
An Introduction to Pubprint

Rudolf Siegel

Version 0.1.1
January 31, 2016

Abstract

Pubprint is an extension for the R programming language. This package
takes the output of several statistical tests, collects the characteristic values
and transforms it in a publish-friendly pattern. Currently only the APA
(American Psychological Association) style is supported with output to
HTML, LaTeX, Markdown and plain text. The pubprint package is easily
customizable, extendable and can be used well with knitr. Additionally
pubprint offers a memory system that allows to save and retrieve results of
computations.

Contents

1 Introduction 1

2 Formatting statistical results 2
2.1 First steps . 2
2.2 Arguments of pprint function . 2
2.3 Pass further information to pprint 4
2.4 Passing arguments to internal style functions 5

3 Using the memory functions 5
3.1 First steps . 5
3.2 Arguments of the memory functions 5
3.3 Using the pipe and the named memory 6
3.4 Append additional information 7

4 Changing general options 7
4.1 Change publication style or output format 7
4.2 Change package defaults . 8

5 Adapting style and internal output functions 8

1

1 Introduction

The main function of pubprint is to convert the results of statistical computa-
tions into R in a publishable manner. This is possible for several publication
styles (right now only for APA style) and output formats (like LATEX, HTML,
Markdown and plain text). Adapting the publication style or the output format
to your own needs is quite easy.

Furthermore pubprint offers a smart memory system, meaning that you
can simply store and retrieve results of computations. This can be used when
working together with knitr. You might like to do all computations in one
place or R file and call later only the results (works even with knitr inline R
code).

In this document it is explained first, how the results of computations can
be formatted. Then the memory system is expounded and how to change the
general options and adapting the functions to your own needs.

2 Formatting statistical results

2.1 First steps

A specific example might give a closer look how the formatting of statistical
computations works:

set.seed(4711) # better reproducibility

library("pubprint") # load library
pp_opts_out$set(pp_init_out("plain")) # better readability in this document

a <- rnorm(40)
b <- a + .3

pprint(t.test(a, b))

[1] "(M_x=-0.01,M_y=0.29,t[78]=-1.26,p=.210)"

pprint(cor.test(a, b))

[1] "(r=1.00,p<.001)"

In this example, the random seed for this document is set to a fixed number
to get a better reproducibility. In a next step we load the pubprint package
and change the output format from LATEX (default) to plain text. This ensures
better readability in this document. Then, simply the result of a t-test is given
to the pprint function. As a result we get the formatted output according to
APA style in plain text output format (surrounded by brackets). And that’s it.
Additionaly, as you can see, pubprint is also capable of handling correlations.

2

2.2 Arguments of pprint function

To further adapt the output to your needs, you can change the arguments of
the pprint function:

args(pubprint:::pprint)

function (x, format, ..., concat = TRUE, mmode = pp_opts$get("mmode"),
separator = pp_opts$get("separator"), toClip = FALSE)
NULL

Here is an example what happens if the arguments are modified:

pprint(t.test(a, b))

[1] "(M_x=-0.01,M_y=0.29,t[78]=-1.26,p=.210)"

pprint(t.test(a, b),
concat = FALSE)

[1] "(M_x=-0.01)" "(M_y=0.29)" "(t[78]=-1.26)" "(p=.210)"

pprint(t.test(a, b),
separator = NULL)

[1] "M_x=-0.01,M_y=0.29,t(78)=-1.26,p=.210"

pprint(t.test(a, b),
concat = FALSE,
separator = NULL)

[1] "M_x=-0.01" "M_y=0.29" "t(78)=-1.26" "p=.210"

pprint(t.test(a, b),
mmode = FALSE)

[1] "(M_x=-0.01,M_y=0.29,t[78]=-1.26,p=.210)"

pprint(pprint(t.test(a, b),
concat = FALSE,
separator = NULL)[c(1, 2)])

[1] "(M_x=-0.01,M_y=0.29)"

The first command is the old and well-known one. When passing concat
= FALSE the single parts of a statistical output are not concatenated and
separator specifies how the output is separated from the surrounding text
(e.g. in your LATEX document). These two options can be used to extract specific

3

items from a result. In the example above this is done with the two estimates
(see last command). Maybe there will be a better solution in a later release.
Altering mmode has no implication here. mmode, a logical, defines whether the
output is set in math mode or not (e.g. in a LATEX document). By changing the
format argument you can define how to format your results.

pprint(t.test(a, b),
format = "object")

[[1]]
##
Welch Two Sample t-test
##
data: a and b
t = -1.2649, df = 78, p-value = 0.2097
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.7721816 0.1721816
sample estimates:
mean of x mean of y
-0.0113524 0.2886476

pprint(t.test(a, b),
format = "t.test")

[1] "(M_x=-0.01,M_y=0.29,t[78]=-1.26,p=.210)"

pprint(t.test(a, b),
format = "chisq")

[1] "(t[78,N=0]=-1.26,p=.210)"

If argument format = "object" is given, the object list is returned, but
you can specify an internal style function as well. Choosing t.test does not
change anything, because this internal style function is selected for a t-test by
default. Changing this argument makes sense when there may be different
desired outputs for the same statistical value (for example you could print a
single number as a rounded number or treat it like a p-value, etc.). Obviously
choosing chisq does not make sense in this case.

Even the internal style functions are not exported to user environment,
you can display the documentations. You can find them in the manual or
with ?style.<publication style>.<function>. As there is only the APA
publication style right now, you can replace <publication style> always
with apa. Using tabulator key you will find a list of all internal style functions.
The names should be self-explanatory. If you haven chosen the appropriate
function, you can take the name (only the name of the function without
style.apa.) as an argument for format.

4

2.3 Pass further information to pprint

If you want to pass additional informations to pprint, you can do that by
creating a list. For example you could add Cohen’s d to a t-test:

pprint(list(t.test(a, b), 0.2828363))

[1] "(M_x=-0.01,M_y=0.29,t[78]=-1.26,p=.210,d=0.28)"

Check the documentation of the internal style functions to determine which
further objects are processed by the these functions. Unused list items are
ignored.

2.4 Passing arguments to internal style functions

The argument list of pprint has an ellipsis (...), that offers the possibility to
pass arguments to the internal style functions. For example you can suppress
the estimates of a t-test or alter their names (check the documentations for
appropriate arguments):

pprint(t.test(a, b), print.estimate = FALSE)

[1] "(t[78]=-1.26,p=.210)"

pprint(t.test(a, b), estimate.names = c("control", "treatment"))

[1] "(control=-0.01,treatment=0.29,t[78]=-1.26,p=.210)"

3 Using the memory functions

3.1 First steps

To use the memory functions of pubprint, you have to create a pubprint object
before:

ppo <- pubprint()

Then, you can store and retrieve some computations in/from the pubprint
object

push(ppo) <- t.test(a, b)
pull(ppo)

[1] "(M_x=-0.01,M_y=0.29,t[78]=-1.26,p=.210)"

5

Obviously pull() has not simply returned the R object, instead it called
pprint(), too. You can pass all arguments of pprint() to the pull function.
For example format = "object" will simply return the object, what can be
used for plot objects, etc. Objects without a known internal style function will
be handled in the same manner.

3.2 Arguments of the memory functions

The push and pull functions have the following arguments:

args(pubprint:::`push<-.pubprint`)

function (x, item, add = FALSE, n = 1, ..., value)
NULL

args(pubprint:::pull.pubprint)

function (x, item = 1, remove = pp_opts$get("removeItems"), ...)
NULL

Argument x corresponds to a pubprint object and value to the assigned
value (like the result of the t-test). Pubprint offers two different possibilities to
save your results. First, there is a enumerated list, that is used as a pipe. To
be more precise, the first saved value will be first returned as well. Second,
there is a named list, that is used as a memory. Storing and retrieving to this
memory works only by naming the desired value. In the next subsection this
is explained in more detail.

3.3 Using the pipe and the named memory

The advantage of the pipe is a very simple interface. In the order the calcula-
tions are saved, they will be retrieved again. In contrast the named memory
offers more flexibility and security of retrieving the correct result with slightly
more effort. Even if you add at a later point a statistical computation, you do
not have to care about the order. If item is a numeric, your results will be
saved in the pipe. If it is a character, it will be saved in the named memory.
You can use both systems concurrently.

Pay attention, that pull() has a remove argument. It specifies whether
items are removed from pipe only ("pipe"), memory only ("memory", the
default), never (FALSE) or always (TRUE) on retrieving (there is also a general
option). Here is a first example:

save items in pipe and named memory
push(ppo) <- t.test(a)
push(ppo) <- t.test(a, b)
push(ppo, item = "i1") <- t.test(a, b + .2)

6

retrieve items from pipe
pull(ppo) # item is removed from pipe

[1] "(M_x=-0.01,t[39]=-0.07,p=.946)"

pull(ppo) # here as well

[1] "(M_x=-0.01,M_y=0.29,t[78]=-1.26,p=.210)"

pull(ppo) # error because there are no more items in pipe

Error in pull.pubprint(ppo): subscript out of bounds

retrieve items from named memory
pull(ppo, item = "i1") # item is not removed

[1] "(M_x=-0.01,M_y=0.49,t[78]=-2.11,p=.038)"

pull(ppo, item = "i1", remove = TRUE) # item is removed

[1] "(M_x=-0.01,M_y=0.49,t[78]=-2.11,p=.038)"

pull(ppo, item = "i1") # error, item does not more exist

Error in pull.pubprint(ppo, item = "i1"): item "i1" not available

3.4 Append additional information

As seen in the section about pprint() it may be useful to add further in-
formation to a statistical output. Therefore the push function owns the add
argument. By specifing add = TRUE, you add an object to an existing item. The
corresponding item is either specified by item (pipe or named memory) or n.
While item specifies an absolute position in the pipe or an item of the named
memory, n addresses a relative position in the pipe, counting backwards. So n
= 1 (default) corresponds to the last added item in the pipe, n = 2 the second
last item, and so on. The n argument is ignored, when item is specified.

push(ppo) <- t.test(a)
push(ppo) <- t.test(a, b)
add to last pipe item (n = 1 is default)
push(ppo, add = TRUE) <- 0.2828363

pull(ppo) # retrieve one way t-test

[1] "(M_x=-0.01,t[39]=-0.07,p=.946)"

pull(ppo) # retrieve two way t-test with Cohen's d

7

[1] "(M_x=-0.01,M_y=0.29,t[78]=-1.26,p=.210,d=0.28)"

4 Changing general options

4.1 Change publication style or output format

You can change the output format by calling (supported are "latex", "markdown",
"html" and "plain"):

pp_opts_out$set(pp_init_out("html"))
pprint(t.test(a, b))

[1] "(<math xmlns=\"&mathml;\"><mfenced open=\"\" close=\"\" separators=\",\"><mrow><msub><mi>M</mi><mi>x</mi></msub><mo>=</mo><mn>-0.01</mn></mrow><mrow><msub><mi>M</mi><mi>y</mi></msub><mo>=</mo><mn>0.29</mn></mrow><mrow><mi>t</mi><mfenced open=\"(\" close=\")\"><mrow><mn>78</mn></mrow></mfenced><mo>=</mo><mn>-1.26</mn></mrow><mrow><mi>p</mi><mo>=</mo><mn>.210</mn></mrow></mfenced></math>("
[2] ")<math xmlns=\"&mathml;\"><mfenced open=\"\" close=\"\" separators=\",\"><mrow><msub><mi>M</mi><mi>x</mi></msub><mo>=</mo><mn>-0.01</mn></mrow><mrow><msub><mi>M</mi><mi>y</mi></msub><mo>=</mo><mn>0.29</mn></mrow><mrow><mi>t</mi><mfenced open=\"(\" close=\")\"><mrow><mn>78</mn></mrow></mfenced><mo>=</mo><mn>-1.26</mn></mrow><mrow><mi>p</mi><mo>=</mo><mn>.210</mn></mrow></mfenced></math>)"
[3] "[<math xmlns=\"&mathml;\"><mfenced open=\"\" close=\"\" separators=\",\"><mrow><msub><mi>M</mi><mi>x</mi></msub><mo>=</mo><mn>-0.01</mn></mrow><mrow><msub><mi>M</mi><mi>y</mi></msub><mo>=</mo><mn>0.29</mn></mrow><mrow><mi>t</mi><mfenced open=\"(\" close=\")\"><mrow><mn>78</mn></mrow></mfenced><mo>=</mo><mn>-1.26</mn></mrow><mrow><mi>p</mi><mo>=</mo><mn>.210</mn></mrow></mfenced></math>["
[4] "]<math xmlns=\"&mathml;\"><mfenced open=\"\" close=\"\" separators=\",\"><mrow><msub><mi>M</mi><mi>x</mi></msub><mo>=</mo><mn>-0.01</mn></mrow><mrow><msub><mi>M</mi><mi>y</mi></msub><mo>=</mo><mn>0.29</mn></mrow><mrow><mi>t</mi><mfenced open=\"(\" close=\")\"><mrow><mn>78</mn></mrow></mfenced><mo>=</mo><mn>-1.26</mn></mrow><mrow><mi>p</mi><mo>=</mo><mn>.210</mn></mrow></mfenced></math>]"

pp_opts_out$set(pp_init_out("latex"))
pprint(t.test(a, b))

[1] "(\\ensuremath{M\\ifmmode_{x}\\else\\textsubscript{x}\\fi=-0.01,M\\ifmmode_{y}\\else\\textsubscript{y}\\fi=0.29,t[78]=-1.26,p=.210})"

Output format is automatically determined if pubprint is used in a docu-
ment that is processed by knitr. Currently there are no supported publication
styles except APA.

4.2 Change package defaults

General options can be changed with pp_opts (see ?pp_opts for more infor-
mation):

pp_opts$set(mmode = FALSE)

5 Adapting style and internal output functions

Changing the provided style or internal output functions is quite easy. You can
write your own function and replace a supplied function (or add a new one)
with it through pp_opts_out or pp_opts_style.

myttest <- function(...) return("Hello World!")
pp_opts_style$set("t.test" = myttest)
pprint(t.test(a, b))

[1] "(Hello World!)"

8

If you have written a new style function, you have to call it by specifying
the format argument of the pprint function:

set a new function but do not overwrite a new one
myttest <- function(...) return("Hello World!")
pp_opts_style$set("new-t.test" = myttest)
pprint(t.test(a, b))

[1] "(M_x=-0.01,M_y=0.29,t[78]=-1.26,p=.210)"

pprint(t.test(a, b), format = "new-t.test")

[1] "(Hello World!)"

Please, consider a contribution to this package if you have written functions
that could be useful to other people. You will find more information on the
website of this package.

9

	Introduction
	Formatting statistical results
	First steps
	Arguments of pprint function
	Pass further information to pprint
	Passing arguments to internal style functions

	Using the memory functions
	First steps
	Arguments of the memory functions
	Using the pipe and the named memory
	Append additional information

	Changing general options
	Change publication style or output format
	Change package defaults

	Adapting style and internal output functions

