
Fast Design of Risk Parity Portfolios
Zé Vinícius and Daniel P. Palomar

Hong Kong University of Science and Technology (HKUST)
2018-12-15

Contents

1 Vanilla risk parity portfolio 1

2 Modern risk parity portfolio 4

3 Comparison with other packages 6

4 Appendix I: Risk concentration formulations 8

5 Appendix II: Computational time 9

6 Appendix III: Design of high dimensional risk parity portfolio 14

References 15

This vignette illustrates the design of risk-parity portfolios, widely used by practitioners in the
financial industry, with the package riskParityPortfolio, gives a description of the algorithms
used, and compares the performance against existing packages.

1 Vanilla risk parity portfolio

A risk parity portfolio denotes a class of portfolios whose assets verify the following equalities:

wi

∂f(w)

∂wi

= wj

∂f(w)

∂wj

, ∀i, j,

where f is a positively homogeneous function of degree one that measures the total risk of the portfolio and
w is the portfolio weight vector. In other words, the marginal risk contributions for every asset in a risk
parity portfolio are equal. A common choice for f , for instance, is the standard deviation of the portfolio,
which is usually called volatility, i.e., f(w) =

√
wT Σw, where Σ is the covariance matrix of the assets.

With that particular choice of f , the risk parity requirements become

wi(Σw)i = wj(Σw)j , ∀i, j.

A natural extension of the risk parity portfolio is the so called risk budget portfolio, in which the marginal
risk contributions match preassigned quantities. Mathematically,

(Σw)iwi = biw
T Σw, ∀i,

where b , (b1, b2, ..., bN) (with 1T b = 1 and b ≥ 0) is the vector of desired marginal risk contributions.
In the case that Σ is diagonal and with the constraints 1T w = 1 and w ≥ 0, the risk budgeting portfolio

is

wi =

√
bi/

√
Σii

∑N

k=1

√
bk/

√
Σkk

, i = 1, . . . , N.

However, for non-diagonal Σ or with other additional constraints or objective function terms, a closed-form
solution does not exist and some optimization procedures have to be constructed. The previous diagonal
solution can always be used and is called naive risk budgeting portfolio.

1

With the goal of designing risk budget portfolios, Spinu proposed in [1] to solve the following convex
optimization problem:

minimize
w

1

2
wT Σw −

∑N

i=1
bi log(wi)

subject to 1T w = 1
w ≥ 0.

It turns out, as shown in [1], that the unique solution for the optimization problem stated above attains
the risk budget requirements in an exact fashion. Such solution can be computed using convex optimization
packages, such as CVXR, but faster algorithms such as Newton and cyclical coordinate descent, proposed by
[1] and [2], are implemented in this package.

A simple code example on how to design a risk parity portfolio is as follows:

library(riskParityPortfolio)

generate synthetic data

set.seed(123)

N <- 10

V <- matrix(rnorm(N^2), nrow = N)

Sigma <- cov(V)

compute risk parity portfolio

portfolio <- riskParityPortfolio(Sigma)

plot the portfolio designed by each method

barplot(portfolio$w, main = "Portfolio Weights", xlab = "stocks", ylab = "dollars",

beside = TRUE, col = rainbow8equal[1], legend = c("riskParityPortfolio"),

args.legend = list(bg = "white"))

riskParityPortfolio

Portfolio Weights

stocks

do
lla

rs

0.
00

0.
05

0.
10

0.
15

0.
20

plot the risk contributions

barplot(portfolio$risk_contribution,

main = "Risk Contribution of the Portfolios", xlab = "stocks", ylab = "dollars",

beside = TRUE, col = rainbow8equal[1], legend = c("riskParityPortfolio"),

args.legend = list(bg = "white"))

2

riskParityPortfolio

Risk Contribution of the Portfolios

stocks

do
lla

rs

0.
00

00
0.

00
05

0.
00

10
0.

00
15

As presented earlier, the risk parity portfolios are designed in such a way as to ensure equal risk contribution
from the assests, which can be noted in the chart above.

Now, let’s see a comparison, in terms of computational time, of our cyclical coordinate descent imple-
mentation against the rp() function from the cccp package and the optimalPortfolio() function from the
RiskPortfolios package. (For a fair comparison, instead of calling our function riskParityPortfolio(),
we call directly the core internal function risk_parity_portfolio_ccd_spinu(), which only computes the
risk parity weights, just like rp() and optimalPortfolio().)

library(microbenchmark)

library(cccp)

library(RiskPortfolios)

library(riskParityPortfolio)

N <- 100

V <- matrix(rnorm(N^2), nrow = N)

Sigma <- cov(V)

b <- rep(1/N, N)

use risk_parity_portfolio_nn with default values of tolerance and number of iterations

op <- microbenchmark(

rp_cccp = rp(b, Sigma, b, optctrl = ctrl(trace = FALSE)),

cyclical = riskParityPortfolio:::risk_parity_portfolio_ccd_spinu(Sigma, b, 1e-6, 50),

optPort = optimalPortfolio(Sigma = Sigma,control = list(type = 'erc', constraint = 'lo')),

times = 10L)

print(op)

#> Unit: microseconds

#> expr min lq mean median uq

#> rp_cccp 24542.710 24952.69 25559.6035 25695.883 25989.851

#> cyclical 188.164 197.75 241.6699 219.551 236.679

#> optPort 1138040.906 1145422.31 1196271.6433 1198075.933 1210500.109

#> max neval

3

#> 26516.101 10

#> 480.384 10

#> 1309443.476 10

par(mar = c(7, 4, 4, 2))

boxplot(op, main = "Time comparison [milliseconds]",

xlab = NULL, ylab = NULL,

unit = "ms", outline = FALSE, las = 2)

rp
_c

cc
p

cy
cl

ic
al

op
tP

or
t

5e−01
1e+00

5e+00
1e+01

5e+01
1e+02

5e+02
1e+03

Time comparison [milliseconds]

As it can be observed, our implementation is orders of maginitude faster than the interior-point method
used by cccp and the formulation used by RiskPortfolios. We suggest the interested reader to check out
Chapter 11 of reference [3] for a thorough explanation on interior-point methods.

2 Modern risk parity portfolio

The design of risk parity portfolios as solved by [1] and [2] is of paramount importance both for academia
and industry. However, practitioners would like the ability to include additional constraints and objective
terms desired in practice, such as the mean return, box constraints, etc. In such cases, the risk-contribution
constraints cannot be met with equality, mainly because they give rise to nonconvex formulations.

Let’s explore, for instance, the effect of including the expected return as an additional objective in the
optimization problem. The problem can be formulated as

minimize
w

R(w) − λµwT
µ

subject to 1T w = 1, w ≥ 0,

where R(w) =
∑N

i=1

(

wi (Σw)i − biw
T Σw

)2

is the risk concentration function or risk parity function, wT
µ

is the expected return, and λ is a trade-off parameter.

N <- 100

V <- matrix(rnorm(N^2), nrow = N)

Sigma <- cov(V)

mu <- runif(N)

4

lmd_sweep <- c(0, 10 ^ (seq(-5, 2, .25)))

mean_return <- c()

risk_parity <- c()

for (lmd_mu in lmd_sweep) {

rpp <- riskParityPortfolio(Sigma, mu = mu, lmd_mu = lmd_mu,

formulation = "rc-double-index")

mean_return <- c(mean_return, rpp$mean_return)

risk_parity <- c(risk_parity, rpp$risk_parity)

}

plot(risk_parity, mean_return, type = "b", pch = 19, cex = .6, col = "blue",

xlab = "Risk Parity", ylab = "Expected Return",

ylim = c(min(mean_return), max(mean_return)),

xlim = c(min(risk_parity), max(risk_parity)),

main = "Expected Return vs Risk Parity")

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

Expected Return vs Risk Parity

Risk Parity

E
xp

ec
te

d
R

et
ur

n

Similarly, the riskParityPortfolio package let us include the variance as an objective term, so that the
actual optimization problem can be expressed as

minimize
w

R(w) + λvarw
T Σw

subject to 1T w = 1, w ≥ 0,

In the code, that can be done by passing a positive value to the parameter lmd_var. Let’s check the
following illustrative example that depicts the depence between volatility and risk parity:

N <- 10

Sigma <- diag(c(1:N))

lmd_sweep <- c(10 ^ (seq(-5, 5, .25)))

variance <- c()

risk_parity <- c()

5

for (lmd_var in lmd_sweep) {

rpp <- riskParityPortfolio(Sigma, lmd_var = lmd_var)

variance <- c(variance, rpp$variance)

risk_parity <- c(risk_parity, rpp$risk_parity)

}

volatility <- sqrt(variance)

plot(risk_parity, volatility, type = "b", pch = 19, cex = .6, col = "blue",

xlab = "Risk Parity", ylab = "Volatility",

ylim = c(min(volatility), max(volatility)),

xlim = c(min(risk_parity), max(risk_parity)),

main = "Volatility vs Risk Parity")

0.00 0.05 0.10 0.15

0.
59

0.
60

0.
61

0.
62

0.
63

Volatility vs Risk Parity

Risk Parity

V
ol

at
ili

ty

3 Comparison with other packages

Others R packages with the goal of designing risk parity portfolios do exist, such as FinCovRegularization,
cccp, and RiskPortfolios. Let’s check how do they perform against riskParityPortfolio. (Note that
other packages like FRAPO use cccp under the hood.)

library(FinCovRegularization)

library(cccp)

library(RiskPortfolios)

generate synthetic data

set.seed(123)

N <- 10

#V <- matrix(rnorm(N^2), nrow = N) # with this, RiskPortfolios::optimalPortfolio() fails

V <- matrix(rnorm(N*(N+N/5)), N+N/5, N) # with this, FinCovRegularization::RiskParity() fails

Sigma <- cov(V)

6

uniform initial guess for the portfolio weights

w0 <- rep(1/N, N)

compute risk parity portfolios using different methods

rpp <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-double-index")

riskport_w <- optimalPortfolio(Sigma = Sigma, control = list(type = 'erc',

constraint = 'lo'))

riskport_risk_contribution <- c(riskport_w * (Sigma %*% riskport_w))

fincov_w <- RiskParity(Sigma)

fincov_risk_contribution <- c(fincov_w * (Sigma %*% fincov_w))

cccp_w <- c(getx(rp(w0, Sigma, mrc = w0, optctrl = ctrl(trace = FALSE))))

cccp_risk_contribution <- c(cccp_w * (Sigma %*% cccp_w))

barplot(rbind(rpp$w, fincov_w, cccp_w, riskport_w),

main = "Portfolios Weights", xlab = "stocks", ylab = "dollars",

beside = TRUE, col = rainbow8equal[1:4],

legend = c("riskParityPortfolio", "FinCovRegularization", "cccp",

"RiskPortfolios"), args.legend = list(bg = "white"))

riskParityPortfolio
FinCovRegularization
cccp
RiskPortfolios

Portfolios Weights

stocks

do
lla

rs

−
0.

10
0.

00
0.

10
0.

20

barplot(rbind(rpp$risk_contribution, fincov_risk_contribution, cccp_risk_contribution,

riskport_risk_contribution),

main = "Risk Contribution of the Portfolios", xlab = "stocks", ylab = "dollars",

beside = TRUE, col = rainbow8equal[1:4],

legend = c("riskParityPortfolio", "FinCovRegularization", "cccp",

"RiskPortfolios"),

args.legend = list(x = "bottomright", bg = "white"))

7

riskParityPortfolio
FinCovRegularization
cccp
RiskPortfolios

Risk Contribution of the Portfolios

stocks

do
lla

rs

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Depending on the condition number of the covariance matrix, we found that the packages
FinCovRegularization and RiskPortfolios may fail unexpectedly. Apart from that, the other
functions perform the same.

4 Appendix I: Risk concentration formulations

In general, with different constraints and objective functions, exact parity cannot be achieved and one
needs to define a risk term to be minimized: R(w) =

∑N

i=1
(gi (w))

2
, where the gi’s denote the different

risk contribution errors, e.g., gi = wi (Σw)i − biw
T Σw. A double-index summation can also be used:

R(w) =
∑N

i,j=1
(gij (w))

2
.

We consider the risk formulations as presented in [4]. They can be passed through the keyword argument
formulation in the function riskParityPortfolio().

The name of the formulations and their mathematical expressions are presented as follows.
Formulation “rc-double-index”:

R(w) =

N
∑

i,j=1

(

wi (Σw)i − wj (Σw)j

)2

Formulation “rc-vs-theta”:

R(w, θ) =
N

∑

i=1

(wi (Σw)i − θ)
2

Formulation “rc-over-var-vs-b”:

R(w) =

N
∑

i=1

(

wi (Σw)i

wT Σw
− bi

)2

Formulation “rc-over-b double-index”:

R(w) =
N

∑

i,j=1

(

wi (Σw)i

bi

−
wj (Σw)j

bj

)2

8

Formulation “rc-vs-b-times-var”:

R(w) =

N
∑

i=1

(

wi (Σw)i − biw
T Σw

)2

Formulation “rc-over-sd vs b-times-sd”:

R(w) =

N
∑

i=1

(

wi (Σw)i√
wT Σw

− bi

√
wT Σw

)2

Formulation “rc-over-b vs theta”:

R(w, θ) =

N
∑

i=1

(

wi (Σw)i

bi

− θ

)2

Formulation “rc-over-var”:

R(w) =

N
∑

i=1

(

wi (Σw)i

wT Σw

)2

5 Appendix II: Computational time

In the subsections that follows we explore the computational time required by method = "sca", method =

"alabama", and method = "slsqp" for some of the formulations presented above. Additionally, we compare
method = "alabama" and method = "slsqp" without using the gradient of the objective function.

5.1 Experiment: formulation “rc-over-var vs b”

set.seed(123)

N <- 100

V <- matrix(rnorm(N^2), nrow = N)

Sigma <- V %*% t(V)

w0 <- riskParityPortfolio(Sigma, formulation = "diag")$w

res_slsqp <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "slsqp")

res_slsqp_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "slsqp", use_gradient = FALSE)

res_alabama <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "alabama")

res_alabama_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "alabama", use_gradient = FALSE)

res_sca <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "sca")

plot(res_slsqp_nograd$elapsed_time, res_slsqp_nograd$obj_fun, type = "b",

pch=19, cex=.6, col = "blue", xlab = "Elapsed time (seconds)",

ylab = "Objective function", main = "Convergence trend versus CPU time",

ylim = c(0, 0.01))

lines(res_alabama$elapsed_time, res_alabama$obj_fun, type = "b", pch=18, cex=.8,

col = "red")

lines(res_alabama_nograd$elapsed_time, res_alabama_nograd$obj_fun, type = "b", pch=17,

cex=.8, col = "purple")

lines(res_slsqp$elapsed_time, res_slsqp$obj_fun, type = "b", pch=16, cex=.8,

9

col = "green")

lines(res_sca$elapsed_time, res_sca$obj_fun, type = "b", pch=15, cex=.8,

col = "black")

legend("topright", legend=c("alabama-nograd",

"alabama",

"slsqp-nograd",

"slsqp",

"sca"),

col=c("purple", "red", "blue", "green", "black"), lty=c(1, 1, 1), cex=0.8, bg = "white")

0.0 0.5 1.0 1.5

0.
00

0
0.

00
4

0.
00

8

Convergence trend versus CPU time

Elapsed time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n

alabama−nograd
alabama
slsqp−nograd
slsqp
sca

5.2 Experiment: formulation “rc vs b-times-var”

res_slsqp <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-times-var",

method = "slsqp")

res_slsqp_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-times-var",

method = "slsqp", use_gradient = FALSE)

res_alabama <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-times-var",

method = "alabama")

res_alabama_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-times-var",

method = "alabama", use_gradient = FALSE)

res_sca <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-times-var",

method = "sca")

plot(res_slsqp_nograd$elapsed_time, res_slsqp_nograd$obj_fun, type = "b",

pch=19, cex=.6, col = "blue", xlab = "Elapsed time (seconds)",

ylab = "Objective function", main = "Convergence trend versus CPU time",

ylim = c(0, 0.009))

lines(res_alabama$elapsed_time, res_alabama$obj_fun, type = "b", pch=18, cex=.8,

col = "red")

10

lines(res_alabama_nograd$elapsed_time, res_alabama_nograd$obj_fun, type = "b", pch=17,

cex=.8, col = "purple")

lines(res_slsqp$elapsed_time, res_slsqp$obj_fun, type = "b", pch=16, cex=.8,

col = "green")

lines(res_sca$elapsed_time, res_sca$obj_fun, type = "b", pch=15, cex=.8,

col = "black")

legend("topright", legend=c("alabama-nograd",

"alabama",

"slsqp-nograd",

"slsqp",

"sca"),

col=c("purple", "red", "blue", "green", "black"), lty=c(1, 1, 1), cex=0.8)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
00

0
0.

00
4

0.
00

8

Convergence trend versus CPU time

Elapsed time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n

alabama−nograd
alabama
slsqp−nograd
slsqp
sca

5.3 Experiment: formulation “rc-over-sd vs b-times-sd”

res_slsqp <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-sd vs b-times-sd",

method = "slsqp")

res_slsqp_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-sd vs b-times-sd",

method = "slsqp", use_gradient = FALSE)

res_alabama <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-sd vs b-times-sd",

method = "alabama")

res_alabama_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-sd vs b-times-sd",

method = "alabama", use_gradient = FALSE)

res_sca <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-sd vs b-times-sd",

method = "sca")

plot(res_slsqp_nograd$elapsed_time, res_slsqp_nograd$obj_fun, type = "b",

pch=19, cex=.6, col = "blue", xlab = "Elapsed time (seconds)",

ylab = "Objective function", main = "Convergence trend versus CPU time",

11

ylim = c(0, 0.01))

lines(res_alabama$elapsed_time, res_alabama$obj_fun, type = "b", pch=18, cex=.8,

col = "red")

lines(res_alabama_nograd$elapsed_time, res_alabama_nograd$obj_fun, type = "b", pch=17,

cex=.8, col = "purple")

lines(res_slsqp$elapsed_time, res_slsqp$obj_fun, type = "b", pch=16, cex=.8,

col = "green")

lines(res_sca$elapsed_time, res_sca$obj_fun, type = "b", pch=15, cex=.8,

col = "black")

legend("topright", legend=c("alabama-nograd",

"alabama",

"slsqp-nograd",

"slsqp",

"sca"),

col=c("purple", "red", "blue", "green", "black"), lty=c(1, 1, 1), cex=0.8, bg = "white")

0.0 0.5 1.0 1.5

0.
00

0
0.

00
4

0.
00

8

Convergence trend versus CPU time

Elapsed time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n

alabama−nograd
alabama
slsqp−nograd
slsqp
sca

5.4 Experiment with real market data

Now, let’s query some real market data using the package sparseIndexTracking and check the performance
of the different methods.

library(sparseIndexTracking)

library(xts)

data(INDEX_2010)

Sigma <- cov(INDEX_2010$X)

N <- nrow(Sigma)

w0 <- rep(1/N, N)

res_slsqp <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "slsqp")

12

res_slsqp_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "slsqp", use_gradient = FALSE)

res_alabama <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "alabama")

res_alabama_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "alabama", use_gradient = FALSE)

res_sca <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "sca")

plot(res_alabama_nograd$elapsed_time, res_alabama_nograd$obj_fun, type = "b",

pch=19, cex=.6, col = "purple", xlab = "Elapsed time (seconds)",

ylab = "Objective function", main = "Convergence trend versus CPU time")

lines(res_alabama$elapsed_time, res_alabama$obj_fun, type = "b", pch=18, cex=.8,

col = "red")

lines(res_slsqp_nograd$elapsed_time, res_slsqp_nograd$obj_fun, type = "b", pch=17,

cex=.8, col = "blue")

lines(res_slsqp$elapsed_time, res_slsqp$obj_fun, type = "b", pch=16, cex=.8,

col = "green")

lines(res_sca$elapsed_time, res_sca$obj_fun, type = "b", pch=15, cex=.8,

col = "black")

legend("topright", legend=c("alabama-nograd",

"alabama",

"slsqp-nograd",

"slsqp",

"sca"),

col=c("purple", "red", "blue", "green", "black"), lty=c(1, 1, 1), cex=0.8,

bg = "white")

0 10 20 30 40 50

0.
00

00
0

0.
00

01
0

0.
00

02
0

0.
00

03
0

Convergence trend versus CPU time

Elapsed time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n

alabama−nograd
alabama
slsqp−nograd
slsqp
sca

It can be noted that the "alabama" and "slsqp" greatly benefit from the additional gradient information.
Despite that fact, the "sca" method still performs faster. Additionally, in some cases, the "sca" method
attains a better solution than the other methods.

13

6 Appendix III: Design of high dimensional risk parity portfolio

In order to efficiently design high dimensional portfolios that follows the risk parity criterion, we implement
the cyclical coordinate descent algorithm proposed by [2]. In brief, this algorithm optimizes for one portfolio
weight at a time while leaving the rest fixed. By iterativelly applying this procedure it is possible to show that
the sequence of estimations reaches the global minimum of the convex function in roughly O(Niter × N2).

The plot below illustrates the computational scaling of both Newton and cyclical algorithms. Note that the
cyclical algorithm is implemented for two different formulations used by [1] and [2], respectively. Nonetheless,
they output the same solution, as they should.

library(microbenchmark)

library(riskParityPortfolio)

sizes <- c(10, 50, 100, 200, 300, 400, 500, 600, 700)

size_seq <- c(1:length(sizes))

times <- matrix(0, 3, length(sizes))

for (i in size_seq) {

V <- matrix(rnorm(1000 * sizes[i]), nrow = sizes[i])

Sigma <- V %*% t(V)

bench <- microbenchmark(

newton = riskParityPortfolio(Sigma, method_init="newton"),

cyclical_spinu = riskParityPortfolio(Sigma, method_init="cyclical-spinu"),

cyclical_roncalli = riskParityPortfolio(Sigma, method_init="cyclical-roncalli"),

times = 10L, unit = "ms", control = list(order = "inorder", warmup = 4))

times[1, i] <- median(bench$time[c(TRUE, FALSE, FALSE)] / 10 ^ 6)

times[2, i] <- median(bench$time[c(FALSE, TRUE, FALSE)] / 10 ^ 6)

times[3, i] <- median(bench$time[c(FALSE, FALSE, TRUE)] / 10 ^ 6)

}

colors <- c("#0B032D", "#FFB997", "red")

plot(size_seq, times[1,], type = "b", pch=15, cex=.75, col = colors[1],

xlab = "Portfolio size N", ylab = "CPU time [ms]", xaxt = "n")

grid()

lines(size_seq, times[2,], type = "b", pch=16, cex=.75, col = colors[2])

lines(size_seq, times[3,], type = "b", pch=17, cex=.75, col = colors[3])

axis(side = 1, at = size_seq, labels = sizes)

legend("topleft", legend = c("newton", "cyclical-spinu", "cyclical-roncalli"),

col=colors, pch=c(15, 16, 17), lty=c(1, 1, 1), bty="n")

14

0
10

20
30

40
50

60

Portfolio size N

C
P

U
 ti

m
e

[m
s]

10 50 100 200 300 400 500 600 700

newton
cyclical−spinu
cyclical−roncalli

References

[1] F. Spinu, “An algorithm for computing risk parity weights,” SSRN, 2013.

[2] T. Griveau-Billion, J. Richard, and T. Roncalli, “A fast algorithm for computing high-dimensional risk
parity portfolios,” ArXiv preprint, 2013.

[3] Boyd S. and L. Vandenberghe, Convex optimization. Cambridge University Press, 2009.

[4] Y. Feng and D. P. Palomar, “SCRIP: Successive convex optimization methods for risk parity portfolios
design,” IEEE Trans. Signal Process., vol. 63, no. 19, pp. 5285–5300, Oct. 2015.

15

	Vanilla risk parity portfolio
	Modern risk parity portfolio
	Comparison with other packages
	Appendix I: Risk concentration formulations
	Appendix II: Computational time
	Appendix III: Design of high dimensional risk parity portfolio
	References

