croux and Ruiz-Gazen (1996) combined with a robust scale estimator
to produce functional principal components and the corresponding principal component scores. With
this approach, the infinite-dimensional SFLRM and FFLRM are projected onto a finite-dimensional
space of RFPCA bases. Then, for the SFLRM, the robust estimation methods, including the least
trimmed squares (LTS) of Rousseeuw (1984), MM-type regression estimator (MM) of Yohai (1987)
and Koller and Stahel (2011), S estimator, and the tau estimator of Salibian-Barrera, Willems, and
Zamar (2008), are used to estimate the parameter vector of the regression model of the scalar-valued
response on the robust principal component scores of functional predictors. For the FFLRM, on
the other hand, the robust estimation methods, including the minimum covariance determinant
estimator (MCD) of Rousseeuw, Driessen, Aelst, and Agullo (1984), multivariate least trimmed
squares estimator (MLTS) of Bali, Boente, Tyler, and Wang (2008), MM estimator of Kudraszow
and Moronna (2011), S estimator of Bilodeau and Duchesne (2000), and the tau estimator of
Ben, Martinez, and Yohai (2006), are used to estimate the parameter matrix of the regression
model between the robust principal component scores of the functional response and functional
predictor variables. Besides the robust procedures, the package robflreg allows to obtain the non-
robust estimation of the functional linear regression models using the classical functional principal
component analysis (FPCA) of Ramsay and Silverman (2006) and the least-squares estimator.

The remainder of this paper is organized as follows. The SFLRM and FFLRM, as well as the
techniques used for modeling and predicting these regression models, are reviewed, and they are
implemented using the robflreg package. Conclusions are given in the end.

Functional linear regression models

In this Section, we present the SFLRM and FFLRM, respectively.

The SFLRM

We consider a random sample {Yi,X i(s) : i = 1, . . . , n} from the pair (Y,X ), where Y ∈ R is the
scalar response and X = [X1(s), . . . ,XP (s)]

⊤ with Xp(s) ∈ L2[0, I], ∀ p = 1, . . . , P is the vector of
P set of functional predictors whose sample elements are denoted by curves belonging to L2 Hilbert
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space, denoted by H, with bounded and closed interval s ∈ I. We assume that the functional
predictors Xp(s), for p = 1, . . . , P , have second-order finite moments, i.e., E[∥Xp(s)∥] <∞. Without
loss of generality, we also assume that Y and Xp(s), for p = 1, . . . , P , are mean-zero processes, so
that E[Y ] = E[Xp(s)] = 0 and s ∈ [0, 1]. Then, the SFRM is defined as follows:

Yi =

∫ 1

0
X⊤

i (s)β(s)ds+ ϵi, (1)

where βp(s) ∈ L2[0, 1] is the regression coefficient function linking Y with Xp(s), and β(s) =
[β1(s), . . . , βP (s)]

⊤ ∈ LP
2 [0, 1], and ϵi is the error term which is assumed to follow a Gaussian

distribution with mean-zero and variance σ2.

Simulation of a dataset for the SFLRM

The interface generate.sf.data() in the package robflreg allows to simulate a dataset for the
SFRM (1) as follows:

generate.sf.data(n, n.pred, n.gp)

Here, the argument n denotes the number of observations for each variable to be generated, n.pred
denotes the number of functional predictors to be generated, and n.gp denotes the number of grid
points, i.e., a fine grid on the interval [0, 1]. In the data generation process, first, generate.sf.data()
simulates the functional predictors based on the following process:

X (s) =
5∑

j=1

κjνj(s),

where κj is a vector generated from a Normal distribution with mean one and variance
√
aj−3/2,

where a is is a uniformly generated random number between 1 and 4, and

νj(s) = sin(jπs)− cos(jπs).

The regression coefficient functions are generated from a coefficient space that includes ten different
functions such as b sin(2πt) and b cos(2πt), where b is generated from a uniform distribution between
1 and 3. The error process is generated from the standard normal distribution. Finally, the scalar
response is obtained using (1). A graphical display of the generated dataset with five functional
predictors and n = 400 observations at 101 equally spaced point in the interval [0, 1] obtained by
generate.sf.data() is presented in Figure 1. This Figure can be produced by the following code:

library(robflreg)

library(fda.usc)

set.seed(123)

# Generate a dataset with five functional predictors and 400

# observations at 101 equally spaced point in the interval [0, 1]

# for each variable for the scalar-on-function regression model

sim.data <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101)
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# Response variable

Y <- sim.data$Y

# Predictors

X <- sim.data$X

# Regression coefficient functions

coeffs <- sim.data$f.coef

# Plot the scalar response

plot(Y, type = "p", pch = 16, xlab = "Index", ylab = "", main = "Response")

# Plot the first functional predictor

fX1 <- fdata(X[[1]], argvals = seq(0, 1, length.out = 101))

plot(fX1, lty = 1, ylab = "", xlab = "Grid point",

main = expression(X[1](s)), mgp = c(2, 0.5, 0))
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Figure 1: Plots of the simulated scalar response and functional predictor variables.

The FFLRM

Let us consider a random sample {Yi(t),X i(s): i = 1, 2, . . . n} from the pair (Y,X ), where Y ∈
L2[0, 1] is the functional response and X = [X1(s), . . . ,XP (s)]

⊤ with Xp(s) ∈ L2[0, 1], ∀ p = 1, . . . , P
is the vector of P set of functional predictors. We assume that the functional response and functional
predictors have second-order finite moments, i.e., E[∥Y(t)∥] = E[∥Xp(s)∥] < ∞, for p = 1, . . . , P .
Without loss of generality, we also assume that both Y(t) and Xp(s), for p = 1, . . . , P , are mean-zero
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processes, so that E[Y (t)] = E[Xp(s)] = 0. Then, the FFRM is defined as follows:

Yi(t) =

∫ 1

0
X⊤

i (s)β(s, t)dsdt+ ϵi(t), (2)

where βp(s, t) ∈ L2[0, 1] is the bivariate regression coefficient function linking Y(t) with Xp(s), and
β(s, t) = [β1(s, t), . . . , βP (s, t)]

⊤ ∈ LP
2 [0, 1], and ϵi(t) ∈ L2[0, 1] is the error term which is assumed

to be independent of Xp(s), for p = 1, . . . , P and E[ϵi(t)] = 0.

Simulation of a dataset for the FFLRM

The robflreg package with the interface generate.ff.data() allows for simulation a dataset for
the FFLRM as follows:

generate.ff.data(n.pred, n.curve, n.gp)

In this interface, n.pred denotes the number of functional predictors to be generated, n.curve
denotes the number of functions for each functional variable to be generated, and n.gp denotes the
number of grid points, i.e., a fine grid on the interval [0, 1]. When generating a dataset, first, the
interface generate.ff.data() first simulates the functional predictors via the following process:

X (s) =
5∑

j=1

κjνj(s),

where κj is a vector generated from a Normal distribution with mean one and variance
√
aj−1/2,

where a is is a uniformly generated random number between 1 and 4, and

νj(s) = sin(jπs)− cos(jπs).

The bivariate regression coefficient functions are generated from a coefficient space that includes ten
different functions such as b sin(2πs) sin(πt) and be−3(s−0.5)2e−4(t−1)2 , where b is generated from a
uniform distribution between 1 and 3. The error process ϵ(t), on the other hand, is generated from
the Ornstein-Uhlenbeck process:

ϵ(t) = l + [ϵ0(t)− l]e−θtσ

∫ t

0
e−θ(t−u)dWu,

where l, θ > 0, σ > 0 are real constants, ϵ0(t) is the initial value of ϵ(t) taken from Wu, and Wu is the
Wiener process. A graphical display of the generated dataset with five functional predictors and n =

200 observations at 101 equally spaced point in the interval [0, 1] obtained by generate.ff.data()

is presented in Figure 2. This Figure can be produced by the following code:

library(robflreg)

library(fda.usc)

set.seed(123)

# Generate a dataset with five functional predictors and 400

# observations at 101 equally spaced point in the interval [0, 1]
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# for each variable for the function-on-function regression model

sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101)

# Response variable

Y <- sim.data$Y

# Predictors

X <- sim.data$X

# Regression coefficient functions

coeffs <- sim.data$f.coef

# Plot the scalar response

fY <- fdata(Y, argvals = seq(0, 1, length.out = 101))

plot(fY, lty = 1, ylab = "", xlab = "Grid point",

main = "Response", mgp = c(2, 0.5, 0))

# Plot the first functional predictor

fX1 <- fdata(X[[1]], argvals = seq(0, 1, length.out = 101))

plot(fX1, lty = 1, ylab = "", xlab = "Grid point",

main = expression(X[1](s)), mgp = c(2, 0.5, 0))
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Figure 2: Plots of the simulated functional response and functional predictor variables.
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Estimation

We first review the classical and robust FPCA methods. Then, we will focus on the robust estimation
of the SFLRM and FFLRM.

Functional principal component analysis (FPCA)

For a functional random variable X (s), let us denote its covariance function by C(s1, s2) =
Cov[X (s1), X (s2)] satisfying

∫ 1
0

∫ 1
0 C(s1, s2)ds1ds2 < ∞. Then, by Mercer’s Theorem, the fol-

lowing representation holds:

C =
∞∑
k=1

κkψk(s1)ψk(s2), ∀s1, s2 ∈ [0, 1],

where {ψk(s) : k = 1, 2, . . .} are orthonormal bases of eigenfunctions in L2[0, 1] corresponding to the
non-negative eigenvalues {κk : k = 1, 2, . . .} with κk ≥ κk+1. In practice, most of the variability in
functional variables can be captured via a finite number of the first K eigenfunctions, and thus, the
covariance function of a functional variable is estimated using a pre-determined truncation constant
K. In addition, the orthonormal bases of eigenfunctions are unknown in practice, and thus, they
are approximated via a suitable basis expansion method like B-spline, which is used in the robflreg
package.

The RFPCA of Bali et al. (2011) follows a similar structure as the classical FPCA but it uses a
robust scale functional instead of variance. Now let ∥α∥2 = ⟨α,α⟩ denote the norm generated by
the inner product ⟨·, ·⟩. Also, let F [α] denote the distribution of ⟨α,X⟩ where F is the distribution
of X . Then, for a given M-scale functional σM (F), the orthonormal bases of eigenfunctions defined
by Bali et al. (2011) are as follows:

ψk(F) = argmax
∥α∥2=1

σM (F [α]), k = 1,

ψk(F) = argmax
∥α∥2=1,α∈Bk

σM (F [α]), k ≥ 2,

where Bk = {α ∈ L2[0, 1] : ⟨α,ψk(F)⟩ = 0, 1 ≤ k ≤ K − 1}. The k-th largest eigenvalue is given
by:

κk(F) = σ2M (F [ψk]) = max
∥α∥2=1,α∈Bk

σ2M (F [α]).

Denote by σM (Fn[α]) the functional for σM . Let s2n : L2[0, 1] → R denote the function of empirical
M-scale functional such that s2(α) = σ2M (F [α]). Then, the RFPCA estimates of the orthonormal
bases of eigenfunctions for X (s) are given by

ψ̂k(s) = argmax
∥α∥2=1

sn(α), k = 1,

ψ̂k(s) = argmax
α∈B̂k

sn(α), k ≥ 2,

where B̂k =
{
α ∈ L2[0, 1] : ∥α∥ = 1, ⟨α, ψ̂k⟩ = 0, ∀ 1 ≤ k ≤ K − 1

}
. The corresponding eigenval-

ues, on the other hand, are given by

κ̂k = s2n(ψ̂k), k ≥ 1.
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Main RFPCA function and its arguments

The main function to obtain the robust estimates of functional principal components and the
corresponding principal component scores is called getPCA():

getPCA(data, nbasis, ncomp, gp, emodel = c("classical", "robust"))

In the getPCA() interface, the data is provided in the data argument as a matrix. nbasis denotes
the number of B-spline basis expansion functions used to approximate the robust functional principal
components. ncomp specifies the number of functional principal components to be computed. The
grid points of the functional data is provided in the gp argument as a vector. The argument emodel
denotes the method to be used for functional principal component decomposition. If emodel =

"classical", then, the classical functional principal component decomposition is performed. On
the other hand, if emodel = "robust", then, the RFPCA method of Bali et al. (2011) is used to
obtain the functional principal components and the corresponding principal component scores. In
Figure 3, the plot of five functional principal components computed from a simulated functional
data using RFPCA and nbasis = 20 B-spline basis expansion functions is presented. This Figure
can be produced by the following code:

library(robflreg)

# Generate a dataset with five functional predictors and 200

# observations at 101 equally spaced point in the interval [0, 1]

# for each variable for the function-on-function regression model

set.seed(123)

sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101)

# Response variable

Y <- sim.data$Y

gpY <- seq(0, 1, length.out = 101) # grid points

# Perform robust functional principal component analysis on the response variable Y

rob.fpca <- getPCA(data = Y, nbasis = 20, ncomp = 4, gp = gpY, emodel = "robust")

# Principal components

PCs <- rob.fpca$PCAcoef

plot(PCs, xlab = "Grid point", ylab = "Values")

[1] "done"

Robust estimation of the SFLRM

In the robust estimation of the SFRM, we first consider the principal component decomposition of
the functional predictors as follows:

Xp(s) =

Kp∑
k=1

ξpkψpk(s),
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Figure 3: Plot of the first five functional principal components of a simulated functional data using
RFPCA.

where Kp is the truncation constant for the p-th functional predictor Xp(s), ψpk(s) is the k-th
eigenfunction obtained by the RFPCA of Bali et al. (2011), and ξpk is the corresponding principal
components score, given by:

ξpk =

∫ 1

0
Xp(s)ψpk(s)ds.

In practice, the eigenfunctions are approximated via a basis expansion function such as B-spline.
Let φp(s) denote the B-spline basis expansion function and Ap = (apl) being an n× L-dimensional
matrix of basis expansion coefficients for the p-th functional predictor variable. In addition, let
φ =

∫ 1
0 φp(s)φ

⊤
p (s)ds and φ1/2 denote the L× L dimensional matrix of inner products between the

basis expansion functions and its square root, respectively. Then, the infinite-dimensional RFPCA
of Xp(s) is equivalent to the multivariate principal component analysis of Apφ

1/2 and the k-th
eigenfunction is given by ψpk(s) = φ−1/2vpk, where vpk denotes the p-th eigenvector of the sample
covariance matrix of Apφ

1/2 (see, e.g., Ocana, Aguilera, and Escabias 2007, for more information).

If we assume that the p-th regression coefficient function βp(s) admits the similar functional principal
decomposition as the functional predictors as follows:

βp(s) =

Kp∑
k=1

bpkψpk(s),
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where bpk =
∫ 1
0 βp(s)ψpk(s)ds. Then, the infinite-dimensional SFRM in (1) is approximated by the

finite-dimensional regression model of scalar response on all the functional principal components
scores as follows:

Y =
P∑

p=1

Kp∑
k=1

bpkξpk.

Main functions for the robust estimation of a SFRM and their arguments

The main function to robustly estimate a SFRM is called rob.sf.reg():

rob.sf.reg(Y, X, emodel = c("classical", "robust"), fmodel = c("LTS", "MM", "S", "tau"),

nbasis = NULL, gp = NULL, ncomp = NULL)

In the rob.sf.reg() interface, the scalar response is provided in the Y argument as an n × 1-
dimensional column vector, where n is the sample size. The functional predictors, on the other
hand, are provided in the X argument as a list object. Each element of X is an n× Lp-dimensional
matrix containing the observations of p-th functional predictor Xp(s), where Lp is the number of
grid points for Xp(s). The method to be used for functional principal component decomposition is
provided in the emodel argument. If emodel = "classical", then the classical functional principal
component decomposition is performed to obtain principal components and the corresponding
principal components scores. The coefficient vector of the regression problem of scalar response on
the principal components scores is estimated via the least-squares method. If emodel = "robust",
then, the RFPCA of Bali et al. (2011) is performed to obtain the principal components and the
corresponding principal components scores. In this case, the method used to estimate the coefficient
vector of the regression problem constructed by the scalar response and principal components scores
is provided in the fmodel argument. Here, one of the methods among LTS, MM, S, and tau can
be chosen to estimate the parameter vector. The number of B-spline basis expansion functions
used to approximate the functional principal components are provided in the nbasis argument as
a vector with length p. If nbasis = NULL, then 20 B-spline basis expansion functions are used to
approximate the functional principal components of all functional predictors. The grid points for
the functional predictors are provided in the gp argument as a list object. The p-th element of gp
is a vector containing the grid points of the p-th functional predictor Xp(s). If gp = NULL, then
Lp equally spaced time points in the interval [0, 1] are used for the p-th functional predictor. The
number of functional predictors to be computed for the functional predictors are provided in the
ncomp argument as a vector with length P . If ncomp = NULL, then 4 principal components are used
for each functional predictor.

The interface get.sf.coeffs() can be used to obtain the estimated regression coefficient functions
from a fitted SFRM:

get.sf.coeffs(object)

In this interface, the argument object is the output object obtained using the interface rob.sf.reg().
The interface get.sf.coeffs() produces a list object whose p-th element is a vector with length
Lp containing the p-th regression coefficient function βp(s).

The plots of the estimated regression coefficient functions can be obtained using the interface
plot_sf_coeffs():
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plot_sf_coeffs(object, b)

In this interface, the argument object is the output object obtained by the interface get.sf.coeffs().
The argument b, on the other hand, is an integer value indicating which regression parameter function
to be plotted. In Figure 4, the plots of the regression coefficient functions obtained from simulated
data using RFPCA and tau estimator are presented. The following code can produce this Figure and
the results:

library(robflreg)

# Generate a dataset with three functional predictors and 400

# observations at 101 equally spaced point in the interval [0, 1]

# for each variable for the scalar-on-function regression model

set.seed(123)

sim.data <- generate.sf.data(n = 400, n.pred = 3, n.gp = 101)

# Response variable

Y <- sim.data$Y

# Predictors

X <- <- sim.data$X

gp <- rep(list(seq(0, 1, length.out = 101)), 3) # grid points of Xs

# Fit a scalar-on-function regression model for the generated data

# using the classical functional principal component analysis method:

model.fit <- rob.sf.reg(Y, X, emodel = "classical", gp = gp)

# Estimated regression coefficient functions

coefs <- get.sf.coeffs(model.fit)

# Plot the first regression coefficient function

plot_sf_coeffs(object = coefs, b = 1)

0.0 0.2 0.4 0.6 0.8 1.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

β1(s)

 Grid point (s)

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

β2(s)

 Grid point (s)

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2

β3(s)

 Grid point (s)

Figure 4: A plot of the estimated regression coefficient functions obtained from a simulated data
using RFPCA and tau estimator.
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Robust estimation of the FFLRM

Let us consider the functional principal decompositions of both the functional response and functional
predictor variables as follows:

Y(t) =

K∑
k=1

ζkϕk(t), ,Xp(s) =

Kp∑
j=1

ξpjψpj(s),

where ϕk(t) and ψpj(s) respectively are the k-th and j-th eigenfunctions of Y(t) and Xp(s) obtained
by the RFPCA and ζk and ξpj are the corresponding principal components scores given by

ζk =

∫ 1

0
Y(t)ϕk(t)dt, ξpj =

∫ 1

0
Xp(s)ψpj(s)ds.

If we assume that the p-th bivariate regression coefficient function βp(s, t) admits the principal
component decomposition with the eigenfunctions ϕk(t) and ψpj(s) as follows:

βp(s, t) =

K∑
k=1

Kp∑
j=1

bpkjϕk(t)ψpj(s),

where bpkj =
∫ 1
0

∫ 1
0 βp(s, t)ϕk(t)ψpj(s)dtds. Then, the infinite-dimensional FFRM in (2) is approxi-

mated by the finite-dimensional regression model of principal component scores of the functional
response on all the functional principal components scores as follows:

ζk =
P∑

p=1

Kp∑
j=1

bpkjξpj .

Finally, the following regression model is obtained for the functional response

Y(t) =
K∑
k=1

 P∑
p=1

Kp∑
j=1

bpkjξpj

ϕk(t).

Main functions for the robust estimation of a FFRM and their arguments

The main function to estimate the FFRM robustly is called rob.ff.reg():

rob.ff.reg(Y, X, model = c("full", "selected"), emodel = c("classical", "robust"),

fmodel = c("MCD", "MLTS", "MM", "S", "tau"), nbasisY = NULL, nbasisX = NULL,

gpY = NULL, gpX = NULL, ncompY = NULL, ncompX = NULL)

In the rob.ff.reg() interface, the functional response is provided in the Y argument as a matrix.
The functional predictors, on the other hand, are provided in the argument X as a list object. Each
element of X is a matrix containing the observations of p-th functional predictor. The model type to
be fitted can be chosen with model argument. If model = "full", then, all the functional predictors
are used in the model. On the other hand, if model = "selected", then, only the significant
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functional predictor variables determined by the forward variable selection procedure of Beyaztas
and Shang (2021) are used in the model. The method to be used for functional principal component
decomposition is provided in the emodel argument. If emodel = "classical", then, the classical
functional principal component decomposition is performed to obtain principal components and
the corresponding principal components scores and the coefficient vector of the regression problem
of principal components scores of the functional response on the principal components scores are
estimated via the least-squares method. If emodel = "robust", then, the RFPCA of Bali et al.
(2011) is performed to obtain the principal components and the corresponding principal components
scores. In this case, the method used to estimate the coefficient matrix of the regression problem
constructed by the principal components scores is provided in the fmodel argument. Here, one
of the method among MCD, MLTS, MM, S, and tau can be chosen to estimate the parameter
matrix. The number of B-spline basis expansion functions used to approximate the functional
principal components of response and predictor variables are provided in the nbasisY and nbasisX

arguments, respectively. The argument nbasisY is a numeric value while the argument nbasisX is a
vector with length P . If nbasisY = NULL and nbasisX = NULL, then, 20 B-spline basis expansion
functions are used to approximate the functional principal components of functional response and
all the functional predictors. The grid points for the functional response and functional predictors
are provided in the gpY and gpX arguments, respectively. The argument gpY is a vector consisting
of the grid points of the functional response Y(t). On the other hand, the argument gpX is a list
object and its p-th element is a vector containing the grid points of the p-th functional predictor
Xp(s). If gpY = NULL and If gpX = NULL, then, equally spaced time points in the interval [0, 1] are
used for all the functional variables. The number of functional predictors to be computed for the
functional response and functional predictors are provided in the arguments ncompY and ncompX,
respectively. The argument ncompY is a numeric value while the argument ncompX is a vector with
length P . If ncompY = NULL and ncompX = NULL, then, 4 principal components are used for each
functional variable.

The estimated bivariate regression coefficient functions from a fitted FFRM is obtained by the
get.ff.coeffs() interface:

get.ff.coeffs(object)

In this interface, the argument object is the output object obtained using the interface rob.ff.reg().
The interface get.ff.coeffs() produces a list object whose p-th element is a matrix containing
the p-th bivariate regression coefficient function βp(s, t).

The 3D plots of the estimated bivariate regression coefficient functions can be obtained using the
interface plot_ff_coeffs():

plot_ff_coeffs(object, b, phi, theta, cex.axis)

In this interface, the argument object is the output object obtained by the interface get.ff.coeffs().
The argument b is an integer value indicating which regression parameter function to be plotted.
The arguments phi and theta are numeric values defining the viewing directions. The argument
cex.axis is a numeric value defining the size of the tick label. In Figure 5, the 3D plots of the
regression coefficient functions obtained from a simulated data using RFPCA and MM estimator are
presented. This Figure and the results can be produced by the following code:
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library(robflreg)

# Generate a dataset with three functional predictors and 200

# observations at 101 equally spaced point in the interval [0, 1]

# for each variable for the function-on-function regression model

set.seed(123)

sim.data <- generate.ff.data(n.pred = 3, n.curve = 200, n.gp = 101)

# Response variable

Y <- sim.data$Y

# Predictors

X <- <- sim.data$X

gpY = seq(0, 1, length.out = 101) # grid points of Y

gpX <- rep(list(seq(0, 1, length.out = 101)), 3) # grid points of Xs

# Fit a function-on-function regression model for the generated data

# using the RFPCA and MM estimator:

model.fit <- rob.ff.reg(Y, X, model = "full", emodel = "robust",

fmodel = "MM", gpY = gpY, gpX = gpX)

# Estimated bivariate regression coefficient functions

coefs <- get.ff.coeffs(model.fit)

# Plot the first bivariate regression coefficient function

plot_ff_coeffs(object = coefs, b = 1, phi = 5, theta = 40, cex.axis = 0.75)
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Figure 5: 3D plots of the estimated bivariate regression coefficient functions obtained from a
simulated data using RFPCA and MM estimator.

Outlier detection in the functional response

Detection of outliers in functional data is an important problem (see, e.g., Sun and Genton 2011;
Arribas-Gil and Romo 2014; Dai and Genton 2018). From a fitted FFRM, the robflr package with the
interface rob.out.detect() allows to detect outliers in the functional response. While doing so, the
functional depth-based outlier detection method of Febrero-Bande, Galeano, and Gonzalez-Mantelga
(2008) together with the h-modal depth proposed by Cuaves, Febrero, and Fraiman (2007) is applied
to the estimated residual functions obtained from rob.ff.reg() to determine the outliers in the
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response variable. In the outlier detection algorithm, the threshold value used to identify outliers is
determined by the smoothed bootstrap procedure proposed by Febrero-Bande et al. (2008). The
rob.out.detect() is as follows:

rob.out.detect(object, alpha = 0.01, B = 200, fplot = FALSE)

Herein, the argument object is an output object obtained from rob.ff.reg(). alpha, whose
default value is 0.01, denotes the percentile of the distribution of the functional depth. B denotes
the number of bootstrap samples (the default value is B = 200). fplot is a logical argument, if
fplot = TRUE, then, the outlying points flagged by the method is plotted along with the values of
functional response Y(t).

To show how the interface rob.ff.reg() works, we simulate an outlier-contaminated dataset
for the FFRM. Then, we apply the outlier detection algorithm with the classical FPCA - least
squares estimator and the RFPCA - MM estimator. The plots of the functional response and
detected outlying observations are presented in Figure 6. The results show that the classical method
mistakenly flags two non-outlying curves as outliers, while the robust procedure flags all the outliers
correctly. The following code can produce the results and Figure 6:

library(robflreg)

# Generate a dataset with five functional predictors and 200

# observations at 101 equally spaced point in the interval [0, 1]

# for each variable for the function-on-function regression model

set.seed(987)

sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101)

# Response variable

Y <- sim.data$Y

# Predictors

X <- <- sim.data$X

gpY = seq(0, 1, length.out = 101) # grid points of Y

gpX <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

# Generate another dataset for the function-on-function regression model

# to contaminate the original data

set.seed(123)

sim.data2 <- generate.ff.data(n.pred = 5, n.curve = 100, n.gp = 101)

# Contaminate 10\% of the functional response

out.index <- sample(1:100, 20)

Y[out.index,] <- sim.data2$Y[out.index,] + 5

# Contaminate 10\% of each functional predictor

for(i in 1:5)

X[[i]][out.index,] <- sim.data2$X[[i]][out.index,]

# Perform classical function-on-function regression using least-squares

model.classical <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "classical",

gpY = gpY, gpX = gpX)

# Perform robust function-on-function regression using MM-estimator

model.MM <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust", fmodel = "MM",
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gpY = gpY, gpX = gpX)

# Detect outliers using rob.out.detect function

rob.out.detect(object = model.classical, fplot = TRUE)

# outlying functions are: 6 7 13 28 35 38 39 45 50 51 55 56 57 62 65 66

# 72 85 88 91 99 111 113

# rob.out.detect(object = model.MM, fplot = TRUE)

outlying functions are: 6 7 13 28 35 38 39 45 50 51 55 56 57 62 65 66

# 72 85 91 99

# Compare with the original outliers

sort(out.index)

# [1] 6 7 13 28 35 38 39 45 50 51 55 56 57 62 65 66 72 85 91 99

outlying functions are: 6 7 13 28 35 38 39 45 50 51 55 56 57 62 65 66 72 85 88 91 99 111 113

outlying functions are: 6 7 13 28 35 38 39 45 50 51 55 56 57 62 65 66 72 85 91 99
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Figure 6: Plots of the functional response and detected outlier. Classical method (left panel) vs.
Robust method (right panel).

Prediction

We review the prediction problem for a new set of functional predictors based on a fitted SFLRM
and FFLRM.

Prediction for the SFRM

When robustly predicting the unknown values of the scalar response variable for a given new set of
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functional predictors (X ∗(s)), the principal component scores of the new set of functional predictors
(ξ∗) are obtained as follows:

ξ∗pk =

∫ 1

0
X ∗
pk(s)ψ̂pk(s)ds,

where ψ̂pk(s) is the k-th eigenfunction of the p-the functional predictor obtained by the RFPCA.
Then, the predictions corresponding to the new set of functional predictors are obtained as follows:

Ŷ ∗ =
P∑

p=1

Kp∑
k=1

b̂pkξ
∗
pk,

where b̂pk is the estimated parameter vector obtained from the fitted model rob.sf.reg().

Main function for the robust prediction of a SFRM and its arguments

The main function for the robust prediction of a SFRM is called predict_sf_regression():

predict_sf_regression(object, Xnew)

In the interface predict_sf_regression(), the argument object is an output object obtained
from rob.sf.reg. The new set of functional predictors is provided in the Xnew argument as a list
object whose p-th element is a matrix denoting the new observations of Xp(s). Xnew must have the
same length and the same structure as the input X of rob.sf.reg.

To evaluate the prediction performance of classical and robust methods, we simulate a dataset with
size n = 400 for the SFRM. Then, the simulated dataset is divided into a training sample with a
size of 200 and a test sample with a size of 200. Random outliers contaminate the training sample,
and both the classical and robust methods with tau estimator are applied to the training sample
to predict the values of the response variable in the test sample. To compare both methods, we
compute the mean squared prediction error (MSPE):

MSPE =
1

200

200∑
i=1

(Y ∗
i − Ŷ ∗

i )
2,

where Y ∗
i and Ŷ ∗

i denote the observed and predicted values of the scalar response in the test sample.
Our results indicate that the robust method considerably outperforms the classical method. The
MSPE computed from the classical method is 4.7584, while the MSPE obtained from the robust
method is 1.9434. The reproducible code to obtain those results is as follows:

library(robflreg)

# Generate a dataset with five functional predictors and 400

# observations at 101 equally spaced point in the interval [0, 1]

# for each variable for the scalar-on-function regression model

set.seed(987)

sim.data <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101)

# Response variable

Y <- sim.data$Y

# Predictors
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X <- <- sim.data$X

# Split the data into training and test samples.

Y.train <- Y[1:200,]

Y.test <- Y[201:400,]

X.train <- X.test <- list()

for(i in 1:5){

X.train[[i]] <- X[[i]][1:200,]

X.test[[i]] <- X[[i]][201:400,]

}

gp <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

# Generate another dataset for the scalar-on-function regression model

# to contaminate the original data

set.seed(123)

sim.data2 <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101)

# Contaminate 10\% of the scalar response

out.index <- sample(1:200, 20)

Y.train[out.index] <- sim.data2$Y[out.index] + 10

# Contaminate 10\% of each functional predictor

for(i in 1:5)

X.train[[i]][out.index,] <- sim.data2$X[[i]][out.index,]

# Perform classical scalar-on-function

# regression model using training samples

model.classical <- rob.sf.reg(Y.train, X.train, emodel = "classical", gp = gp)

# Perform robust scalar-on-function

# regression using training samples and tau-estimator

model.tau <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "tau", gp = gp)

# Predict the observations in Y.test using model.classical

pred.classical <- predict_sf_regression(object = model.classical, Xnew = X.test)

# Predict the observations in Y.test using model.tau

pred.tau <- predict_sf_regression(object = model.tau, Xnew = X.test)

# Compute mean squared errors for the test sample

round(mean((Y.test - pred.classical)^2), 4) # 4.7584 (classical method)

round(mean((Y.test - pred.tau)^2), 4) # 1.9434 (tau method)

Prediction for the FFRM

In the robust prediction of the FFRM for a given new set of functional predictors, as in the scalar-
on-function regression case, the principal component scores of the new set of functional predictors
are first obtained:

ξ∗pk =

∫ 1

0
X ∗
pk(s)ψ̂pk(s)ds,

where ψ̂pk(s) is the k-th eigenfunction of the p-the functional predictor obtained by the RFPCA.

Then, the predictions of functional response (Ŷ(t)) corresponding to the new set of functional
predictors are obtained as follows:

Ŷ∗(t) =
K∑
k=1

 P∑
p=1

Kp∑
j=1

b̂pkjξ
∗
pj

 ϕ̂k(t),
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where ϕ̂k(t) is the k-th eigenfunction of the functional response obtained by RFPCA and b̂pkj is the
estimated parameter matrix obtained from the fitted model rob.ff.reg()

Main function for the robust prediction of a FFRM and its arguments

The main function for the robust prediction of a FFRM is called predict_ff_regression():

predict_ff_regression(object, Xnew)

Here, the argument object is an output object obtained from rob.ff.reg. The new set of functional
predictors is provided in the Xnew argument as a list object whose p-th element is a matrix denoting
the new observations of Xp(s). Xnew must have the same length and the same structure as the input
X of rob.ff.reg.

We simulate a dataset with size n = 200 for the FFRM to investigate and compare the prediction
performance of the classical and robust methods. The simulated dataset is divided into a training
sample with a size of 100 and a test sample with a size of 100. Random outliers contaminate the
training sample, and both the classical and robust methods with MM estimator are applied to the
training sample to predict the values of the response variable in the test sample. To compare both
methods, we compute the following MSPE:

MSPE =
1

100

200∑
i=1

∥Y∗
i (t)− Ŷ∗

i (t))∥2L2
,

where Y∗
i (t) and Ŷ∗

i (t)) denote the observed and predicted values of the functional response in the
test sample. Our results show that the robust method produces a significantly smaller MSPE value
than the classical method. The MSPE computed from the classical method is 2.3456, while the
MSPE obtained from the robust method is 0.9318. The reproducible code to obtain those results is
as follows:

library(robflreg)

# Generate a dataset with five functional predictors and 200

# observations at 101 equally spaced point in the interval [0, 1]

# for each variable for the function-on-function regression model

set.seed(987)

sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101)

# Response variable

Y <- sim.data$Y

# Predictor variables

X <- sim.data$X

# Split the data into training and test samples.

Y.train <- Y[1:100,]

Y.test <- Y[101:200,]

X.train <- X.test <- list()

for(i in 1:5){

X.train[[i]] <- X[[i]][1:100,]

X.test[[i]] <- X[[i]][101:200,]

}
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gpY = seq(0, 1, length.out = 101) # grid points of Y

gpX <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

# Generate another dataset for the function-on-function regression model

# to contaminate the original data

set.seed(123)

sim.data2 <- generate.ff.data(n.pred = 5, n.curve = 100, n.gp = 101)

# Contaminate 10\% of the functional response

out.index <- sample(1:100, 10)

Y.train[out.index,] <- sim.data2$Y[out.index,]

# Contaminate 10\% of each functional predictor

for(i in 1:5)

X.train[[i]][out.index,] <- sim.data2$X[[i]][out.index,]

# Perform classical function-on-function

# regression model using training samples

model.classical <- rob.ff.reg(Y = Y.train, X = X.train, model = "full",

emodel = "classical", gpY = gpY, gpX = gpX)

# Perform robust function-on-function

# regression using training samples and MM-estimator

model.MM <- rob.ff.reg(Y = Y.train, X = X.train, model = "full", emodel = "robust",

fmodel = "MM", gpY = gpY, gpX = gpX)

# Predict the functions in Y.test using model.classical

pred.classical <- predict_ff_regression(object = model.classical, Xnew = X.test)

# Predict the functions in Y.test using model.MM

pred.MM <- predict_ff_regression(object = model.MM, Xnew = X.test)

# Compute mean squared errors for the test sample

round(mean((Y.test - pred.classical)^2), 4) # 2.3456 (classical method)

round(mean((Y.test - pred.MM)^2), 4) # 0.9318 (MM method)

Conclusion

The R package robflreg provides an implementation of several robust procedures to fit and predict
SFLRM and FFLRM. These methods are centered on the RFPCA of Bali et al. (2011), which is
a popular robust dimension reduction technique in functional data and several robust regression
parameter estimators. In addition, the package robflreg allows to fit and predict SFLRM and
FFLRM via the classical FPCA and least-squares estimator. Several simulation examples show
that the robust procedures provide better inference for the functional linear regression models when
outliers are presented in the response and predictor variables.
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