Running simulations using retrocombinator

Anindya Sharma

2021-11-11

Running Simulations

The retrocombinator package provides a method for simulating the molecular evolutionary process of
retrotransposon recombination over large scales of time.

To use it, load the library first.

library(retrocombinator)

To run a simulation, call the simulateEvolution() function. This runs a simulation with default parameters,
and returns a path to a simulation output file.

simulateEvolution()
#> [1] "simulationOutput.out"”

To overwrite any parameters, first create objects to represent the parameters you wish to overwrite, such as
in the example given below. Refer to the section below for what the various parameters are. Whenever a
parameter is not specified explicitly, the default will be used.

—--— NOT RUN (thts %s an alternative) ---

recombParams <- RecombParams(recombMean = 1.0)

activityParams <- ActivityParams(lengthCriticalRegion = 20,
probInactiveWhenMutated = 0.1)

simulateEvolution(recombParams = recombParams, activityParams = activityParams)

Using custom sequences

By default, simulateEvolution() runs a simulation on randomly generated sequences. To use a custom
sequence, specify it in SequenceParams (more details in the section below, that describes all possible
parameters to the simulation).

—-—-- NOT RUN (this is an alternative) ——-

Obtain your sequence in your favourite way
library(Biostrings)

fastaInput <- readDNAStringSet('path/to/your/FASTA/file')
yourSequence <- toString(fastalnput$yourSequence)

Override the sequence parameters and pass it to the simulation
sequenceParams <- SequenceParams(initialSequence = yourSequence)
simulateEvolution(sequenceParams = sequenceParams)

Simulation parameters and their defaults

SequenceParams represents what set of retrotransposons the simulation starts off with. It is constructed
by either specifying an explicit initial sequence, or a sequence length (in which case the sequence is
created randomly by sampling from a uniform A/G/C/T distribution.) Besides that, the number of
initial copies of the initial retrotransposon needs to be specified (the simulation creates multiple copies
of the initial sequence to begin with):

— sequencelength : numeric Sequence length (number of nucleotides) of the initial retrotransposon
(constructed randomly); ignored if initialSequence is not NULL (default = 5000)

— initialSequence : character The initial retrotransposon to consider; can be NULL if
sequenceLength is specified instead (default = NULL)

— numInitialCopies : numeric Number of copies of initial retrotransposon (default = 20)
ActivityParams represents the parameters used during a simulation in which we keep track of a
retrotransposon’s active status. A retrotransposon that is active is capable of transposition or bursting,
but potentially loses its active status if a point mutation affects a critical part of the sequence.

— lengthCriticalRegion: numeric Sequence length (number of nucleotides) of the critical region

of a retrotransposon (default = 10)

— probInactiveWhenMutated : numeric The probability that a singe point mutation to the critical
region causes a sequence to become inactive (default = 0.01)

MutationParams represents how what nucleotide substitution model will be used to modify the sequences
during the simulation. It is constructed from one of the following character literals to the argument
model:

— "JC69" Jules and Cantor - 1969

— "K80" Kimura - 1980 (default)

— "F81" Felsenstein - 1981

— "HKY85" Hasegawa, Kishino and Yano - 1985

— "TN93" Timura and Nei - 1993

— "GTR" General Time Reversible Model, Tavaré - 1986
BurstParams represents how an active retrotransposon will burst during transposition. It comprises of
the following:

— burstProbability : numeric The probability that an active retrotransposon will increase in

copy number during a time jump of one timestep (default = 0.1)

— burstMean : numeric The Poisson mean for the distribution that specifies how many new se-
quences an active sequence will create during bursting (default = 1)

— maxTotalCopies : numeric The largest population size of sequences to keep track of (if this is
exceeded, sequences are randomly discarded to simulate death) (default = 50)

RecombParams represents how two transposons recombine during transposition

— recombMean : numeric The expected number of template switches during recombination between
two sequences (chosen from a Poisson distribution with this as its mean) (default = 1.5)

— recombSimilarity : numeric How similar does an active sequence have to be with another
sequence for them to be allowed to be recombine during transposition? (default = 0.80)

SelectionParams represents what sequences we are interested in storing during the simulation. It
comprises of the following;:

— selectionThreshold : numeric What sequence similarity to the original sequence do we wish
to maintain? Sequences that diverge beyond this similarity level are dropped over the course of
simulation (default = 0.3)

FamilyParams represents how we keep track of families during the simulation. It comprises of the
following:

— familyCoherence : numeric What sequence similarity do two sequences have to be to each other
for them to be considered to be of the same family? (default = 0.70)

— maxFamilyRepresentatives : numeric How many family representatives to keep track of during
the simulation? (default = 20)

SimulationParams represents how long the simulation will run for, and at what timescale. It comprises
of the following:

numSteps : numeric The number of steps in our simulation - the simulation starts at a step
count of 0, and runs until the step count is numSteps (default = 20)

timePerStep : numeric How much real time does one step in our simulation measure, in millions
of years (default = 1)

e OutputParams represents how and where the output of the simulation will be saved. It comprises of
the following:

outputFilename : character Where should the simulation be saved? (default = ‘simula-
tionOutput.out’)

outputNumInitialDistance : numeric How many times during the simulation should we output
the distance of sequences to the initial sequence? (default = 10)
outputNumPairwiseDistance : numeric How many times during the simulation should we output
pairwise distances between all pairs of sequences? (default = 10)

outputNumFamilyLabels : numeric How many times during the simulation should we output
the family numbers of each sequence? (default = 10)

outputNumFamilyMatrix : numeric How many times during the simulation should we output
the pairwise distances between family representatives? (default = 10)

outputMinSimilarity : numeric What is the minimum similarity between two sequences we
should report on? (default = 0.5)

e SeedParams represents how to select the seed for randomisation for the simulation. It comprises of the
following:

Output

toSeed : logical Should this simulation be run with a specified seed to begin with? If FALSE, a
seed based on system time is used (default = TRUE)

seedForRNG : numeric If toSeed is TRUE, what should the initial seed for the random number
generator be? (default = 0)

The simulation creates a custom output file and returns a path to it (specified by outputFilename
in OutputParams, which by default is 'simulationOutput.out'). This file can be parsed by
parseSimulationOutput ().

data <- parseSimulationOutput('simulationOutput.out')

—-—-- NOT RUN (this is an alternative) ——-

Alternatively, using the pipe operator

library(magrittr) # For }>)

data <- simulateEvolution() %>’
parseSimulationOutput ()

This contains

a list of the parameters used to run the simulation

a data frame of the sequences over time and their similarity to the initial sequence

a data frame of the pairwise similarity of sequences over time

a data frame of the family representatives for the retrotransposons over time

a data frame of the pairwise similarity of the family representatives for the retrotransposons over time

For pairwise similarity, pairs are not duplicated, and only distinct pairs are given. That is, for any timestep
and sequences with sequenceId a and b present at that time, a row is present in the pairwise dataframe if
and only if a < b .

print (names(data$params))

#>
#>

[1] "SequenceParams_sequenceLength”
[2] "SequenceParams_initialSequence”

#> [3] "SequenceParams_numInitialCopies"

#> [4] "ActivityParams_lengthCriticalRegion"

#> [5] "ActivityParams_probInactiveWhenMutated”
#> [6] "MutationParams_model"

#> [7] "BurstParams_burstProbability"

#> [8] "BurstParams_burstMean"

#> [9] "BurstParams_mazTotalCopies"

#> [10] "RecombParams_recombMean"

#> [11] "RecombParams_recombSimilarity"

#> [12] "SelectionParams_selectionThreshold"

#> [13] "FamilyParams_familyCoherence"

#> [14] "FamilyParams_mazFamilyRepresentatives"”
#> [15] "SimulationParams_numSteps"

#> [16] "StimulationParams_timePerStep"

#> [17] "OutputParams_outputFileName"

#> [18] "OutputParams_outputNumInitialDistance"
#> [19] "OutputParams_outputNumPairwiseDistance"
#> [20] "OutputParams_outputNumFamilyLabels"

#> [21] "OutputParams_outputNumFamilyMatriz"

#> [22] "OutputParams_outputMinPairwiseSimilarity"
#> [23] "SeedParams_toSeed"

#> [24] "SeedParams_seed"

Prints out all the parameters the simulation was Tun with

print (colnames(data$sequences))

#> [1] "step" "realTime" "sequenceId"

#> [4] "parentMain" "parentOther" "distanceToInitial"

#> [7] "isActive"

step - timestep in the simulation

realTime - time since the start of the stimulation (in millions of years)

sequenceld - the unique ID of the sequence (to track it over time); initial

sequence has sequenceld 0 to (numInitialCopies-1)

parentMain - the unique ID of the sequence this burst from;

(-1 4if nothing)

parentOther - the unique ID of the sequence its parent recombined with;
(-1 if nothing)

distanceToInitial - the distance to the initial sequence
isActive - whether or not the sequence ts capable of transposition

print(colnames(data$pairwise))

#> [1] "step" "realTime" "sequenceIdl” "sequenceld2"

#> [5] "distancePairwise"

step - timestep in the simulation

realTime - time since the start of the simulation (in millions of years)

sequenceldl - an ID of a sequence present at the time

sequenceld2 - an ID of a different sequence present at the time; not all pairs
are given - that is, for sequences a and b, etther (a, b) or (b, a)
15 present as a row but not both

distancePatrwise — the distance between the two sequences

RO R R R W

print(colnames(data$familyRepresentatives))
#> [1] "step" "realTime" "familyId" "creationTime" "sequenceId"
step - timestep in the simulation

realTime - time since the start of the simulation (in millions of years)

familyId - the unique ID of the family representative (to track it over time)

creattonTime - time this family representative was created (in millions of years)
sequenceld - a sequence belonging to that family (sequences belonging to a

family are listed as separate rows, and all sequences belonging

to that family are listed)

print(colnames(data$familyPairwise))

#> [1] "step” "realTime" "familyIdl" "familyId2"

#> [5] "distancePairwise"

step - timestep in the simulation

realTime - time since the start of the simulation (in millions of years)

familyIdl — an ID of a family representative present at the time

familyId2 - an ID of a different family representative present at the time;

not all pairs are given - that is, for sequences a and b, either (a, b) or (b,
a) is present as a row but not both

distancePairwise - the distance between the two family representatives

Analysis

Summary statistics can be obtained from the data as follows.

summariseEvolution(data) # TODO

The data can be visualised using the plotEvolution function

plotEvolution(data, "initial") # Distance to initial sequence
o 09-
O
c
Q
-
o
()]
7
© 0.8-
£
e
2
ég 0.7-
£
n
0'6- 1 1 1 1
5 10 15 20

Time (millions of years)

Capable of transposition events (active status)
—— FALSE
TRUE

plotEvolution(data, "pairwise")

1.0- ®

0.9-

0.8-

0.7-

Pairwise sequence similarity

0.6-

0.5-

plotEvolution(data, "families")

Pairwise distances between sequences

10
Time (millions of years)

Family sizes

15

20

1.

Family Id
n

®
2- ®

- ———0—0—0 @

5 10 15
Time (millions of years)

creationTime Number of sequences in family

® 30
15 ®
10 @ -«

Q®
5

@«

Example with all parameters

sequenceParams <- SequenceParams(initialSequence = "TCAGTCAGTCAGTCAGTGTG",
numInitialCopies = 10)
activityParams <- ActivityParams(lengthCriticalRegion = 2,
probInactiveWhenMutated = 0.1)
mutationParams <- MutationParams(model = "F81")
burstParams <- BurstParams(burstProbability = 0.2,
burstMean = 2,
maxTotalCopies = 40)
recombParams <- RecombParams(recombMean = 2.0,
recombSimilarity = 0.85)
selectionParams <- SelectionParams(selectionThreshold
familyParams <- FamilyParams(familyCoherence = 0.65,
maxFamilyRepresentatives = 15)
simulationParams <- SimulationParams(numSteps = 35,
timePerStep = 1.5)

0.25)

outputParams <- OutputParams(outputFilename = 'simulationExampleParameters.out',

outputNumInitialDistance = 5,
outputNumPairwiseDistance = 5,
outputNumFamilyLabels = 5,

outputNumFamilyMatrix = 5,
outputMinSimilarity = 0.1)
seedParams <- SeedParams(toSeed = TRUE, seedForRNG = 1)

simulateEvolution(sequenceParams = sequenceParams,
activityParams = activityParams,

mutationParams = mutationParams,
burstParams = burstParams,
recombParams = recombParams,
selectionParams = selectionParams,
familyParams = familyParams,
simulationParams = simulationParams,
outputParams = outputParams)

#> [1] "simulationExzampleParameters.out"

	Running Simulations
	Using custom sequences
	Simulation parameters and their defaults
	Output
	Analysis
	Example with all parameters

