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1 Introduction

Following are two examples of using randomLCA for latent class analysis. Some
aspects will certainly change but most code should still work. Two things that
will change are the use of accessor functions and better labelling of results.

2 Latent Class
2.1 Model

The basis of latent class analysis is that each subject belongs to one of a finite
number of classes, with each class described by a set of parameters that define
the distribution of outcomes or manifest variables for a subject, a form of finite
mixture model. For binary outcomes, the model for each class is

k
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where
yij = Jjth binary outcome for subject 4
mej = probability of jth outcome equal to 1 for subject in class ¢
k = number of outcomes.

An additional parameter that is required to be estimated is 7)., the proba-
bility of a subjects in class c.
A requirement for the estimates of the probabilities 7; is that they be re-
stricted to the interval zero to one, and 7. sum to one. This can be obtained
. . . . acj o Oc .
using the following relations m.; = ﬁcﬁ and n, = ﬁ Hence we estimate

the m.; and 0.

2.2 Example 1

This example demonstrates the fitting of data from Rindskopf and Rindskopf
(1986), where latent class analysis is used to determine diagnostic classifications
based on medical tests. Although this example is for medical data, the model is
simply standard latent class so the methods can be applied to data from other
areas.

A series of latent class models for 1 and 2 classes (any models with additional
classes are not identifiable) can be fitted using the commands

> data(myocardial)

> myocardial.lcal <- randomLCA(myocardiall,1:4],
+ freq=myocardial$freq,nclass=1)

> myocardial.lca2 <- randomLCA(myocardiall,1:4],
+ freq=myocardial$freq,nclass=2)



The BIC values may be extracted from the fitted objects and are shown in
Table 1.

> bic.data <- data.frame(classes=1:2,bic=c(BIC(myocardial.lcal),BIC(myocardial.lca2)))

classes bic
1 5247
2 402.3

Table 1: BIC by class.

Using BIC as a selection method, this selects the 2 class model, indicating
a nice beakdown into diseased and nondiseased, which it is assumed represent
those with and without myocardial infarction. The true nature of classes is
always debateable.

Summary may be used to display the fitted results

> summary(myocardial.lca2)

Classes AIC BIC logLik penloglik
2 379.3958 402.2855 -180.6979 -180.7002
Class probabilities
Class 1 Class 2
0.4578  0.5422
Outcome probabilities
Q.wave History LDH CPK
Class 1 0.7668 0.7914 0.8279 1.0000
Class 2 0.0000 0.1951 0.0269 0.1955

Individual results may be obtained from summary, for example the outcome
probabilities shown in Table 2.

> outcomep.data <- summary (myocardial.lca2)$outcomep

Q.wave History LDH CPK
Class 1 0.767 0.791 0.828 1.000
Class 2 0.000 0.195 0.027 0.196

Table 2: Outcome Probabilities.

This gives some interesting information. In Class 2, those without myocar-
dial infarction, will have abscence of Q.wave but in those with myocardial in-
farction it will only be present in 76.7%. The class probabilities can be obtained
as myocardial.lca2$classp of 0.46 and 0.54 for Class 1 and 2 respectively.

One aspect of latent class is that no subject is uniquely allocated to a given
class, although in some cases a subject may have an extremely high probability.

The posterior class probs can be obtained as



> classprobs <- post.class.probs(myocardial.lca2)

with results shown in Table 3. This shows subjects with 3 or 4 positive tests
to be strongly classified as having myocardial infarction, and even some with 2,
depending on which to to be well classified. Having only one positive test makes
it unlikely that it is myocardial infarction.

Q.wave History LDH CPK Freq Class1 Class 2

1 1 1 1 24 1.000 0.000
0 1 1 1 5 0.992 0.008
1 0 1 1 4 1.000 0.000
0 0 1 1 3 0.889 0.111
1 1 0 1 3 1.000 0.000
0 1 0 1 5 0.419 0.581
1 0 0 1 2 1.000 0.000
0 0 0 1 7 0.044 0.956
0 0 1 0 1 0.000 1.000
0 1 0 0 7 0.000 1.000
0 0 0 0 33 0.000 1.000

Table 3: Class Probabilities.

Outcome probabilities are shown in Figure 1.

2.3 Example 2

This example shows the fitting of the dentistry data from Qu et al. (1996).
The data consists of the results of five dentists evaluating x-rays for presence
or absence of caries. As there is no gold standard, the latent class method is
to assume two classes, diseased and non-diseased which are identified from the
data.

A series of latent class models for 1 to 4 classes can be fitted using the
commands

> data(dentistry)

> dentistry.lcal <- randomLCA(dentistry[,1:5],

+ freq=dentistry$freq,nclass=1)

> dentistry.lca2 <- randomLCA(dentistry[,1:5],

+ freq=dentistry$freq,nclass=2)

> dentistry.lca3 <- randomLCA(dentistry[,1:5],

+ freq=dentistry$freq,nclass=3,quadpoints=31)
> dentistry.lca4 <- randomLCA(dentistry[,1:5],

+ freq=dentistry$freq,nclass=4,quadpoints=41)

The BIC values may be extracted from the fitted objects and are shown
in Table 4. This indicates the presence of 3 classes. A possible interpretation
is that there is a class of subjects with moderate disease, or the alternative



> trellis.par.set(col.whitebg())

> print(plot(myocardial.lca2,type="1",xlab="Test",

+  ylab="Outcome Probability",scales=list(x=list(at=1:4,
+  labels=names (myocardial) [1:4]))))
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Figure 1: Outcome probabilities for 2 Class Latent Class model.



> trellis.par.set(col.whitebg())
> print(plot(dentistry.lca3,type="1",xlab="Dentist",
+ ylab="0Outcome Probability"))
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Figure 2: Outcome probabilities for 3 Class Latent Class model.

of heterogeneous disease which will be covered in the next section. Outcome
probabilities are shown in Figure 2 and for the 2 class model in Figure 3.

> bic.data <- data.frame(classes=1:4,bic=c(BIC(dentistry.lcal),

+ BIC(dentistry.lca2),BIC(dentistry.lca3),BIC(dentistry.lca4)))
classes bic
1 17531.1
2 15021.6
3 14962.9
4 15000.0

Table 4: BIC by class.

The 2 Class results can be interpreted as a diagnostic test. Important results
for diagnostic testing are the sensitivity and specificity for each test. The sensi-
tivity is the probability of the test correctly identifying the subject as diseased
given that the subject is diseased. In classical diagnostic testing the "true” sta-
tus of a subject is known through use of a ”"gold standard” which is assumed to,
sometiems optimistically, correctly classify the subject. The latent class method
constructs a hypothetical standard, which has the disadvantage that this is not



> trellis.par.set(col.whitebg())
> print(plot(dentistry.lca2,type="1",xlab="Dentist",
+ ylab="0Outcome Probability"))
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Figure 3: Outcome probabilities for 2 Class Latent Class model.

known with certainty but it allows correctly for any uncertainty in the under-
lying disease state. The other measure is specificity which is the probability of
correctly identifying a subject as not diseased. The sensitivities are then simply
the outcome probabilities for the diseased class, Class 2 and the specificity one
minus the outcome probabilities for the non-diseased class, Class 1. These can
be obtained with 95% confidence intervals using the outcome.probs function.

> outcome.probs(dentistry.lca2)

Class 1

Outcome p 2.5 % 97.5 %
V1 0.01061849 0.006938943 0.01621734
V2 0.10198791 0.089733840 0.11570269
V3 0.01359123 0.008593070 0.02143371
V4 0.03156301 0.024211341 0.04105307
V5 0.30527875 0.287119234 0.32406470
Class 2

Outcome p 2.5 % 97.5 %
V1 0.4033508 0.3616418 0.4465055
V2 0.7128814 0.6691330 0.7529807
V3 0.5981284 0.5494271 0.6449673
V4 0.4888448 0.4468921 0.5309552
V5 0.9154706 0.8856536 0.9380562



The sensitivity and specificity are shown in Table 5. A reasonable conclusion
is that the dentists are fairly good at identifying teeth that are not diseased
(except for dentist 5), but not too good at identifying teeth that are diseased.

> probs <- outcome.probs(dentistry.lca2)

> # this swaps around the probabilities based on the knowledge that

> # the outcome probabilities are higher in the diseased class

> order <- ifelse(probs([[1]][1,1]<probs[[2]][1,1],2,1)

> spec <- NULL

> sens <- NULL

> for (i in 1:5) {

+ sens <- c(sens,sprintf("}3.2f (%3.2f,}3.2f)",probs[[order]]$0utcomel[i],

+ probs[[order]]$"2.5 }"[i],probs[[order]]$"97.5 %"[i]))

+ spec <- c(spec,sprintf("}3.2f (73.2f,7%3.2f)",1-probs[[3-order]]$0utcome[i],
+ 1-probs[[3-order]]1$"97.5 }"[i],1-probs[[3-order]]1$"2.5 J"[i]))

+ }

> stable <- data.frame(sens,spec)
> names(stable) <- c("Sensitivity","Specificity")
> row.names(stable) <- paste("V",1:5,sep="")

v

print (xtable(stable, digits = ¢(0,2,2),
caption="Sensitivity and Specificity",
+ label="tab:outcomeconfint"),include.rownames=TRUE)

+

Sensitivity

Specificity

V1
V2
V3
V4
V5

0.40 (0.36,0.45)
0.71 (0.67,0.75)
0.60 (0.55,0.64)
0.49 (0.45,0.53)
0.92 (0.89,0.94)

0.99 (0.98,0.99)
0.90 (0.88,0.91)
0.99 (0.98,0.99)
0.97 (0.96,0.98)
0.69 (0.68,0.71)

Table 5: Sensitivity and Specificity

The confidence intervals for the outcome probabilities can be calculated using
the parametric bootstrap. These are shown in Table 6 and are in agreement with
those from the standard errors.

> probs <- outcome.probs(dentistry.lca2,boot=TRUE)

> # this swaps around the probabilities based on the knowledge that outcome probabilities a1
> order <- ifelse(probs[[1]]$0utcome[1]>probs[[2]]$0utcome[1],1,2)

> spec <- NULL

> sens <- NULL

> for (i in 1:5) {

+ sens <- c(sens,sprintf("}3.2f (7,3.2f,73.2f)",probs[[order]]$0utcome[i],

+ probs[[order]]1$"2.5 J"[i],probs[[order]1]$"97.5 7"[i]))

+ spec <- c(spec,sprintf("}3.2f (%3.2f,}3.2f)",1-probs[[3-order]]$0utcome[i],



1-probs[[3-order]]1$"97.5 }"[i],1-probs[[3-order]]1$"2.5 7"[i]))
}
stable <- data.frame (sens, spec)

names (stable) <- c("Sensitivity","Specificity")
row.names (stable) <- paste("V",1:5,sep="")

vV V.V + +

v

print (xtable(stable, digits = ¢(0,2,2),
caption="Sensitivity and Specificity",
label="tab:outcomeconfintboot"),include.rownames=TRUE)

+ +

Sensitivity Specificity
V1 0.40 (0.37,0.44) 0.99 (0.98,0.99)
V2 0.71 (0.67,0.75) 0.90 (0.88,0.91)
V3 0.60 (0.55,0.64) 0.99 (0.98,0.99)
V4 0.49 (0.45,0.53) 0.97 (0.96,0.97)
V5 0.92 (0.88,0.94) 0.69 (0.68,0.71)

Table 6: Sensitivity and Specificity

The true and false positive rates can be plotted for each dentist, and are
shown in Figure 4. This gives a better explanation of what is happening. It
appears that the difference between dentists is mainly related to the threshold
for what they classify as diseased. Dentist 5 is more likely to correctly identify
teeth as diseased but at the expense of being more likely to identify non-diseased
teeth as diseased.

> itpr <- ifelse(dentistry.lca2$classp[2]>dentistry.lca2$classp[1],1,2)
> ifpr <- 3-itpr

> probs <- outcome.probs(dentistry.lca2)

> probs <- data.frame (tpr=probs[[itpr]][,1],fpr=probs[[ifprl][,1])

3 Latent Class with Random Effects
3.1 Model

The method used in Qu et al. (1996) is to introduce a random effect to model
heterogeneity within classes. In their model the probabilities are transformed
to the probit scale and then a normal random effect introduced. In practice it
usually makes little difference if a probit or logit transform is used.

The probability for each observation remains the same, except that it is now
conditional on both class ¢ and random effect .

k
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> trellis.par.set(col.whitebg())
> print(plot (tpr~fpr,type="p",

+
+

NULL
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xlab="False Positive Rate\n(1-Specificity)",

ylab="True Positive Rate (Sensitivity)",data=probs))
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Figure 4: True and False Positive Rates by Dentist.
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Where

ellcj +b] u

T = Tyt N0

b; scales the random effect - models may have either a common or independent
scale for each outcome, these are the lambdacoef. They may also be chosen
to be different for each class, the default is for them to be the same for each class.

One way of visualising the model is that each class is now an Item Response
Theory (IRT) model when the scaling is independent. When the scaling is
common, the loadings are the same for each outcome and each class is then a
Rasch model.

3.2 Example 2 Continued

We now continue the analysis of the dentistry data, allowing for random effects.
This has a simple interpretation. For each subject there will be a different level
of disease, and as a result a dentist will be more or less likely to classify the
subject as having disease.

> dentistry.lca2random <- randomLCA(dentistry[,1:5],freq=dentistry$freq,
+ nclass=2,random=TRUE, quadpoints=41, probit=TRUE)

The BIC is reduced to 14944.7 showing an improvement over any of the
latent class models. An alternative model is to allow the variance of the random
effect to vary by outcome (dentist). This can be performed using the constload
parameter. The default is true, so setting this to false allows the loading to vary
for each outcome.

> dentistry.lca2randoml <- randomLCA(dentistry[,1:5],freq=dentistry$freq,
+ nclass=2,random=TRUE, probit=TRUE, quadpoints=41, constload=FALSE)

This increases the BIC to 14949.4, and is the 2LCR model obtained by Qu
et al. (1996). It appears that the simpler model is more appropriate.

A further extension is to allow the loading or random effect variance to vary
by class.

> dentistry.lca2random2 <- randomLCA(dentistry[,1:5],freq=dentistry$freq,
+ nclass=2,random=TRUE, probit=TRUE, constload=FALSE, byclass=TRUE,
+ quadpoints=41)

The BIC increases to 14987.6. It is not surprising that this model isn’t an
improvement, there are now 21 parameters fitted to 32 observations. This also
may give problems with the fitting algorithm so the number of quadrature points
is increased to 41.
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> trellis.par.set(col.whitebg())
> print(plot(dentistry.lca2randoml,graphtype="marginal",type="1",xlab="Dentist",
+ ylab="Marginal Outcome Probability"))

NULL

0.8 - +

06 | B

Marginal Outcome Probability

0.2 -

0.0 1 -
T T T T T
1 2 3 4 5

Dentist

Figure 5: Marginal Outcome Probabilities for 2 Class Latent Class with Random
Effect (2LCR) model.
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The marginal outcome probabilities, obtained by integrating over the ran-
dom effect can be plotted, as in Figure 5.

Outcome probabilities with confidence intervals may be calculated for models
with random effects only using the parametric bootstrap. The sensitivity and
specificity may be obtained from these and are shown in Table 7. Differences
from the Qu et al paper result from them using a model with an individual
loading for each dentist when calculating their Table 6.

> probs <-outcome.probs(dentistry.lca2random,boot=TRUE)

> # this swaps around the probabilities based on the knowledge that outcome probabilities a1
> order <- ifelse(probs[[1]]$0utcome[1]>probs[[2]]$0utcome[1],1,2)

> spec <- NULL

> sens <- NULL

> for (i in 1:5) {

+ sens <- c(sens,sprintf("}3.2f (73.2f,73.2f)",probs[[order]]$0utcome[i],

+ probs[[order]]$"2.5 J"[i],probs[[order]]$"97.5 7"[i]))

+ spec <- c(spec,sprintf("}3.2f (%43.2f,}3.2f)",1-probs[[3-order]]$0utcome[i],
+ 1-probs[[3-order]]1$"97.5 }"[i],1-probs[[3-order]]$"2.5 7"[i]))

+}

> stable <- data.frame(sens,spec)

> names (stable) <- c("Sensitivity","Specificity")

> row.names (stable) <- paste("V",1:5,sep="")

> print(xtable(stable, digits = c(0,2,2),

+ caption="Sensitivity and Specificity",

+ label="tab:outcomeconfintboot2"),include.rownames=TRUE)

Sensitivity Specificity
V1 0.40 (0.33,0.47) 0.98 (0.96,0.99)
V2 0.65 (0.56,0.72) 0.87 (0.85,0.89)
V3 0.62 (0.32,0.84) 0.98 (0.80,1.00)
V4 0.42 (0.35,0.49) 0.94 (0.93,0.96)
V5 0.86 (0.78,0.91) 0.67 (0.64,0.70)

Table 7: Sensitivity and Specificity

The observed and fitted values can be obtained and are shown in Table 8.
Differences from the Qu et al paper again result from their different model.

> obs.data <- data.frame(dentistry.lca2randoml$patterns,dentistry.lca2randoml$observed,
+ dentistry.lca2$fitted,dentistry.lca2random1$fitted)
> names (obs.data) <- c("V1i","v2","v3","vV4","V5","0Obs", "Exp 2LC","Exp 2LCR")
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Exp 2LC Exp 2LCR

R R R R R R R R RRRRRFRRR,POO0OO000O0O0OOOOOOOOO

V2 V3 V4 V5 Obs
0 0 0 0 1880
0 0 0 1 789
0 0 1 0 43
0 0 1 1 75
0 1 0 0 23
0 1 0 1 63
0 1 1 0 8
0 1 1 1 22
1 0 0 0 188
1 0 0 1 191
1 0 1 0 17
1 0 1 1 67
1 1 0 0 15
1 1 0 1 85
1 1 1 0 8
1 1 1 1 56
0 0 0 0 22
0 0 0 1 26
0 0 1 0 6
0 0 1 1 14
0 1 0 0 1
0 1 0 1 20
0 1 1 0 2
0 1 1 1 17
1 0 0 0 2
1 0 0 1 20
1 0 1 0 6
1 0 1 1 27
1 1 0 0 3
1 1 0 1 72
1 1 1 0 1
1 1 1 1 100

1836.3
830.4
61.9
49.6
28.6
47.5
4.0
35.1
213.9
152.2
12.1
61.0
11.2
91.6
8.1
86.4
21.2
25.2
2.1
16.1
2.5
24.7
2.2
23.5
6.0
42.0
3.7
39.3
5.7
61.1
5.4
58.4

1882.6
784.7
38.2
79.7
24.2
63.8
6.8
25.8
184.7
192.5
23.1
67.2
12.5
87.4
7.1
50.8
18.5
27.9
4.8
16.0
2.3
19.7
1.8
14.5
7.3
19.8
4.7
224
2.7
69.6
3.2
103.0

Table 8: Observed and expected frequencies

14



References

Y Qu, M Tan, and MH Kutner. Random effects models in latent class analysis
for evaluating accuracy of diagnostic tests. Biometrics, 52(3):797-810, 1996.

D Rindskopf and W Rindskopf. The value of latent class analysis in medical
diagnosis. Statistics in Medicine, 5:21-27, 1986.

15



