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Abstract

This vignette provides an overview of some features included in the package psd, designed to compute
estimates of power spectral density (PSD) for a univariate series in a sophisticated manner, with very
little tuning effort. The sine multitapers are used, and the number of tapers varies with spectral shape,
according to the optimal value proposed by Riedel and Sidorenko (1995). The adaptive procedure itera-
tively refines the optimal number of tapers at each frequency based on the spectrum from the previous
iteration. Assuming the adaptive procedure converges, this produces power spectra with significantly
lower spectral variance relative to results from less-sophisticated estimators. Sine tapers exhibit excellent
leakage suppression characteristics, so bias effects are also reduced. Resolution and uncertainty vary with
the number of tapers, which means we do not need to resort to either (1) windowing methods, which in-
herently degrade resolution at low-frequency (e.g. Welch’s method); or (2) smoothing kernels, which can
badly distort important features without careful tuning (e.g. the Daniell kernel in stats::spectrum). In
this regards psd is best suited for data having large dynamic range and some mix of narrow and wide-band
structure, features typically found in geophysical datasets.
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1 Quick start: A minimal example.

First, we load the package into the namespace:

library(psd)

## Loading required package: fftw

## Loaded psd (0.4.0) – Adaptive multitaper spectrum estimation.

For a series to analyze, we can use magnet, included in psd, which represents along-track measurements of
horizontal magnetic-field strength from a gimbaled, airborne magnetometer. These data are a small subset of
the full Project MAGNET series (Coleman, 1992), which has provided insight into the history of the Earth’s
oceanic crust (Parker and O’Brien, 1997; O’Brien et al., 1999; Korte et al., 2002). The sampling interval is
once every kilometer (km), so the data will represent crustal magnetization with wavelengths longer than 2
km.

data(magnet)

The format of the data set is a data.frame with four sets of information:

names(magnet)

## [1] "km" "raw" "clean" "mdiff"

The raw and clean names represent raw and edited intensities respectively, expressed in units of nanotesla;
mdiff is the difference between them. The difference between them is a matter of just a few points attributable
to instrumental malfunction.

subset(magnet, abs(mdiff) > 0)

## km raw clean mdiff

## 403 402 209.1 -3.635 -212.7

## 717 716 -248.7 -9.778 238.9

These deviations can, as we will see, adversely affect the accuracy of any PSD estimate, multitaper or
otherwise.

We can find power spectral density (PSD) estimates for the two series quite simply with pspectrum:

psdr <- pspectrum(magnet$raw)

## Stage 0 est. (pilot)

## environment ** .psdEnv ** refreshed

## detrending (and demeaning)

## Stage 1 est. (Ave. S.V.R. -23.1 dB)

## Stage 2 est. (Ave. S.V.R. -44.7 dB)

## Stage 3 est. (Ave. S.V.R. -46.4 dB)

## Normalized single-sided PSD (PSD) to single-sided PSD for sampling-freq. 1

psdc <- pspectrum(magnet$clean)
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## Stage 0 est. (pilot)

## environment ** .psdEnv ** refreshed

## detrending (and demeaning)

## Stage 1 est. (Ave. S.V.R. -22.4 dB)

## Stage 2 est. (Ave. S.V.R. -46.4 dB)

## Stage 3 est. (Ave. S.V.R. -44.2 dB)

## Normalized single-sided PSD (PSD) to single-sided PSD for sampling-freq. 1

Each application of pspectrum calculates a pilot PSD, followed by niter iterations of refinement. With
each iteration the number of tapers is adjusted based on the proposed optimal number from Riedel and
Sidorenko (1995), which depends on spectral shape; we use quadratically weighted spectral derivatives (Prieto
et al., 2007) to estimate this shape. By default, a multipanel summary plot of the final PSD compared to
the raw periodogram estimate is shown after the final iterative stage. Note that if the user forgets to assign
the results of pspectrum to the global environment, this can be done with the psd_envGet function:

psdc_recovered <- psd_envGet("final_psd")

all.equal(psdc, psdc_recovered)

## [1] TRUE

In general, spectral variance is reduced with sequential refinements1, but is not necessarily guaranteed to
converge. Note that in the example the sampling frequency of both series is 1 km−1, the assumed value.

Figure 1 compares the power spectra for the raw and clean series2. We expect the Project MAGNET
data to be linear in the space of linear-frequencies and logarithmic-power; we see a clear improvement in
spectral shape between the two series, simply because the large outliers have been removed. The PSD of the
clean series shows a very “red" spectrum typical of geophysical processes (Agnew, 1992), and a rolloff in signal
for 10 kilometer wavelengths and longer; whereas, the PSD for the raw series looks somewhat unrealistic at
higher wavelengths– features which could be difficult to judge if the spectral variance was higher.

2 Comparisons with other methods

As we have shown in the Project MAGNET example, improved understanding of the physics behind the
signals in the data is of great concern. Assuming a sample is free of non-physical points, how do PSD estimates
from psd compare with other methods? Unfortunately the suite of extensions with similar functionality is
relatively limited, but hopefully we have summarized most, if not all, the available functions in Table 1.

We compare results from psd with those from a few of the methods in Table 1, using the same data: the
cleaned Project MAGNET series.

2.1 stats::spectrum

Included in the core distribution of R is stats::spectrum, which accesses stats::spec.ar or stats::spec.pgram
for either parametric and non-parametric estimation, respectively. The user can optionally apply a single
cosine taper, and/or a smoothing kernel. Our method is non-parametric; hence, we will compare to the latter.

1 Messages are given by default; ones with “Ave. S.V.R." are in reference to “average spectral-variance reduction", which is

the variance of the double-differenced spectra at each stage, relative to the pilot estimate’s variance.
2 Note that pspectrum returns an object with class spec, so we have access to methods within stats, including plot.spec.
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Table 1: A comparison of power spectral density estimators in R, excluding extensions
which only estimate raw-periodograms. Normalizations are shown as either “single" or
“double" for either single- or double-sided spectra, and “various" if there are multiple,
optional normalizations. A (∗) denotes the default for a function having an option for
either single or double.

Function Namespace Sine m.t.? Adaptive? Norm. Reference

bspec bspec No No single∗ Röver et al. (2011)
mtapspec RSEIS Yes No various Lees and Park (1995)

pspectrum psd Yes Yes single Parker and Barbour (2013)
spectrum stats No No double R Core Team (2013)
spec.mtm multitaper Yes Yes double Rahim and Burr (2013)

SDF sapa Yes No single∗ Percival and Walden (1993)

Included in psdcore is an option to compare the results with a 20% tapered periodogram. The cosine
estimator is found with the following command:

spec.pgram(X, pad = 1, taper = 0.2, detrend = FALSE, demean = FALSE, plot = F)

Within psdcore the comparison is made with the logical argument preproc passed to spec.pgram, which
is True by default.

As a matter of bookkeeping and good practice, we should consider the working environment accessed by
psd functions. To ensure psdcore does not access any inappropriate information leftover from the previous
calculations, we can set refresh=TRUE. We can then re-calculate the multitaper PSD and the raw periodogram
with plotpsd=TRUE; these results are shown in Figure 2.

2.2 RSEIS::mtapspec

In RSEIS the spectrum estimation tool is mtapspec, which calls the program of Lees and Park (1995). There
are numerous optional tuning parameters, including flags for normalization and taper averaging. For our
purpose the correct normalization for mtapspec is found by using MTP=list(kind=2, inorm=3) and scaling
the results by 2 (to convert double-sided spectra to single-sided spectra).

We assume mtapspec doesn’t remove a mean and trend from the input series. We can do this easily with
the prewhiten methods:

require(RSEIS)

## Loading required package: RSEIS

## Loading required package: RPMG

## Loading required package: Rwave

dt = 1 # km

# prewhiten the data after adding a linear trend + offset

summary(prewhiten(mc <- (ts(magnet$clean + 1000, deltat = dt) + seq_along(magnet$clean)),

plot = FALSE))

## detrending (and demeaning)
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## Length Class Mode

## lmdfit 12 lm list

## ardfit 0 -none- NULL

## prew_lm 2048 ts numeric

## prew_ar 0 -none- NULL

## imputed 1 -none- logical

Although the default operation of prewhiten is to fit a linear model of the form f(x) = αx+ β + ǫ using
ordinary linear least squares, setting AR.max higher than zero to fit an auto-regressive (AR) model to the
data3. This fit uses the Akaike infomation criterion (AIC) to select the highest order appropriate for the
data.

summary(atsar <- prewhiten(mc, AR.max = 100, plot = FALSE))

## detrending (and demeaning)

## autoregressive model fit (returning innovations)

## Length Class Mode

## lmdfit 12 lm list

## ardfit 14 ar list

## prew_lm 2048 ts numeric

## prew_ar 2048 ts numeric

## imputed 1 -none- logical

print(atsar$ardfit)

##

## Call:

## ar.yw.default(x = tser_prew_lm, aic = TRUE, order.max = AR.max, demean = TRUE)

##

## Coefficients:

## 1 2 3 4 5 6

## 1.513 -1.104 0.672 -0.388 0.211 -0.079

##

## Order selected 6 sigma^2 estimated as 19.5

ats_lm <- atsar$prew_lm

ats_ar <- atsar$prew_ar

We didn’t necessarily need to deal with the sampling information since it is just 1 per km; but, supposing
the sampling information was based on an interval, we could have used a negative value for X.frq, with which
psdcore would interpret as an interval (instead of a frequency). A quick example highlights the equivalency:

3Note that the linear trend fitting is removed from the series prior to AR estimation, and the residuals from this fit are also

returned.
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a <- rnorm(32)

all.equal(psdcore(a, 1)$spec, psdcore(a, -1)$spec)

## [1] TRUE

Returning the the RSEIS comparison, we first estimate the PSD from mtapspec with 10 tapers:

tapinit <- 10

Mspec <- mtapspec(ats_lm, deltat(ats_lm), MTP = list(kind = 2, inorm = 3, nwin = tapinit,

npi = 0))

where nwin is the number of tapers taken and npi is, from the documentation, the “number of Pi-prolate
functions" (we leave it out for the sake of comparison). Note that the object returned is not of class spec:

str(Mspec)

## List of 12

## $ dat : ts [1:2048, 1] -16.23 -14.56 -12.02 -7.21 -3.13 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : NULL

## .. ..$ : NULL

## ..- attr(*, "tsp")= num [1:3] 1 2048 1

## $ dt : num 1

## $ spec : num [1:4096] 528 557 600 595 615 ...

## $ dof : num [1:4096] 20 20 20 20 20 20 20 20 20 20 ...

## $ Fv : num [1:4096] 4.45e-20 4.78e-02 5.36e-01 1.54 1.15 ...

## $ Rspec : num [1:2049, 1:10] 1.86e-07 -9.32e+01 6.05e+02 1.16e+03 -2.97e+02 ...

## $ Ispec : num [1:2049, 1:10] 0 -227 -569 665 1157 ...

## $ freq : num [1:2049] 0 0.000244 0.000488 0.000732 0.000977 ...

## $ df : num 0.000244

## $ numfreqs: num 2049

## $ klen : num 4096

## $ mtm :List of 4

## ..$ kind : num 2

## ..$ nwin : num 10

## ..$ npi : num 0

## ..$ inorm: num 3

We will calculate the comparative spectra from

1. spectrum (20% cosine taper),

2. psdcore (with fixed tapers), and

3. pspectrum (allowing adaptive taper refinement)

and we will need to correct for normalization factors, as necessary, with normalize. Note that by default
the normalization is set within pspectrum (with normalize) once the adaptive procedure is finished.
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Xspec <- spec.pgram(ats_lm, pad = 1, taper = 0.2, detr = TRUE, dem = TRUE, plot = FALSE)

Pspec <- psdcore(ats_lm, dt, tapinit)

Aspec <- pspectrum(ats_lm, dt, tapinit, plot = FALSE)

## Stage 0 est. (pilot)

## environment ** .psdEnv ** refreshed

## detrending (and demeaning)

## Stage 1 est. (Ave. S.V.R. -23.8 dB)

## Stage 2 est. (Ave. S.V.R. -38.2 dB)

## Stage 3 est. (Ave. S.V.R. -36.3 dB)

## Normalized single-sided PSD (PSD) to single-sided PSD for sampling-freq. 1

# Correct for double-sidedness of spectrum and mtapspec results

class(Mspec)

## [1] "list"

Mspec <- normalize(Mspec, dt, "spectrum")

## Normalized double-sided PSD (SPECTRUM) to single-sided PSD for sampling-freq. 1

nt <- 1:Mspec$numfreqs

mspec <- Mspec$spec[nt]

class(Xspec)

## [1] "spec"

Xspec <- normalize(Xspec, dt, "spectrum")

## Normalized double-sided PSD (SPECTRUM) to single-sided PSD for sampling-freq. 1

These estimates are shown on the same scale in Figure 4.
Because we did not specify the length of the FFT in mtapspec we end up with different length spectra. So,

to form some statistical measure of the results, we can interpolate PSD levels onto the psd-based frequencies
(or reciprocally):

require(signal)

## Loading required package: signal

## Loading required package: MASS

##

## Attaching package: ’signal’

## The following objects are masked from ’package:stats’:

##

## filter, poly

pltpi <- interp1(pltf, pltp, Pspec$freq)

We regress the spectral values from mtapspec against the psdcore results because we have used them to
produce uniformly tapered spectra with an equal number of sine tapers.
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df <- data.frame(x = dB(Pspec$spec), y = pltpi, tap = unclass(Aspec$taper))

summary(dflm <- lm(y ~ x + 0, df))

##

## Call:

## lm(formula = y ~ x + 0, data = df)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.100 -0.301 0.278 0.847 4.569

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## x 0.98951 0.00192 515 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.13 on 1024 degrees of freedom

## Multiple R-squared: 0.996,Adjusted R-squared: 0.996

## F-statistic: 2.65e+05 on 1 and 1024 DF, p-value: <2e-16

df$res <- residuals(dflm)

We show the regression residuals in Figure 5. The structure visible at low power levels might be from
curvature bias in the mtapspec results, which manifests at short wavelengths in Figure 4.

2.3 multitaper::spec.mtm

The function with the highest similarity to psd is spec.mtm in the multitaper package: it uses the sine
multitapers, and can adaptively refine the spectrum. In fact, this function calls source code of a Fortran
equivalent to psd authored by R.L. Parker (2013) to do these operations.

There are some notable differences, though. By default spec.mtm uses the Discrete Prolate Spheroidal
Sequences (dpss) of Thomson (1982), which can have very good spectral leakage suppression (assuming
the number of tapers used is appropriate for the desired resolution, which varies inversely with the time-
bandwidth product). Spectral analyses using dpss can have superior results if the series is relatively short
(e.g. N < 1000), or has inherent spectra with sharply changing features or deep wells. Improper usage of the
dpss, however, can lead to severe bias. Thus, considerable care should be given to parameter choices, which
translates practicably to having many more knobs to turn.

2.4 sapa::SDF

As of this writing, the package has no maintainer; lest we end up discussing deprecated and archived functions,
we will not compare it to psd.

2.5 bspec::bspec

An intriguing method for producing power spectral density estimates using Bayesian inference is presented
by Röver et al. (2011) and included in the bspec package. Simplistically, the method uses a Student’s t
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likelihood function to estimate the distribution of spectral densities at a given frequency. We will use the
spectra from the previous calculation to compare with bspec results. For this comparison we use the default
settings for the a priori distribution scale and degrees of freedom. In Figure 6 we have used the plot.bspec

method and overlain the results found previously by psdcore.

require(bspec)

## Loading required package: bspec

##

## Attaching package: ’bspec’

## The following object is masked from ’package:stats’:

##

## acf

## The following object is masked from ’package:base’:

##

## sample

print(Bspec <- bspec(ts(magnet$clean)))

## 'bspec' posterior spectrum (one-sided).

## frequency range : 0--0.5

## number of parameters: 1025

## finite expectations : none

## finite variances : none

## call: bspec.default(x = ts(magnet$clean))

3 Can AR prewhitening improve the spectrum?

This question must be addressed on a case-by-base basis; but, if there is significant auto-regressive structure
in the series then the answer is likely Yes. The MAGNET dataset is an example where the structure of the
series is nicely represented by an AR model with a random noise component.

Recall the results of the prewhitening in Section 2.2. While AR.max was set relatively high, only an AR(6)
model was fit significantly, according to the AIC requirements. The estimated variance of the innovations is
about 20 nT2. If the innovation spectrum is flat (as we expect), this variance translates to power levels of
about 16 decibels for a 1 km sampling interval.

ntap <- 7

psd_ar <- psdcore(ats_ar, ntaper = ntap, refresh = TRUE)

dB(mean(psd_ar$spec))

## [1] 15.82

In Figure 7 we have used pilot_spec to model the spectral response of the AR component of the series
(solid black line). The non-AR component (labelled "AR-innovations") contributes approximately ±3 dB to
the original spectrum. Overlain on these series is the adaptive spectrum found previously.
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4 Assessing spectral properties

4.1 Spectral uncertainties

It is important to place bounds on the uncertainties associated with a spectral estimate. In a multitaper
algorithm the uncertainty is distributed as a χ2

ν
variate where ν is the number of degrees of freedom, which

is twice the number of tapers applied. A proxy for this is simply 1/
√
ν − 1. Using ν = 2 ∗ K we can

approximate the distribution of uncertainties from the tapers alone; however, a more rigorous estimate
comes from evaluating the appropriate distribution for a coverage probability (e.g. p = 0.95). Among other
calculations, spectral_properties returns the χ2

ν
based confidence intervals for p = 0.95, as well as the

approximate uncertainties.
To illustrate, we plot the uncertainties for an integer sequence4 of tapers [0, 50], shown in Figure 8.

The benefits of having more than just a few tapers becomes obvious, though the spectral uncertainty is
asymptotically decreasing with taper numbers and yields only slight improvements with logarithmic number
of tapers.

Returning to the Project MAGNET spectra, we will compare the spectral uncertainties from psd to the
those from bspec, the Bayesian method, for a coverage probability of 95%. Figure 9 shows the uncertainties
as bounded polygons, which we calculate here:

spp <- spectral_properties(Pspec$taper, db.ci = TRUE)

spa <- spectral_properties(Aspec$taper, db.ci = TRUE)

str(spa)

## 'data.frame': 1025 obs. of 8 variables:

## $ taper : atomic 262 262 262 262 262 263 263 263 264 265 ...

## ..- attr(*, "n_taper_limits")= num 1 512

## ..- attr(*, "taper_positions")= logi NA

## ..- attr(*, "span_was_set")= logi FALSE

## ..- attr(*, "n_taper_limits_orig")= num 1 512

## $ stderr.chi.lower : num -0.512 -0.512 -0.512 -0.512 -0.512 ...

## $ stderr.chi.upper : num 0.541 0.541 0.541 0.541 0.541 ...

## $ stderr.chi.median: num 0.184 0.184 0.184 0.184 0.184 ...

## $ stderr.chi.approx: atomic 0.186 0.186 0.186 0.186 0.186 ...

## ..- attr(*, "n_taper_limits")= num 1 512

## ..- attr(*, "taper_positions")= logi NA

## ..- attr(*, "span_was_set")= logi FALSE

## ..- attr(*, "n_taper_limits_orig")= num 1 512

## $ resolution : atomic 0.513 0.513 0.513 0.513 0.513 ...

## ..- attr(*, "n_taper_limits")= num 1 512

## ..- attr(*, "taper_positions")= logi NA

## ..- attr(*, "span_was_set")= logi FALSE

## ..- attr(*, "n_taper_limits_orig")= num 1 512

## $ dof : atomic 524 524 524 524 524 526 526 526 528 530 ...

## ..- attr(*, "n_taper_limits")= num 1 512

## ..- attr(*, "taper_positions")= logi NA

## ..- attr(*, "span_was_set")= logi FALSE

4 Note the χ
2
ν

distribution is defined for non-negative, non-integer degrees of freedom, but we cannot apply fractions of tapers.
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## ..- attr(*, "n_taper_limits_orig")= num 1 512

## $ bw : atomic 0.257 0.257 0.257 0.257 0.257 ...

## ..- attr(*, "n_taper_limits")= num 1 512

## ..- attr(*, "taper_positions")= logi NA

## ..- attr(*, "span_was_set")= logi FALSE

## ..- attr(*, "n_taper_limits_orig")= num 1 512

create_poly <- function(x, y, dy, from.lower = FALSE) {

xx <- c(x, rev(x))

if (from.lower) {

yy <- c(y, rev(y + dy))

} else {

yy <- c(y + dy, rev(y - dy))

}

return(data.frame(xx = xx, yy = yy))

}

psppu <- create_poly(Pspec$freq, dB(Pspec$spec), spp$stderr.chi.upper)

pspau <- create_poly(Aspec$freq, dB(Aspec$spec), spa$stderr.chi.upper)

# and the Bayesian spectrum 95% limits

pspb <- create_poly(Bspec_plt$freq, Bspec_plt$spectrum[, 1], Bspec_plt$spectrum[,

3], from.lower = TRUE)

4.2 Spectral resolution

There is an inherent tradeoff between the number of tapers applied and the spectral resolution (effectively,
the spectral bandwidth). In general, the greater the number of tapers applied, the lower the spectral resolu-
tion. We can use the information returned from spectral_properties to visualize the actual differences in
resolution for the Project MAGNET PSD estimates; these are shown in Figure 10.

4.3 Visualizing the adaptive history

One might be curious to study how the uncertainties change with each iteration. pspectrum saves an array
of “historical" data in its working environment. Specifically, it saves the frequencies, spectral values, and
number of tapers at each stage of the adaptive procedure, accessible with get_adapt_history. To ensure a
fresh calculation and to add a few more iterations to visualize, we repeat the adaptive spectral analysis, and
then bring the stage history into the .GlobalEnv environment:

pspectrum(ats_lm, niter = 4, plot = FALSE)

## Stage 0 est. (pilot)

## environment ** .psdEnv ** refreshed

## detrending (and demeaning)

## Stage 1 est. (Ave. S.V.R. -22.4 dB)

## Stage 2 est. (Ave. S.V.R. -46.4 dB)

## Stage 3 est. (Ave. S.V.R. -44.2 dB)

## Stage 4 est. (Ave. S.V.R. -44.3 dB)

## Normalized single-sided PSD (PSD) to single-sided PSD for sampling-freq. 1
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str(AH <- get_adapt_history())

## List of 3

## $ freq : num [1:1025] 0 0.000488 0.000977 0.001465 0.001953 ...

## $ stg_kopt:List of 5

## ..$ :Class 'tapers' atomic [1:1025] 12 12 12 12 12 12 12 12 12 12 ...

## .. .. ..- attr(*, "n_taper_limits")= num [1:2] 1 12.6

## .. .. ..- attr(*, "taper_positions")= logi NA

## .. .. ..- attr(*, "span_was_set")= logi TRUE

## .. .. ..- attr(*, "n_taper_limits_orig")= num [1:2] 1 9

## ..$ :Class 'tapers' atomic [1:1025] 68 67 66 65 64 63 62 61 60 59 ...

## .. .. ..- attr(*, "n_taper_limits")= num [1:2] 1 512

## .. .. ..- attr(*, "taper_positions")= logi NA

## .. .. ..- attr(*, "span_was_set")= logi FALSE

## .. .. ..- attr(*, "n_taper_limits_orig")= num [1:2] 1 512

## ..$ :Class 'tapers' atomic [1:1025] 217 216 215 214 213 212 211 210 209 208 ...

## .. .. ..- attr(*, "n_taper_limits")= num [1:2] 1 512

## .. .. ..- attr(*, "taper_positions")= logi NA

## .. .. ..- attr(*, "span_was_set")= logi FALSE

## .. .. ..- attr(*, "n_taper_limits_orig")= num [1:2] 1 512

## ..$ :Class 'tapers' atomic [1:1025] 261 260 260 259 259 258 258 257 257 256 ...

## .. .. ..- attr(*, "n_taper_limits")= num [1:2] 1 512

## .. .. ..- attr(*, "taper_positions")= logi NA

## .. .. ..- attr(*, "span_was_set")= logi FALSE

## .. .. ..- attr(*, "n_taper_limits_orig")= num [1:2] 1 512

## ..$ :Class 'tapers' atomic [1:1025] 288 287 287 287 287 286 287 286 286 286 ...

## .. .. ..- attr(*, "n_taper_limits")= num [1:2] 1 512

## .. .. ..- attr(*, "taper_positions")= logi NA

## .. .. ..- attr(*, "span_was_set")= logi FALSE

## .. .. ..- attr(*, "n_taper_limits_orig")= num [1:2] 1 512

## $ stg_psd :List of 5

## ..$ : num [1:1025] 1423 1318 1220 1205 1180 ...

## ..$ : num [1:1025] 1235 1236 1236 1236 1235 ...

## ..$ : num [1:1025] 1254 1255 1256 1256 1256 ...

## ..$ : num [1:1025] 1172 1172 1172 1173 1172 ...

## ..$ : num [1:1025] 1113 1113 1113 1113 1113 ...

Followed by some trivial manipulation:

Freqs <- (AH$freq)

Dat <- AH$stg_psd

numd <- length(Freqs)

numit <- length(Dat)

StgPsd <- dB(matrix(unlist(Dat), ncol = numit))

Dat <- AH$stg_kopt

StgTap <- matrix(unlist(Dat), ncol = numit)

rm(Dat, AH)
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We can plot these easily with matplot or other tools. We show the adaptive history in Figure 11.
It may be informative to investigate cross correlation coefficients between the stages; but, in this case,

only the PSD estimates are significantly correlated:

suppressWarnings(symnum(cT <- cor(StgTap)))

##

## [1,] 1

## [2,] ? 1

## [3,] ? . 1

## [4,] ? 1

## [5,] ? . 1

## attr(,"legend")

## [1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1 \t ## NA: '?'

suppressWarnings(symnum(cP <- cor(StgPsd)))

##

## [1,] 1

## [2,] B 1

## [3,] B B 1

## [4,] B B B 1

## [5,] B B B B 1

## attr(,"legend")

## [1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1

5 Call overview

Shown in Figure 12 is a flow chart highlighting the essential functions involved in the adaptive estimation
process. The primary function is pspectrum.
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Session Info

sessionInfo()

## R Under development (unstable) (2013-09-18 r63944)

## Platform: x86_64-apple-darwin10.8.0 (64-bit)

##

## locale:

## [1] C

##

## attached base packages:

## [1] parallel datasets grDevices grid graphics tools stats

## [8] utils methods base

##

## other attached packages:

## [1] bspec_1.4 ggplot2_0.9.3.1 signal_0.7-3

## [4] MASS_7.3-27 RColorBrewer_1.0-5 RSEIS_3.2-1

## [7] Rwave_2.1 RPMG_2.1-4 psd_0.4-0

## [10] fftw_1.0-3 knitr_1.2

##

## loaded via a namespace (and not attached):

## [1] colorspace_1.2-2 dichromat_2.0-0 digest_0.6.3 evaluate_0.4.4

## [5] formatR_0.8 gtable_0.1.2 labeling_0.2 lattice_0.20-15

## [9] munsell_0.4 plyr_1.8 proto_0.3-10 reshape2_1.2.2

## [13] scales_0.2.3 stringr_0.6.2 zoo_1.7-10
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plot(psdc, log = "dB", main = "Raw and Clean Project MAGNET power spectral density",

lwd = 3, ci.col = NA, ylim = c(0, 32), yaxs = "i")

# plot(psdc_ar, log='dB', add=TRUE, lwd=3, col='red')

plot(psdr, log = "dB", add = TRUE, lwd = 3, lty = 5)

text(c(0.25, 0.34), c(11, 24), c("Clean", "Raw"), cex = 1)
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Figure 1: Power spectral density estimates for the raw and cleaned Project MAGNET

data bundled with psd. Note that because the class is ’spec’ we have utilized existing
methods in the stats namespace.
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ntap <- psdc$taper

psdcore(magnet$clean, ntaper = ntap, refresh = TRUE, plotpsd = TRUE)
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Figure 2: A summary plot produced by psdcore when plotpsd=TRUE. Top: Com-
parison between PSD estimators for the clean Project MAGNET data. The frequency
axis is in units of log

10
km−1, and power axis is in decibels. Middle: The number of

tapers applied as a function of frequency from the plot.tapers method. Bottom:
The spatial series used to estimate the PSDs and a subset of the full autocorrelation
function.
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plot(ts.union(orig.plus.trend = mc, linear = ats_lm, ar = ats_ar), yax.flip = TRUE,

main = sprintf("Prewhitened Project MAGNET series"))

mtext(sprintf("linear and linear+AR(%s)", atsar$ardfit$order), line = 1.1)
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Figure 3: Pre-whitening of the Project MAGNET series (with a synthetic linear model
superimposed on it) assuming linear and linear-with-AR models.

18



require(RColorBrewer)

## Loading required package: RColorBrewer

cols <- c("dark grey", brewer.pal(8, "Set1")[c(5:4, 2)])

lwds <- c(1, 2, 2, 5)

par(las = 1)

plot(Xspec, log = "dB", ylim = 40 * c(-0.4, 1), ci.col = NA, col = cols[1],

lwd = lwds[1], main = "PSD Comparisons")

pltf <- Mspec$freq

lines(pltf, pltp <- dB(mspec), col = cols[2], lwd = lwds[2])

plot(Pspec, log = "dB", add = TRUE, col = cols[3], lwd = lwds[3])

plot(Aspec, log = "dB", add = TRUE, col = cols[4], lwd = lwds[4])

legend("topright", c("spec.pgram", "RSEIS::mtapspec", "psdcore", "pspectrum"),

title = "Estimator", lwd = 3, cex = 1.1, col = cols)
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Figure 4: Comparisons of estimations of Project MAGNET power spectral densities.
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require(ggplot2)

## Loading required package: ggplot2

gr <- ggplot(df, aes(x = x, y = res)) + geom_abline(intercept = 0, slope = 0,

size = 2, color = "salmon") + geom_point(aes(color = tap))

print(gr + theme_bw() + ggtitle("Regression residuals, colored by optimized tapers") +

xlab("Power levels, dB") + ylab(""))
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Figure 5: Linear regression residuals of mtapspec against psdcore for Project MAG-
NET PSD estimates.

20



Bspec_plt <- plot(Bspec)

lines(Pspec$freq, Pspec$spec, col = "red", lwd = 2)
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Figure 6: Project MAGNET PSD estimates from bspec, a Bayesian method, compared
to the psdcore results shown in Figure 4.
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pilot_spec(ats_lm, ntap = ntap, remove.AR = 100, plot = TRUE)

plot(Aspec, log = "dB", add = TRUE, col = "grey", lwd = 4)

plot(Aspec, log = "dB", add = TRUE, lwd = 3, lty = 3)

spec.ar(ats_lm, log = "dB", add = TRUE, lwd = 2, col = "grey40")
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Figure 7: AR response spectrum for the MAGNET dataset produced by pilot_spec.
Overlain on the figure is the adaptive estimation from Figure 4 (dotted line), and the
results from spec.ar in dark grey; the shift is due to a normalization difference.
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sp <- spectral_properties(as.tapers(1:50), p = 0.95, db.ci = TRUE)

par(las = 1)

plot(stderr.chi.upper ~ taper, sp, type = "s", ylim = c(-10, 20), yaxs = "i",

xaxs = "i", xlab = expression("number of tapers (" * nu/2 * ")"), ylab = "dB",

main = "Spectral uncertainties")

mtext("(additive factor)", line = 0.3)

lines(stderr.chi.lower ~ taper, sp, type = "s")

lines(stderr.chi.median ~ taper, sp, type = "s", lwd = 2)

lines(stderr.chi.approx ~ taper, sp, type = "s", col = "red", lwd = 2)

# to reach 3 db width confidence interval at p=.95

abline(v = 33, lty = 3)

legend("topright", c(expression("Based on " * chi^2 * "(p," * nu * ") and (1-p," *

nu * ")"), expression("" * chi^2 * "(p=0.5," * nu * ")"), "approximation"),

lwd = c(1, 3, 3), col = c("black", "black", "red"), bg = "white")
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Figure 8: Additive spectral uncertainties by number of tapers needed to create 95%
confidence intervals. These quantized curves are found by evaluating the χ2

ν
distribu-

tion, where ν is the number of degrees of freedom (two per taper). The thick, red line
shows an approximation to these uncertainties based on 1/

√
ν − 1, which is accurate

to within a few percent in most cases. The vertical dotted-line shows the number of
tapers need to make the width less than 3 decibels.
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plot(c(0, 0.5), c(-5, 40), col = "white", main = "Project MAGNET Spectral Uncertainty (p > 0.95)",

ylab = "", xlab = "spatial frequency, 1/km", yaxt = "n", frame.plot = FALSE)

lines(c(2, 1, 1, 2) * 0.01, c(0, 0, 7, 7))

text(0.04, 3.5, "7 dB")

polygon(pspb$xx, dB(pspb$yy), col = "light blue", border = NA)

text(0.26, 37, "Bayesian (bspec)", col = "#0099FF", cex = cx <- 0.9)

polygon(psppu$xx, psppu$yy, col = "dark grey", border = "black", lwd = 0.2)

text(0.15, 6, "Light: adaptive\ntaper refinement\n(pspectrum)", cex = cx)

polygon(pspau$xx, pspau$yy, col = "light grey", border = "black", lwd = 0.2)

text(0.4, 22, "Dark: Uniform\ntapering (psdcore)", cex = cx)
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Figure 9: Project MAGNET spectral uncertainties for 95% coverage probability. The
filled regions encompass the spectral uncertainties values based on the upper χ2

ν
curve

shown in Figure 8, light and dark for PSDs with and without adaptive taper optimiza-
tion, respectively. The results from Figure 6 (Bayesian method) are shown in blue.
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frq <- Aspec$freq

relp <- (spa$resolution - spp$resolution)/spp$resolution

par(las = 1, oma = rep(0, 4), omi = rep(0, 4), mar = c(4, 3, 2, 0))

layout(matrix(c(1, 2), 1, 2, byrow = TRUE), heights = c(2, 2), widths = c(3,

0.5), respect = TRUE)

plot(frq, relp, main = "Percent change in spectral resolution", col = "light grey",

ylim = yl <- c(0, 35), type = "h", xaxs = "i", yaxs = "i", ylab = "dB",

xlab = "frequency, 1/km")

lines(frq, relp)

text(0.25, 45, "Adaptive relative to fixed", cex = 0.9)

par(mar = c(4, 0, 2, 2))

# empirical distribution of values

boxplot(relp, range = 0, main = sprintf("%.01f", median(relp)), axes = FALSE,

ylim = yl, yaxs = "i", notch = TRUE)

axis(4)
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Figure 10: Relative changes in resolution of the adaptive method relative to the fixed
multitaper method, plotted as a function of spatial frequency in units of percent. The
non-zero median value implies the pilot spectrum was found using too-few tapers,
according to the optimization algorithm. Positive values indicate broadening resolution
bandwidth.
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Adaptive estimation history
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Figure 11: Adaptive spectral estimation history. (A) PSD series for each stage of the
adaptive method, offset by a few decibels for visualization purposes. Filled polygons are
shown in (B) for the number of tapers at each stage, and (C) the relative uncertainties
of the PSDs.

26



Figure 12: Simplified call graph for psd. The dashed lines show a simplified circuit
which the spectra and its tapers make during the iterative process.
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