
rebmix: The Rebmix Package

Marko Nagode

September 5, 2014

Abstract

The rebmix package for R provides functions for random univariate and multivariate finite mix-
ture generation, number of components, component weights and component parameter estimation,
bootstrapping and plotting of the finite mixtures. It relies on the REBMIX algorithm that requires
preprocessing, information criterion and conditionally independent normal, lognormal, Weibull,
gamma, binomial, Poisson or Dirac component densities. The algorithm optimizes the component
parameters, mixing weights and number of components successively based on the boundary condi-
tions, such as the maximum number of components, total of positive relative deviations, number
of classes or nearest neighbours. The algorithm is robust, time efficient and can be used either
to assess the initial set of the unknown parameters and number of components for, e.g., the EM
algorithm or as a standalone algorithm that is a good compromise between the nonparametric and
parametric methods to the finite mixture estimation.

1 Introduction

Finite mixture models are used increasingly to model the distributions of a wide variety of random
phenomena. For the multivariate data of continuous nature, attention is paid to the use of multivariate
normal components because of their computational convenience (McLachlan and Peel, 1999; Ingrassiaa
and Roccib, 2007; Frühwirth-Schnatter, 2006). However, in fatigue and reliability analyses, lognormal
and Weibull distributions are preferred due to their flexibility and their definition for continuous
positive random variables only (Majeske, 2003; Sultan et al., 2007; Touw, 2009).

The finite mixture models have seen a real boost in popularity over the last two decades due to
the tremendous increase in available computing power. These models can be applied to data where
observations originate from various groups and the group affiliations are not known, and on the other
hand to provide approximations for multimodal distributions Leisch (2004). Some of the latest models
can be found also in McLachlan and Lee (2013); Chavent et al. (2012); Grün et al. (2012); Melnykov
et al. (2012); Ardia et al. (2009); Benaglia et al. (2009); Grün and Leisch (2008); Fraley and Raftery
(2007); McLachlan and Peel (2000).

The REBMIX algorithm origins in Nagode and Fajdiga (1998) and avoids the drawbacks of the
EM algorithm:

❼ The EM algorithm converges to a local maximum of the likelihood function very quickly.

❼ There are often several other promising local optimal solutions in the vicinity of the solutions
obtained from methods that provide good initial guesses of the solution.

❼ Model selection criterion usually assumes that the global optimal solution of the log-likelihood
function can be obtained. However, achieving this is computationally intractable.

❼ Some regions in the search space do not contain any promising solutions. The promising and
non-promising regions co-exist, and it often becomes challenging to avoid wasting computational
resources to search in non-promising regions.

reported in Reddya and Rajaratnam (2010) by updating the number of components, component
weights and component parameters sequentially and not simultaneously (see also Celeux et al., 2001).
Later on the REBMIX has evolved (Nagode and Fajdiga, 2000; Nagode et al., 2001; Nagode and
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Fajdiga, 2006, 2011a,b). The paper extends it to discrete variables by adding binomial, Poisson and
Dirac parametric families. Gamma parametric family is added as well. REBMIX stands for a robust,
time efficient tool that can be used either to assess the initial set of unknown parameters and the
number of components for other algorithms (Chen et al., 2013; Bučar et al., 2004) or as a standalone
procedure that is a good compromise between the nonparametric and parametric methods to the finite
mixture estimation.

The rebmix implementation of the REBMIX (Nagode, 2014) extends the set of algorithms available
for random univariate and multivariate finite mixture generation, number of components, component
weights and component parameter estimation, bootstrapping and plotting of the finite mixtures in the
R language and environment for statistical computing.

The outline of the paper is as follows: Section Algorithm presents the algorithm. Section Examples
analyses the performance of the approach by studying four datasets. Section Summary lists the
conclusions.

2 Algorithm

Let y1, . . . ,yn be an observed d dimensional dataset of size n of continuous or discrete vector obser-
vations yj . Each observation is assumed to follow predictive mixture density

f(y|c,w,Θ) =
c
∑

l=1

wlf(y|θl) (1)

with conditionally independent component densities

f(y|θl) =
d
∏

i=1

f(yi|θil) (2)

indexed by vector parameter θl = (θ1l, . . . ,θdl)
⊤. The components can currently belong to either

normal

f(yi|θil) =
1√
2πσil

exp

{

−1

2

(yi − µil)
2

σ2il

}

,

lognornal

f(yi|θil) =
1√

2πσilyi
exp

{

−1

2

(log(yi)− µil)
2

σ2il

}

,

Weibull

f(yi|θil) =
βil
θil

(

yi
θil

)βil−1

exp

{

−
(

yi
θil

)βil

}

,

gamma

f(yi|θil) =
1

Γ[βil]yi

(

yi
θil

)βil

exp

{

− yi
θil

}

,

binomial

f(yi|θil) =
(

θil
yi

)

pyiil (1− pil)
θil−yi ,

Poisson

f(yi|θil) =
e−θilθyiil
yi!

or Dirac

f(yi|θil) =
{

1 yi = θil
0 otherwise

parametric family types. The objective of the analysis is the inference about the number c of compo-
nents, component weights wl summing to 1 and component parameters θl. The REBMIX algorithm
is an iterative numerical procedure relying on the suppositions:
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❼ It is always possible to assign empirical densities to an arbitrary dataset.

❼ Based on the empirical densities, global mode position can be identified.

❼ Once the global mode position and its empirical density are known, rough component parameters
of the predictive component density can be estimated.

❼ Based on the rough component parameters, the dataset can be clustered successively into the
classes linked to the predictive component densities and the residue.

❼ The number c of components equals the number of the classes.

❼ Enhanced component parameters and the component weights can be assessed for all classes.

❼ The remaining observations can be distributed between the existing components by the Bayes
decision rule and the parameters of the finite mixture can be fine-tuned.

Sections Preprocessing of observations to Bayes classification of the remaining observations give the
theoretical backgrounds for the algorithm, while Section Algorithm flow lists and explains its flow.

2.1 Preprocessing of observations

The algorithm requires the preprocessing of observations. By the histogram approach, the dataset is
counted into a finite number of nonoverlapping, equally sized and regularly distributed bins. Assuming
that bin means ȳj = (ȳ1j , . . . , ȳdj)

⊤ are given by

ȳij = ȳi0 + ’An arbitrary integer’× hij , i = 1, . . . , d, (3)

the fraction of observations kj for j = 1, . . . , v falling into volume Vj is counted out, where ȳi0 stands
for an arbitrary origin and v depicts the number of nonempty bins. Similarly, if the Parzen window is
employed, the fraction of observations falling into Vj centered on observation yj is obtained. In both

cases, the volume is taken to be a hypersquare with the sides of length hij . This yields Vj =
∏d

i=1 hij .
Moreover, for both approaches class widths hij = hi and volumes Vj = V are kept constant. If the
k-nearest neighbour approach is used, the fraction of observations falling into normalized hypersphere
Vj = πd/2Rd

j/Γ[1 + d/2] of radius Rj centered on observation yj contains constant number kj = k
of observations. The class widths for the histogram and Parzen window approach and continuous
parametric families

hi =
yimax − yimin

v

depend on the minimum yimin = min yij and maximum yimax = max yij observations. For the his-
togram approach and continuous parametric families origin is preset to

ȳi0 = yimin +
hi
2
.

However, discrete parametric families require hi = 1 and ȳi0 = yimin. The kth − 1 nearest neighbour
yĵ is searched around yj based on the normalized Euclidean distance

Rj =

√

√

√

√

d
∑

i=1

(

yiĵ − yij

yimax − yimin

)2

for ĵ 6= j and hij = 2Rj(yimax − yimin).

If N ≥ k nearest neighbours coincide, then the normalized Euclidean distance Rj to the first nearest
non-coincident neighbour yĵ is multiplied by (k/(N +1))1/d. Infinite empirical density estimations are
thus prevented.
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2.2 Global mode detection

Argument m at which empirical density flj

m = argmax
j

flj (4)

attains its maximum determines the global mode. If observations are binned into the histogram, then

flj =
klj
nl

1

Vj
, j = 1, . . . , v, (5)

where frequencies klj are all set to kj initially and number of observations in class l is

nl =

v
∑

j=1

klj .

If the Parzen window or k-nearest neighbour approach is applied,

flj =
klj
nl

kj
Vj
, j = 1, . . . , n. (6)

Frequencies klj are all set to 1 initially, nl =
∑n

j=1 klj and component weight wl = nl/n. Moreover,
the lth component conditional empirical density at the global mode for the histogram approach

fi|̂i.lm =
klm

∑v
j=1, ȳ

îj
=ȳ

îm
klj

1

him
=

klm
ki|̂i.lm

1

him
(7)

is required, where index î = 1, . . . , i− 1, i+ 1, . . . , d. If d = 1, then ki|̂i.lm = nl and fi|̂i.lm = flm. For
the Parzen window and k-nearest neighbour approach

fi|̂i.lm =
klm

∑n
j=1, |y

îj
−y

îm
|≤h

îm
/2 klj

km
him

=
klm
ki|̂i.lm

km
him

. (8)

2.3 Clustering of observations

The clustering of observations is an iterative procedure of identifying the observations belonging to
the lth component. The deviations between klj and the predictive component frequencies for the
histogram approach are given by

elj = klj − nlf(ȳj |θl)Vj . (9)

For the Parzen window and k-nearest neighbour approach

elj = klj − nlf(yj |θl)Vj/kj . (10)

To identify the most deviating observations, relative positive deviations εlj = elj/klj and maximum
positive relative deviation εlmax are calculated. Total of positive and negative deviations

elp =
v
∑

j=1, elj>0

elj and eln =
v
∑

j=1, elj<0

max{elj ,−rj},

where rj stands for the residual frequency. If index v is replaced by n the equation can be used with
the Parzen window and k-nearest neighbour approach, too. Total of positive relative deviations of the
lth component is then

Dl =
elp
nl
, (11)

where 0 ≤ Dl ≤ 1. The observations that inequality εlj > εlmax(1 − ar) holds for are not assumed
to belong to the lth component and therefore move to the residue. Number of iterations depends on
acceleration rate 0 < ar ≤ 1. It is best to keep ar close to zero. The recommended value is 0.1. On the
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contrary, the observations where elj < 0 are transferred back to the lth component. The clustering of
observations continues with the renewed rough parameter and component weight estimation until

Dl ≤
Dmin

wl
. (12)

Constant 0 < Dmin ≤ 1 is optimized by the information criterion. The clustering of observations ends
with the enhanced component parameter estimation.

2.4 Rough component parameter estimation

The clustering of observations depends on the rough component parameters. Proper extraction of
observations belonging to the lth component is assured by the restraints that prevent the component
from its flowing away from the global mode as at least one component is supposed to be in its vicinity.
This yields

f(y = ŷm|θl) = flm, (13)

where ŷm = ȳm for the histogram and ŷm = ym for the Parzen window and k-nearest neighbour
approach. Restraint (13) is insufficient if d > 1 even for single parameter component densities, such
as for Dirac and exponential. Allowing for the independence of components (2) equation (13) yields

d
∏

i=1

f(yi = ŷim|θil) = flm =

d
∏

i=1

εfi|̂i.lm, (14)

wherefrom required restraints

f(yi = ŷim|θil) = εfi|̂i.lm = fi|̂i.lmax, i = 1, . . . , d (15)

can be derived. In addition, from known flm and fi|̂i.lm it follows

ε = min







1,

(

flm
∏d

i=1 fi|̂i.lm

)
1
d







, (16)

where the upper limit of ε is set to 1. For Rayleigh, Poisson or binomial distribution with known θil
it is assumed

∂f(yi = ŷim|θil)
∂yi

= 0, i = 1, . . . , d. (17)

The rough component parameters for single parameter distributions are thus gained from (15) or (17).
For two parameter normal, lognormal, Weibull or gamma distribution Lagrange multiplier

Λ(θil, λil) = −
∫ +∞

−∞
f(yi|θil) log(f(yi|θil))dyi + λil log(f(yi = ŷim|θil)/fi|̂i.lmax) (18)

provides a strategy for entropy maximization subject to logarithm of (15). The rough component
parameters for two parameter distributions are then a solution of

∇θil,λil
Λ(θil, λil) = 0, i = 1, . . . , d. (19)

Constrained entropy (18) maximization enables rough Weibull and gamma parameter estimation for
shape parameter βil > 0 and not only for βil > 1 as in Nagode and Fajdiga (2011a,b). Rough normal
component parameters are given by

µil = ŷim and σil =
1√

2πfi|̂i.lmax

. (20)
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Similarly, rough lognormal

f(λil) =
λil − 1

λil
+ log(λil(λil − 1)) + 2 log(

√
2πfi|̂i.lmaxŷim) = 0,

µil = λil − 1 + log(ŷim) and σil =
√

λil(λil − 1), (21)

Weibull

f(αil) =
αil − 1

λil
e

1
αil − fi|̂i.lmaxŷime = 0, λil =

αil

βil
,

βil = αil + γ + log

(

αil − 1

αil

)

, θil = ŷim

(

αil

αil − 1

)
1

βil

and βil > 0, (22)

gamma

f(αil) =
1

2
log(βil) + βil

(

log

(

αil − 1

αil

)

+
1

αil

)

− log(
√
2πfi|̂i.lmaxŷim) = 0,

βil =
γ(1 + αil)

γ − 1− αil log
(

αil−1
αil

) , λil =
αil

βil
, θil =

ŷimλil
αil − 1

and βil > 0, (23)

binomial

pil =















1− f
1/θil
i|̂i.lmax

ŷim = 0

f
1/θil
i|̂i.lmax

ŷim = θil

ŷim/θil otherwise,

(24)

rough Poisson

θil =

{ − log(fi|̂i.lmax) ŷim = 0

ŷim otherwise
(25)

and rough Dirac
θil = ŷim (26)

component parameters are derived, where γ is the Euler-Mascheroni constant. When deriving (23)
Γ[βil] is approximated by the Stirling’s formula and digamma function by ψ(βil) = log(βil) − γ/βil.
Rough binomial parameter θil = θi is fixed and equals the number of categories minus one.

The rigid restraints result in poor component parameter estimation if modes of several component
densities coincide. The loose restraints introduced in Nagode and Fajdiga (2011a) improve component
parameter estimation and offer further evolution opportunities. The rigid restraints become loose if
fi|̂i.lmax in equations (20) to (26) is replaced by fi|̂i.lm, where

0 ≤ fi|̂i.lm ≤ fi|̂i.lmax. (27)

Instead of minimizing the maximum relative positive deviation (Nagode and Fajdiga, 2011a) the
simpler root finding of the total of relative deviations is used here to attain the optimal fi|̂i.lm. For
the histogram approach total of relative deviations

Di|̂i.lm = 1−
v
∑

j=1, ȳ
îj
=ȳ

îm

f(yi = ȳij |θil)hij (28)

equals the fraction of observations falling into the regions on yi axis with zero empirical probability. If
Di|̂i.lm is close to zero, e.g., 0.002, then observations not contributing significantly to the lth component
should not affect the loose component parameter estimation. This yields

v
∑

j=1, ȳ
îj
=ȳ

îm

f(ȳij |θil)hij = 0.998 (29)
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Equation (29) can be solved for optimal fi|̂i.lm by the bisection root finding method. If the root does
not exist, then fi|̂i.lm = fi|̂i.lmax. For the Parzen window and k-nearest neighbour approach the root
of

n
∑

j=1, |y
îj
−y

îm
|≤h

îm
/2

f(yij |θil)hij/kj = 0.998 (30)

is searched for optimal fi|̂i.lm. Dirac parameter θil of (26) does not require fi|̂i.lm optimization.

2.5 Enhanced component parameter estimation

Maximum likelihood is employed to get enhanced component parameters. For the histogram approach
enhanced normal component parameters are given by

µil =
1

nl

v
∑

j=1

klj ŷij and σ2il =
1

nl

v
∑

j=1

klj ŷ
2
ij − µ2il. (31)

Likewise, enhanced lognormal

µil =
1

nl

v
∑

j=1

klj log(ŷij) and σ
2
il =

1

nl

v
∑

j=1

klj log(ŷij)
2 − µ2il, (32)

Weibull

θβil

il =
1

nl

v
∑

j=1

klj ŷ
βil

ij and f(βil) =
1

βil
+

1

nl

v
∑

j=1

klj log(ŷij)−
∑v

j=1 klj ŷ
βil

ij log(ŷij)
∑v

j=1 klj ŷ
βil

ij

= 0, (33)

gamma

θil =
1

βilnl

v
∑

j=1

klj ŷij and f(βil) =
1

nl

v
∑

j=1

klj log(ŷij)− log(θil)−
Γ′[βil]

Γ[βil]
= 0, (34)

binomial

pil =
1

nlθil

v
∑

j=1

klj ŷij , (35)

Poisson

θil =
1

nl

v
∑

j=1

klj ŷij (36)

and Dirac component parameters
θil = ŷim (37)

are estimated. Index v is replaced by n for the Parzen window or k-nearest neighbour approach.

2.6 First and second moment calculation

The first and second moment of the normal

mil = µil and Vil = σ2il + µ2il, (38)

lognormal

mil = eµil+
σ2
il
2 and Vil = e2µil+2σ2

il , (39)

Weibull

mil = θilΓ

[

1 +
1

βil

]

and Vil = θ2ilΓ

[

1 +
2

βil

]

, (40)

gamma
mil = θilβil and Vil = θ2ilβil(1 + βil) (41)
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and the first moment of binomial
mil = θilpil, (42)

Poisson
mil = θil (43)

and Dirac
mil = θil (44)

distributions are calculated to enable the classification of the remaining observations.

2.7 Bayes classification of the remaining observations

With the increase of the number of components, the number nl of the remaining observations decreases.
When the component weight attains the minimum weight

wl ≤ wmin = 2Dmin(l − 1) (45)

it is assumed that remaining observations klj belong to the existing classes and do not form the new
ones. The classification of the remaining observations is accomplished by the Bayes decision rule
(Duda and Hart, 1973)

l = argmax
l

wlf(yj |θl)

wl = wl +
klj
n
, mil = mil +

klj(yij −mil)

nwl
and Vil = Vil +

klj(y
2
ij − Vil)

nwl
, (46)

where klj is added to the lth class and the component weight and both moments are recalculated
(Bishop, 1995). Once all v bin means or all n observations are processed, the predictive mixture
parameters are gained by inverting (38) to (44).

2.8 Algorithm flow

The REBMIX is listed in Figure 1. It requires fifteen arguments, whereby depending on the parametric
families five or six of them are mandatory, the rest is optional. It consists of three main loops: the
inner 9 → 37, the middle 6 → 41 and the outer loop 4 → 47. The numbers are line indices. In
line 2 the observations are preprocessed as described in Section Preprocessing of observations. In line
3, counter I1, constant Dmin and frequencies klj are initiated. Next, the outer loop begins. Line 5
presumes that the mixture consists of one component, then the number r of observations to separate
is set to n and nl to n. If ratio nl/n is greater than the minimum weight introduced in Section Bayes
classification of the remaining observations, the middle loop enters. Otherwise, the finite mixture
parameter estimation for v ∈ K is completed.

In lines 7 and 8, global mode argumentm is detected as explained in Section Global mode detection,
counter I2 is initiated, component weight wl is calculated and frequencies rj are all set to zero. If
I2 ≤ Imax, the inner loop enters, otherwise in line 38 the first and the second moments are calculated
(see Section First and second moment calculation). Next, number of components c is set to l, number
of observations r is decreased by nl, l is incremented, number r of the remaining observations joins
nl, residue frequencies rj are all moved to klj , and the Stop criterion is determined.

The inner loop is divided into three sections. In line 10 the component parameters are estimated
roughly (see Section Rough component parameter estimation). In the second section 11 → 23, total
of positive relative deviations Dl and maximum relative deviation εlmax are calculated. The number
of iterations depends on acceleration rate ar. In the third section 24 → 35, the maximum and
negative deviations are transferred between frequencies klj and residue rj . This way deviations elj are
reduced gradually. The negative value of elj can never be higher than residue value rj . If this is not
true, deviation elj is corrected as listed in line 19. When the condition in line 24 is not fulfilled, the
enhanced component parameter estimation is carried out (see Section Enhanced component parameter
estimation) and the inner loop ends.
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Require: Dataset1, Preprocessing1, D, cmax, Criterion, Variables1, pdf1, Theta11, Theta2, K1, y0, ymin, ymax, ar and
Restraints.

Ensure: Dataset contains datasets, Preprocessing is one of "histogram", "Parzen window" or "k-nearest neighbour", 0 ≤
D ≤ 1, cmax ∈ N, Criterion is one of "AIC", "AIC3", "AIC4", "AICc", "BIC", "CAIC", "HQC", "MDL2", "MDL5", "AWE", "CLC",
"ICL", "PC", "ICL-BIC", "D" or "SSE", Variables are "continuous" or "discrete", pdf is one of "normal", "lognormal",
"Weibull", "gamma", "binomial", "Poisson" or "Dirac", Theta1 may contain initial binomial parameters, Theta2 is inactive,
K ⊂ N, y0 may contain origins, ymin and ymax may contain minimum and maximum observations, 0 < ar ≤ 1 and Restraints

are "loose" or "rigid".
1: for all v such that v ∈ K do

2: Preprocessing of observations
3: I1 ← 1, Dmin ← 0.25, klj ← kj for j = 1 to v
4: repeat

5: l← 1, r ← n, nl ← n
6: while nl/n > 2Dmin(l − 1) do

7: Global mode detection
8: I2 ← 1, wl ← nl/n, rj ← 0 for j = 1 to v
9: while I2 ≤ Imax do

10: Rough component parameter estimation
11: elp ← 0, eln ← 0, elmax ← 0
12: for j = 1 to v do

13: elj ← 0, εlj ← 0
14: if klj > 0 or rj > 0 then

15: elj ← klj − nlf(ȳj |θl)Vj

16: if elj > 0 then

17: εlj ← elj/klj , εlmax ← max{εlmax, εlj}, elp ← elp + elj
18: else

19: elj ← max{elj ,−rj}, eln ← eln − elj
20: end if

21: end if

22: end for

23: Dl ← elp/nl, εlmax ← εlmax(1− ar)
24: if Dl > Dmin/wl then

25: for all j such that 1 ≤ j ≤ v and εlj > εlmax do

26: klj ← klj − elj , rj ← rj + elj , nl ← nl − elj
27: end for

28: elp ← elp/Dl − nl, f ← elp/eln if eln > elp otherwise f ← 1
29: for all j such that 1 ≤ j ≤ v and elj < 0 do

30: elj ← felj , klj ← klj − elj , rj ← rj + elj , nl ← nl − elj
31: end for

32: wl ← nl/n
33: else

34: Enhanced component parameter estimation, break
35: end if

36: I2 ← I2 + 1
37: end while

38: First and second moment calculation
39: c← l, r ← r − nl, l← l + 1, nl ← r, klj ← rj for j = 1 to v
40: Stop← c ≥ v or c ≥ cmax, break if Stop = true

41: end while

42: Bayes classification of the remaining observations, log likelihood logL, information criterion IC and total of positive
relative deviations D calculation

43: if IC < ICopt then

44: logL→ logLopt, IC→ ICopt, c→ copt, w → wopt, Θ→ Θopt

45: end if

46: Stop← Stop or D ≤ D or I1 ≥ Imax, Dmin ← cDmin/(c+ 1), I1 ← I1 + 1
47: until Stop = true

48: end for

Figure 1: REBMIX algorithm.
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The enhanced component parameter estimation may fail. In this instance, the component param-
eters are reset to the state just before the failure occurred. In line 42 the remaining observations
are classified by the Bayes decision rule as depicted in Section Bayes classification of the remaining
observations. Further on, information criterion, e.g., Akaike (1974)

IC = −2 logL(c,w,Θ) + 2M (47)

is calculated, whereas the number of free parameters for the normal, lognormal, Weibull and gamma
mixtures can be written as

M = 2cd+ c− 1. (48)

The binomial, Poisson and Dirac mixtures require M = cd+ c− 1. The log likelihood function for the
binned observations is given by

logL(c,w,Θ) =

v
∑

j=1

kj log f(ȳj |c,w,Θ). (49)

Otherwise,

logL(c,w,Θ) =
n
∑

j=1

log f(yj |c,w,Θ). (50)

Finally, total of positive relative deviations for the histogram

D =
v
∑

j=1

〈

kj
n

− f(ȳj |c,w,Θ)Vj

〉

, (51)

Parzen window or k-nearest neighbour

D =

n
∑

j=1

〈

1

n
− f(yj |c,w,Θ)Vj

kj

〉

(52)

is calculated, where 〈x〉 = x if x > 0 and 〈x〉 = 0 if x ≤ 0. This way global optimum ICopt

corresponding to the optimal number copt of components, weights wopt and parameters Θopt can
always be found. In line 46, the Stop criterion is redetermined and Dmin is decreased in such a way
that total of positive relative deviations

cDold
min = (c+ 1)Dnew

min

for c and c + 1 components is preserved. When line 47 is fulfilled, the procedure stops. If index v in
Figure 1 is replaced by n and line 15 is replaced by (10) the algorithm, presented for the histogram
approach, can also be used with the Parzen window and k-nearest neighbour approach.

3 Examples

To illustrate the use of the REBMIX algorithm, univariate and multivariate datasets are considered.
The rebmix is loaded and the prompt before starting new page is set to TRUE.

R> library("rebmix")

R> devAskNewPage(ask = TRUE)

3.1 Gamma datasets

Three gamma mixtures are considered (Wiper et al., 2001). The first has four well-separated compo-
nents with means 2, 4, 6 and 8, respectively
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θ1 = 1/100 β1 = 200 n1 = 100
θ2 = 1/100 β2 = 400 n2 = 100
θ3 = 1/100 β3 = 600 n3 = 100
θ4 = 1/100 β4 = 800 n4 = 100.

The second has equal means but different variances and weights

θ1 = 1/27 β1 = 9 n1 = 40
θ2 = 1/270 β2 = 90 n2 = 360.

The third is a mixture of a rather diffuse component with mean 6 and two lower weighted components
with smaller variances and means of 2 and 10, respectively

θ1 = 1/20 β1 = 40 n1 = 80
θ2 = 1 β2 = 6 n2 = 240
θ3 = 1/20 β3 = 200 n3 = 80.

The gamma mixtures are generated by calling the RNGMIX function. It demands character vector
Dataset containing list names of data frames that datasets are written in, random seed rseed, vector
n containing number of observations in classes nl and a matrix containing c parametric family types
pdfi. One of "normal", "lognormal", "Weibull", "gamma", "binomial", "Poisson" or "Dirac".
Component parameters theta1.i follow the parametric family types. One of µil for normal and
lognormal distributions and θil for Weibull, gamma, binomial, Poisson and Dirac distributions. Com-
ponent parameters theta2.i follow theta1.i. One of σil for normal and lognormal distributions, βil
for Weibull and gamma distributions and pil for binomial distribution.

R> n <- c(100, 100, 100, 100)

R> Theta <- rbind(pdf = "gamma", theta1 = c(1/100, 1/100, 1/100,

+ 1/100), theta2 = c(200, 400, 600, 800))

R> gamma1 <- RNGMIX(Dataset = "gamma1", n = n, Theta = Theta)

R> n <- c(40, 360)

R> Theta <- rbind(pdf = "gamma", theta1 = c(1/27, 1/270), theta2 = c(9,

+ 90))

R> gamma2 <- RNGMIX(Dataset = "gamma2", n = n, Theta = Theta)

R> n <- c(80, 240, 80)

R> Theta <- rbind(pdf = "gamma", theta1 = c(1/20, 1, 1/20), theta2 = c(40,

+ 6, 200))

R> gamma3 <- RNGMIX(Dataset = "gamma3 ", n = n, Theta = Theta)

The gamma1$Dataset, gamma2$Dataset and gamma3$Dataset hold a list of data frames of size n× d.
See help("RNGMIX") in rebmix for details. The preprocessing is set to histogram, maximum number
of components to 8 and information criterion to AIC or BIC. The number of classes ranges from 30
to 80 and function REBMIX is called for the gamma parametric family type.

R> gamma1est <- REBMIX(Dataset = gamma1$Dataset, Preprocessing = "histogram",

+ cmax = 8, Criterion = c("AIC", "BIC"), Variables = "continuous",

+ pdf = "gamma", K = 30:80)

R> gamma2est <- REBMIX(Dataset = gamma2$Dataset, Preprocessing = "histogram",

+ cmax = 8, Criterion = "BIC", Variables = "continuous", pdf = "gamma",

+ K = 30:80)

R> gamma3est <- REBMIX(Dataset = gamma3$Dataset, Preprocessing = "histogram",

+ cmax = 8, Criterion = "BIC", Variables = "continuous", pdf = "gamma",

+ K = 30:80)

See help("REBMIX") in rebmix for details about specifying arguments for the function returning an
object of class REBMIX. List of data frames w contains component weights wl summing to 1, Theta stands
for a list of data frames containing parametric family types pdfi. One of "normal", "lognormal",
"Weibull", "gamma", "binomial", "Poisson" or "Dirac". Component parameters theta1.i follow
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the parametric family types. One of µil for normal and lognormal distributions and θil for Weibull,
gamma, binomial, Poisson and Dirac distributions. Component parameters theta2.i follow theta1.i.
One of σil for normal and lognormal distributions, βil for Weibull and gamma distributions and pil for
binomial distribution. Character vector Variables contains types of variables. One of "continuous"
or "discrete".

In the summary data frame additional information about dataset, preprocessing, D, cmax, infor-
mation criterion type, ar, restraints type, optimal c, optimal k, ȳi0, optimal hi, information criterion
IC and log likelihood logL is stored. Position pos in the summary data frame at which log likelihood
logL attains its maximum is available, too. See help("summary.REBMIX") for details.

R> summary(gamma1est)

Dataset Preprocessing Criterion c v/k IC logL M

1 gamma1 histogram AIC 5 59 1004 -488 14

2 gamma1 histogram BIC 4 79 1054 -494 11

Maximum logL = -488 at pos = 1.

The plot method delivers fitted finite mixture with the legend in Figure 2. The corresponding pre-

R> plot(gamma2est, pos = 1, what = c("den", "dis"), ncol = 2, npts = 1000)
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Figure 2: Gamma 2 dataset. Empirical density (circles) and predictive gamma mixture density in
black solid line.

dictive gamma mixture parameters are given by the coef method.

R> coef(gamma2est)

comp1 comp2

w 0.824 0.176

pdf gamma gamma

theta1 0.00472 0.0166

theta2 71 20.2

For the details about specifying arguments for the plot and coef methods see help("plot.REBMIX")
and help("coef.REBMIX"), respectively.

By calling the boot.REBMIX method B bootstrap datasets of length n are generated for the x ob-
ject of class REBMIX at position pos, where bootstrap Bootstrap can be one of default "parametric"
or "nonparametric". Arguments replace and prob affect the nonparametric bootstrap only, see
help("sample") and McLachlan and Peel (1997) for details about replacement and weighted boot-
strap.
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R> gamma3boot <- boot.REBMIX(x = gamma3est, pos = 1, Bootstrap = "p",

+ B = 10, n = NULL, replace = TRUE, prob = NULL)

R> gamma3boot

$c

[1] 3 3 3 3 3 3 3 4 3 4

$c.mode

[1] 3

$c.prob

[1] 0.8

$c.se

[1] 0.422

$theta1.se

[1] 0.0359 0.2218 0.1666

$theta2.se

[1] 119 143 172

$w.se

[1] 0.0223 0.0904 0.0947

$c.cv

[1] 0.132

$theta1.cv

[1] 0.369 0.942 0.715

$theta2.cv

[1] 1.87 1.15 1.31

$w.cv

[1] 0.0769 0.2476 0.2745

attr(,"class")

[1] "boot.REBMIX"

The gamma3boot object of class boot.REBMIX holds a data frame c containing numbers c of components
for B bootstrap datasets, standard error c.se, coefficient of variation c.cv, mode c.mode and mode
probability c.prob of the numbers of components. Component weights w, component parameters
theta1.i and theta2.i, standard errors w.se, theta1.i.se and theta2.i.se and coefficients of
variation w.cv, theta1.i.cv and theta2.i.cv for those bootstrap datasets for which c equals mode
cm are returned, too. See help("boot.REBMIX") in rebmix for details.

R> summary(gamma3boot)

comp1 comp2 comp3

w.cv 0.0769 0.248 0.274

theta1.cv 0.369 0.942 0.715

theta2.cv 1.87 1.15 1.31

Mode probability = 0.8 at c = 3 components.
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3.2 Poisson dataset

Dataset consists of n = 600 two dimensional observations obtained by generating data points separately
from each of three Poisson distributions. The component dataset sizes and parameters, which are those
studied in Ma et al. (2009), are displayed below

θ1 = (3, 2)⊤ n1 = 200
θ2 = (9, 10)⊤ n2 = 200
θ3 = (15, 16)⊤ n3 = 200

For the dataset Ma et al. (2009) conduct 100 experiments by selecting different initial values of the
mixing proportions. In all the cases, the adaptive gradient BYY learning algorithm leads to the
correct model selection, i.e., finally allocating the correct number of Poissons for the dataset. In the
meantime, it also results in an estimate for each parameter in the original or true Poisson mixture
which generated the dataset. As the dataset of Ma et al. (2009) can not exactly be reproduced, 100
datasets are generated with random seeds rseed ranging from −1 to −100.

R> n <- c(200, 200, 200)

R> Theta <- rbind(rep("Poisson", 3), c(3, 9, 15), rep("Poisson",

+ 3), c(2, 10, 16))

R> poisson <- RNGMIX(Dataset = paste("Poisson_", 1:100, sep = ""),

+ n = n, Theta = Theta)

In total, 100 finite mixture estimations are performed by calling the REBMIX function.

R> poissonest <- REBMIX(Dataset = poisson$Dataset, Preprocessing = "histogram",

+ cmax = 6, Criterion = "MDL5", Variables = rep("discrete",

+ 2), pdf = rep("Poisson", 2), K = 1)

R> c <- as.numeric(poissonest$summary$c)

R> IC <- as.numeric(poissonest$summary$IC)

The results are as follows:

R> summary(c)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.00 2.00 3.00 2.89 4.00 4.00

R> summary(IC, digits = 5)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6923 7098 7140 7148 7199 7322

The REBMIX function predicts 2.89 components on average, where probability of identifying exactly
c = 3 components equals 0.31. To plot the mixture in Figure 3 the plot method is called.

4 Summary

The article presents the REBMIX algorithm and the rebmix package. Four datasets are studied on the
x64 architecture. By applying the tikzDevice package (Sharpsteen and Bracken, 2013), LATEX plots
with legends can be obtained. The REBMIX algorithm can be used to assess the initial set of the un-
known parameters and number of components for, e.g., the EM algorithm or as a standalone procedure
that is a good compromise between the nonparametric and parametric methods to the finite mixture
estimation. Its major advantages are robustness and time efficiency especially with the histogram
preprocessing for all datasets sizes. The Parzen window and k-nearest neighbour preprocessing are
more suitable for smaller datasets. Its advantages are more stressed if mixtures are composed of larger
number of components. The rebmix package can be broadened to other parametric family types. The
predict method that enables class membership prediction is available in the rebmix package, too.
See help("predict.list") for details. The REBMIX can thus also be used for pattern recognition.
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R> plot(poissonest, pos = 58, what = c("dens", "marg", "IC", "D",

+ "logL"), nrow = 2, ncol = 3, npts = 1000)
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Figure 3: Poisson dataset. Empirical densities (coloured large circles), predictive multivariate Poisson-
Poisson mixture density (coloured small circles), empirical densities (circles), predictive univariate
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