The replyr
R package provides a powerful extension of the “fluid data” (or “coordinatized data”) concept (please see here for some notes ) that goes way beyond the concepts of pivot/un-pivot.
The fluid data concept is:
replyr
supplies two general operators for fluid data work at database scale (and Spark
big data scale):
moveValuesToRowsQ()
: an operator centered around SQL
cross-join
semantics. un-pivot, tidyr::gather()
, and cdata::moveValuesToRows()
are special cases of this general operator.moveValuesToColumnsQ()
: an operator centered around SQL
group by
semantics. pivot, tidyr::spread()
, cdata::moveValuesToColumns()
, and one-hot-encode are special cases of this general operator.Because these operators are powerful, they are fairly general, and at first hard to mentally model (especially if you insist on think of them in only in terms of more a specialized operator such as pivot, instead of more general relational concepts such as “cross join” and “group by”). These operators are thin wrappers populating and enforcing a few invariants over a large SQL
statement. That does not mean that these operators are trivial, they are thin because SQL
is powerful and we have a good abstraction.
Due to the very detailed and explicit controls used in these operators- they are very comprehensible once studied. We will follow-up later with additional training material to make quicker comprehension available to more readers. This document is limiting itself to being a mere concise statement of and demonstration of the operators.
We are going to introduce a explicit, dense, and powerful data coordinate notation.
Consider the following table that we call a “control table”:
suppressPackageStartupMessages(library("replyr"))
suppressPackageStartupMessages(library("dplyr"))
options(width = 160)
tng <- replyr::makeTempNameGenerator('fdexample')
controlTable <- dplyr::tribble(~group, ~col1, ~col2,
'aa', 'c1', 'c2',
'bb', 'c3', 'c4')
print(controlTable)
## # A tibble: 2 x 3
## group col1 col2
## <chr> <chr> <chr>
## 1 aa c1 c2
## 2 bb c3 c4
Control tables partially specify a change of data shape or change of data cell coordinates.
The specification is interpreted as follows:
The region controlTable[ , 2:ncol(controlTable)]
specifies partial coordinates of data cells in another table. In our example these partial coordinates are “c1
”, “c2
”, “c3
”, and “c4
” treated as column names. For example if our data is:
dat1 <- dplyr::tribble(
~ID, ~c1, ~c2, ~c3, ~c4,
'id1', 'val_id1_c1', 'val_id1_c2', 'val_id1_c3', 'val_id1_c4',
'id2', 'val_id2_c1', 'val_id2_c2', 'val_id2_c3', 'val_id2_c4',
'id3', 'val_id3_c1', 'val_id3_c2', 'val_id3_c3', 'val_id3_c4' )
print(dat1)
## # A tibble: 3 x 5
## ID c1 c2 c3 c4
## <chr> <chr> <chr> <chr> <chr>
## 1 id1 val_id1_c1 val_id1_c2 val_id1_c3 val_id1_c4
## 2 id2 val_id2_c1 val_id2_c2 val_id2_c3 val_id2_c4
## 3 id3 val_id3_c1 val_id3_c2 val_id3_c3 val_id3_c4
Then each data cell in dat1
(excluding the key-columns, in this case “ID
”) is named by the row-id (stored in the ID
column) plus the column-name (“c1
”, “c2
”, “c3
”, and “c4
”). Knowing ID
plus the column name unique identifies the data-caring cell in table dat1
.
However, there is an alternate cell naming available from the controlTable
notation. Each name in the region controlTable[ , 2:ncol(controlTable)]
is itself uniquely named by the group
entry and column name of the control table itself. This means we have the following correspondence from the partial names “c1
”, “c2
”, “c3
”, and “c4
” to a new set of partial names:
namePairings <- expand.grid(seq_len(nrow(controlTable)),
2:ncol(controlTable))
colnames(namePairings) <- c("controlI", "controlJ")
namePairings$coords_style1 <-
vapply(seq_len(nrow(namePairings)),
function(ii) {
as.character(paste("column:",
controlTable[namePairings$controlI[[ii]],
namePairings$controlJ[[ii]]]))
},
character(1))
namePairings$coords_style2 <-
vapply(seq_len(nrow(namePairings)),
function(ii) {
paste("group:",
controlTable$group[[namePairings$controlI[[ii]]]],
", column:",
colnames(controlTable)[[namePairings$controlJ[[ii]]]])
},
character(1))
as.matrix(namePairings[ , c("coords_style1", "coords_style2")])
## coords_style1 coords_style2
## [1,] "column: c1" "group: aa , column: col1"
## [2,] "column: c3" "group: bb , column: col1"
## [3,] "column: c2" "group: aa , column: col2"
## [4,] "column: c4" "group: bb , column: col2"
The idea is the control table is a very succinct description of the pairing of the namePairings$coords_style1
cell partial coordinates and the namePairings$coords_style2
cell partial coordinates. As we have said the namePairings$coords_style1
cell partial coordinates become full cell coordinates for the data cells in dat1
when combined with the dat1
ID
column. The namePairings$coords_style2
are part of a natural naming for the data cells in the following table:
my_db <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
dat1db <- dplyr::copy_to(my_db, dat1, 'dat1db')
dat2 <- replyr::moveValuesToRowsQ(controlTable = controlTable,
wideTableName = 'dat1db',
my_db = my_db,
columnsToCopy = "ID",
tempNameGenerator = tng) %>%
arrange(ID, group)
print(dat2)
## # Source: table<fdexample_gevdxd3mb6zdb1rgwhz9_0000000001> [?? x 4]
## # Database: sqlite 3.19.3 [:memory:]
## # Ordered by: ID, group
## ID group col1 col2
## <chr> <chr> <chr> <chr>
## 1 id1 aa val_id1_c1 val_id1_c2
## 2 id1 bb val_id1_c3 val_id1_c4
## 3 id2 aa val_id2_c1 val_id2_c2
## 4 id2 bb val_id2_c3 val_id2_c4
## 5 id3 aa val_id3_c1 val_id3_c2
## 6 id3 bb val_id3_c3 val_id3_c4
For dat2
the composite row-key (ID, group)
plus the column name (one of col1
or col2
) gives us the positions of the data carrying cells.
So essentially the two readings of controlTable
are a succinct representation of the explicit pairing of data cell coordinates shown in the namePairings
table.
In terms of the above notation/theory our two operators moveValuesToRowsQ()
and moveValuesToColumnsQ()
are (in principle) easy to describe:
moveValuesToRowsQ()
reshapes data from style 1 to style 2moveValuesToColumnsQ()
reshapes data from style 2 to style 1.The above is certainly succinct, but carries a lot of information and allows for a lot of different possible applications. Many important applications are derived from how these two operators interact with row-operations and column-operations.
We give simple examples of each of the operators below.
moveValuesToRowsQ()
wideTableName <- 'dat'
d <- dplyr::copy_to(my_db,
dplyr::tribble(
~ID, ~c1, ~c2, ~c3, ~c4,
'id1', 'val_id1_c1', 'val_id1_c2', 'val_id1_c3', 'val_id1_c4',
'id2', 'val_id2_c1', 'val_id2_c2', 'val_id2_c3', 'val_id2_c4',
'id3', 'val_id3_c1', 'val_id3_c2', 'val_id3_c3', 'val_id3_c4' ),
wideTableName, overwrite = TRUE, temporary=TRUE)
controlTable <- dplyr::tribble(~group, ~col1, ~col2,
'aa', 'c1', 'c2',
'bb', 'c3', 'c4')
columnsToCopy <- 'ID'
replyr::moveValuesToRowsQ(controlTable,
wideTableName,
my_db,
columnsToCopy = columnsToCopy,
tempNameGenerator = tng) %>%
arrange(ID, group)
## # Source: table<fdexample_gevdxd3mb6zdb1rgwhz9_0000000003> [?? x 4]
## # Database: sqlite 3.19.3 [:memory:]
## # Ordered by: ID, group
## ID group col1 col2
## <chr> <chr> <chr> <chr>
## 1 id1 aa val_id1_c1 val_id1_c2
## 2 id1 bb val_id1_c3 val_id1_c4
## 3 id2 aa val_id2_c1 val_id2_c2
## 4 id2 bb val_id2_c3 val_id2_c4
## 5 id3 aa val_id3_c1 val_id3_c2
## 6 id3 bb val_id3_c3 val_id3_c4
moveValuesToColumnsQ()
tallTableName <- 'dat'
d <- dplyr::copy_to(my_db,
dplyr::tribble(
~ID, ~group, ~col1, ~col2,
"id1", "aa", "val_id1_gaa_col1", "val_id1_gaa_col2",
"id1", "bb", "val_id1_gbb_col1", "val_id1_gbb_col2",
"id2", "aa", "val_id2_gaa_col1", "val_id2_gaa_col2",
"id2", "bb", "val_id2_gbb_col1", "val_id2_gbb_col2",
"id3", "aa", "val_id3_gaa_col1", "val_id3_gaa_col2",
"id3", "bb", "val_id3_gbb_col1", "val_id3_gbb_col2" ),
tallTableName,
overwrite = TRUE, temporary=TRUE)
controlTable <- dplyr::tribble(~group, ~col1, ~col2,
'aa', 'c1', 'c2',
'bb', 'c3', 'c4')
keyColumns <- 'ID'
replyr::moveValuesToColumnsQ(keyColumns,
controlTable,
tallTableName,
my_db,
tempNameGenerator = tng) %>%
arrange(ID)
## # Source: table<fdexample_gevdxd3mb6zdb1rgwhz9_0000000005> [?? x 5]
## # Database: sqlite 3.19.3 [:memory:]
## # Ordered by: ID
## ID c1 c2 c3 c4
## <chr> <chr> <chr> <chr> <chr>
## 1 id1 val_id1_gaa_col1 val_id1_gaa_col2 val_id1_gbb_col1 val_id1_gbb_col2
## 2 id2 val_id2_gaa_col1 val_id2_gaa_col2 val_id2_gbb_col1 val_id2_gbb_col2
## 3 id3 val_id3_gaa_col1 val_id3_gaa_col2 val_id3_gbb_col1 val_id3_gbb_col2
Pivot and un-pivot (or tidyr::spread()
and tidyr::gather()
) are special cases of the moveValuesToColumnsQ()
and moveValuesToRowsQ()
operators. Pivot/un-pivot are the cases where the control table has two columns.
d <- data.frame(
index = c(1, 2, 3, 1, 2, 3),
meastype = c('meas1','meas1','meas1','meas2','meas2','meas2'),
meas = c('m1_1', 'm1_2', 'm1_3', 'm2_1', 'm2_2', 'm2_3'),
stringsAsFactors = FALSE)
print(d)
## index meastype meas
## 1 1 meas1 m1_1
## 2 2 meas1 m1_2
## 3 3 meas1 m1_3
## 4 1 meas2 m2_1
## 5 2 meas2 m2_2
## 6 3 meas2 m2_3
# the cdata::moveValuesToColumns version
# equivalent to tidyr::spread(d, 'meastype', 'meas')
cdata::moveValuesToColumns(d,
columnToTakeKeysFrom = 'meastype',
columnToTakeValuesFrom = 'meas',
rowKeyColumns= 'index',
sep= '_') %>%
arrange(index)
## index meastype_meas1 meastype_meas2
## 1 1 m1_1 m2_1
## 2 2 m1_2 m2_2
## 3 3 m1_3 m2_3
# the replyr::moveValuesToColumnsQ() version
controlTable <- replyr::buildPivotControlTable(d,
columnToTakeKeysFrom = 'meastype',
columnToTakeValuesFrom = 'meas',
sep = "_")
print(controlTable)
## meastype meas
## 1 meas1 meastype_meas1
## 2 meas2 meastype_meas2
dtall <- dplyr::copy_to(my_db, d, "dtall")
moveValuesToColumnsQ(keyColumns = "index",
controlTable = controlTable,
tallTableName = "dtall",
my_db = my_db,
tempNameGenerator = tng) %>%
arrange(index)
## # Source: table<fdexample_gevdxd3mb6zdb1rgwhz9_0000000007> [?? x 3]
## # Database: sqlite 3.19.3 [:memory:]
## # Ordered by: index
## index meastype_meas1 meastype_meas2
## <dbl> <chr> <chr>
## 1 1 m1_1 m2_1
## 2 2 m1_2 m2_2
## 3 3 m1_3 m2_3
d <- data.frame(
index = c(1, 2, 3),
info = c('a', 'b', 'c'),
meas1 = c('m1_1', 'm1_2', 'm1_3'),
meas2 = c('2.1', '2.2', '2.3'),
stringsAsFactors = FALSE)
print(d)
## index info meas1 meas2
## 1 1 a m1_1 2.1
## 2 2 b m1_2 2.2
## 3 3 c m1_3 2.3
# the cdata::moveValuesToRows() version
# equivalent to tidyr::gather(d, 'meastype', 'meas', c('meas1','meas2'))
cdata::moveValuesToRows(d,
nameForNewKeyColumn= 'meastype',
nameForNewValueColumn= 'meas',
columnsToTakeFrom= c('meas1','meas2')) %>%
arrange(index, info)
## index info meastype meas
## 1 1 a meas1 m1_1
## 2 1 a meas2 2.1
## 3 2 b meas1 m1_2
## 4 2 b meas2 2.2
## 5 3 c meas1 m1_3
## 6 3 c meas2 2.3
# the replyr::cdata::moveValuesToRows() version
controlTable <- buildUnPivotControlTable(nameForNewKeyColumn= 'meastype',
nameForNewValueColumn= 'meas',
columnsToTakeFrom= c('meas1','meas2'))
print(controlTable)
## meastype meas
## 1 meas1 meas1
## 2 meas2 meas2
keyColumns = c('index', 'info')
dwide <- dplyr::copy_to(my_db, d, "dwide")
moveValuesToRowsQ(controlTable = controlTable,
wideTableName = "dwide",
my_db = my_db,
columnsToCopy = keyColumns,
tempNameGenerator = tng) %>%
arrange(index, info)
## # Source: table<fdexample_gevdxd3mb6zdb1rgwhz9_0000000009> [?? x 4]
## # Database: sqlite 3.19.3 [:memory:]
## # Ordered by: index, info
## index info meastype meas
## <dbl> <chr> <chr> <chr>
## 1 1 a meas1 m1_1
## 2 1 a meas2 2.1
## 3 2 b meas1 m1_2
## 4 2 b meas2 2.2
## 5 3 c meas1 m1_3
## 6 3 c meas2 2.3
Interesting applications of replyr::moveValuesToRowsQ()
and replyr::moveValuesToColumnsQ()
include situations where tidyr
is not available (databases and Spark
) and also when the data transformation is not obviously a single pivot or un-pivot.
A particularly interesting application is converting many column operations into a single operation using a row-parallel dispatch.
Suppose we had the following data in the following format in our system of record (but with many more column groups and columns):
purchaseDat <- dplyr::copy_to(my_db, dplyr::tribble(
~ID, ~Q1purchases, ~Q2purchases, ~Q1rebates, ~Q2rebates,
1, 20, 10, 5, 3,
2, 5, 6, 10, 12),
'purchaseDat')
print(purchaseDat)
## # Source: table<purchaseDat> [?? x 5]
## # Database: sqlite 3.19.3 [:memory:]
## ID Q1purchases Q2purchases Q1rebates Q2rebates
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 20 10 5 3
## 2 2 5 6 10 12
Common tasks might include totaling columns and computing rates between columns. However, sometimes that is best done in a row-oriented representation (though outside systems may need column oriented, or more denormalized results).
With fluid data the task is easy:
controlTable <- dplyr::tribble(
~group, ~purchases, ~rebates,
"Q1", "Q1purchases", "Q1rebates",
"Q2", "Q2purchases", "Q2rebates")
print(controlTable)
## # A tibble: 2 x 3
## group purchases rebates
## <chr> <chr> <chr>
## 1 Q1 Q1purchases Q1rebates
## 2 Q2 Q2purchases Q2rebates
purchasesTall <- moveValuesToRowsQ(columnsToCopy = "ID",
controlTable = controlTable,
wideTableName = "purchaseDat",
my_db = my_db,
tempNameGenerator = tng)
print(purchasesTall)
## # Source: table<fdexample_gevdxd3mb6zdb1rgwhz9_0000000011> [?? x 4]
## # Database: sqlite 3.19.3 [:memory:]
## ID group purchases rebates
## <dbl> <chr> <dbl> <dbl>
## 1 1 Q1 20 5
## 2 1 Q2 10 3
## 3 2 Q1 5 10
## 4 2 Q2 6 12
# perform the calculation in one easy step
calc <- purchasesTall %>%
mutate(purchasesPerRebate = purchases/rebates) %>%
compute(name = "purchasesTallC")
print(calc)
## # Source: table<purchasesTallC> [?? x 5]
## # Database: sqlite 3.19.3 [:memory:]
## ID group purchases rebates purchasesPerRebate
## <dbl> <chr> <dbl> <dbl> <dbl>
## 1 1 Q1 20 5 4.000000
## 2 1 Q2 10 3 3.333333
## 3 2 Q1 5 10 0.500000
## 4 2 Q2 6 12 0.500000
# move what we want back
controlTable <- controlTable %>%
mutate(purchasesPerRebate =
paste0(group, "purchasesPerRebate"))
print(controlTable)
## # A tibble: 2 x 4
## group purchases rebates purchasesPerRebate
## <chr> <chr> <chr> <chr>
## 1 Q1 Q1purchases Q1rebates Q1purchasesPerRebate
## 2 Q2 Q2purchases Q2rebates Q2purchasesPerRebate
# notice the step back is not a single
# pivot or un-pivot
# due to the larger controlTable
# (especially if there were more quarters)
result <- moveValuesToColumnsQ(keyColumns = "ID",
controlTable = controlTable,
tallTableName = "purchasesTallC",
my_db = my_db,
tempNameGenerator = tng)
print(result)
## # Source: table<fdexample_gevdxd3mb6zdb1rgwhz9_0000000013> [?? x 7]
## # Database: sqlite 3.19.3 [:memory:]
## ID Q1purchases Q1rebates Q1purchasesPerRebate Q2purchases Q2rebates Q2purchasesPerRebate
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 20 5 4.0 10 3 3.333333
## 2 2 5 10 0.5 6 12 0.500000
The point is: the above can work on a large number of rows and columns (especially on a system such as Spark
where row operations are performed in parallel).
Adding indicators or dummy variables (by one-hot encoding, or other methods) are essentially special cases of the pivot flavor of replyr::moveValuesToColumnsQ()
.
Many operations that look like a complicated pivot in column format are in fact a simple row operation followed a group_by/aggregate (and optional format conversion).
The structure of the control table is so similar to the data expected by moveValuesToColumnsQ()
that you can actually send the control table through moveValuesToColumnsQ()
to illustrate the kernel of the transformation.
controlTable <- dplyr::tribble(~group, ~col1, ~col2,
'aa', 'c1', 'c2',
'bb', 'c3', 'c4')
tallTableName <- 'dc'
d <- dplyr::copy_to(my_db, controlTable, tallTableName)
keyColumns <- NULL
wideTableName <- 'dw'
dw <- moveValuesToColumnsQ(keyColumns,
controlTable,
tallTableName,
my_db) %>%
compute(name = wideTableName)
print(dw)
## # Source: table<dw> [?? x 4]
## # Database: sqlite 3.19.3 [:memory:]
## c1 c2 c3 c4
## <chr> <chr> <chr> <chr>
## 1 c1 c2 c3 c4
The transformed table is essentially an example row of the wide-form.
And we can, of course, map back.
moveValuesToRowsQ(controlTable,
wideTableName,
my_db)
## # Source: table<mvtrq_wtdsexcvhxlvrjfk9ekt_0000000001> [?? x 3]
## # Database: sqlite 3.19.3 [:memory:]
## group col1 col2
## <chr> <chr> <chr>
## 1 aa c1 c2
## 2 bb c3 c4
replyr::moveValuesToRowsQ()
and replyr::moveValuesToColumnsQ()
represent two very general “fluid data” or “coordinatized data” operators that have database scale (via DBI/dbplyr/dplyr
) and big data scale implementations (via Sparklyr
). Some very powerful data transformations can be translated into the above explicit control table terminology. The extra details explicitly managed in the control table notation makes for clear calling interfaces.
for(ti in tng(dumpList = TRUE)) {
dplyr::db_drop_table(my_db, ti)
}
DBI::dbDisconnect(my_db)