The purpose of the package queuecomputer is to compute, deterministically, the output of a queue network given the arrival and service times for all customers. The most important functions are queue_step
, lag_step
and wait_step
.
The first argument to the functions queue_step
, lag_step
and wait_step
is a vector of arrival times. For example:
library(queuecomputer)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
arrivals <- cumsum(rexp(100))
head(arrivals)
## [1] 2.262266 5.986274 6.280253 6.347830 7.185039 7.708771
service <- rexp(100)
departures <- queue_step(arrivals = arrivals, service = service)
print(departures, n = 6)
## # A tibble: 100 × 6
## arrivals service departures waiting system_time server
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2.262266 0.1923963 2.454662 8.326673e-17 0.1923963 1
## 2 5.986274 1.7214155 7.707689 2.220446e-16 1.7214155 1
## 3 6.280253 0.9915863 8.699276 1.427436e+00 2.4190226 1
## 4 6.347830 0.9092315 9.608507 2.351445e+00 3.2606767 1
## 5 7.185039 0.1131049 9.721612 2.423468e+00 2.5365734 1
## 6 7.708771 0.7935246 10.515137 2.012842e+00 2.8063661 1
## # ... with 94 more rows
The resourcing schedule is specified with either a non-zero natural number, a server.stepfun
or a server.list
object. Use a non-zero natural number when the number of servers does not change over time. The server.stepfun
specifies a step function to indicate how many servers are available throughout the day. The computation speed for queue_step()
is much faster when using a server.stepfun
rather than a server.list
input for the servers
argument.
We create a server.stepfun
object with the as.server.stepfun
function.
# Zero servers available before time 10
# One server available between time 10 and time 50
# Three servers available between time 50 and time 100
# One server available from time 100 onwards
resource_schedule <- as.server.stepfun(c(10,50,100), c(0, 1, 3, 1))
resource_schedule
## $x
## [1] 10 50 100
##
## $y
## [1] 0 1 3 1
##
## attr(,"class")
## [1] "list" "server.stepfun"
departures <- queue_step(arrivals = arrivals, service = service, servers = resource_schedule)
print(departures, n = 6)
## # A tibble: 100 × 6
## arrivals service departures waiting system_time server
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2.262266 0.1923963 10.19240 7.737734 7.930131 1
## 2 5.986274 1.7214155 11.91381 4.206122 5.927538 1
## 3 6.280253 0.9915863 12.90540 5.633559 6.625145 1
## 4 6.347830 0.9092315 13.81463 6.557568 7.466799 1
## 5 7.185039 0.1131049 13.92773 6.629591 6.742696 1
## 6 7.708771 0.7935246 14.72126 6.218964 7.012489 1
## # ... with 94 more rows
The server.list
object is a list of step functions which represent each server, the range is \(\{0,1\}\), where 0 represents unavailable and 1 represents available and the knots represent the times where availability changes.
The as.server.list
function is used to create a server.list
object.
# Server 1 is available before time 10.
# Server 2 is available between time 15 and time 30.
# Server 3 is available after time 10.
as.server.list(list(10, c(15,30), 10), c(1,0,0))
## [[1]]
## Step function
## Call: stats::stepfun(times[[i]], y)
## x[1:1] = 10
## 2 plateau levels = 1, 0
##
## [[2]]
## Step function
## Call: stats::stepfun(times[[i]], y)
## x[1:2] = 15, 30
## 3 plateau levels = 0, 1, 0
##
## [[3]]
## Step function
## Call: stats::stepfun(times[[i]], y)
## x[1:1] = 10
## 2 plateau levels = 0, 1
##
## attr(,"class")
## [1] "list" "server.list"
It is simple to set up a chain of queueing elements with queuecomputer
. Suppose passengers must walk to a queue, then wait for service and then wait for their bags.
library(queuecomputer)
library(dplyr)
set.seed(500)
n <- 100
arrivals <- cumsum(rexp(n))
service_l <- rexp(n, 0.8)
service_q <- rexp(n, 0.5)
arrivals_b <- cumsum(rexp(n, 0.8))
# The queue elements can be computed one by one.
departures_1 <- lag_step(arrivals, service_l)
departures_2 <- queue(departures_1, service = service_q, servers = 2)
departures_3 <- wait_step(departures_2, arrivals_b)
# Or the queue elements can be chained together with the %>% operator.
departures <- lag_step(arrivals, service_l) %>% queue_step(service = service_q, servers = 2) %>% wait_step(arrivals_b)
all(departures == departures_3)
## [1] TRUE
# Plot densities for this tandem queueing network
colours <- rainbow(4)
plot(density(arrivals, from = 0),
col = colours[1], xlim = c(0, 220), ylim = c(0, 0.015),
main = "Density plot")
lines(density(departures_1, from = 0), col = colours[2])
lines(density(departures_2, from = 0), col = colours[3])
lines(density(departures_3, from = 0), col = colours[4])
legend(150,0.012, legend = c("Start walk",
"Finish walk",
"Finish service",
"Pick up bag"),
col = colours, lwd = 1, cex = 0.8
)