Package ‘ps’

July 22, 2018

Version 1.0.0
Title List, Query, Manipulate System Processes

Description List, query and manipulate all system processes, on 'Windows',
'Linux' and 'macOS’'.

License BSD_3 clause + file LICENSE
URL https://github.com/r-1ib/psttreadme

BugReports https://github.com/r-1lib/ps/issues
Encoding UTF-8

Depends R (>=3.1)

Imports utils

Suggests callr,
covr,
processx,
testthat,
tibble

RoxygenNote 6.0.1
Roxygen list(markdown = TRUE)

Biarch true

R topics documented:

PS - o e e e 2
ps_boot_time e e e e 3
ps_children 3
ps_emdline 4
PS_CPU_LIMES o ottt e e e e e e e 4
pS_Create_time e e e e e e 5
Ps_ewd .o 6
PS_ENVIION o v v ittt e e e e e e e e 7
PS_CXE .« o v v e e e e e e e e e e e e e e 8
ps_handle e e 8
PS_S_TUNNING ot s e e e e e e e e e e e e 9
ps_Kill . o e e 10
ps_memory_info L. e e e 11
PS_NAME . . . o . ottt e e e e e e e e e e e e e 12

https://github.com/r-lib/ps#readme
https://github.com/r-lib/ps/issues

2 ps
ps_num_threads L. L 13
PS_OS_LtYPE o o o o e e e e e e e e e e e e e 13
PS_PId . . e e 14
PS_PIAS . . e e 14
PS_PPId . . 15
PS_IESUIME v v v ettt e e e e e e e e e e e e e e 16
ps_send_signal e e e 16
PS_StAtUS L e e e e e e e 17
ps_suspend ... L. e 18
ps_terminal e 19
PS_ErMINAe o o i e e e e e e e e e e e e 19
ps_uids ..o 20
PS_USETNAME . . . o . v v o v v et e e e e e e e e e e e e e e e e 21
signals L e e e 22

Index 23

ps Process table

Description

Process table

Usage

ps(user = NULL, after = NULL)
Arguments

user Username, to filter the results to matching processes.

after Start time (POSIXt), to filter the results to processes that started after this.
Value

Data frame (tibble), see columns below.

Columns:

pid: Process ID.

ppid: Process ID of parent process.

name: Process name.

username: Name of the user (real uid on POSIX).
status: Le. running, sleeping, etc.

user: User CPU time.

system: System CPU time.

rss: Resident set size, the amount of memory the process currently uses. Does not include
memory that is swapped out. It does include shared libraries.

vms: Virtual memory size. All memory the process has access to.
created: Time stamp when the process was created.
ps_handle: ps_handle objects, in a list column.

ps_boot_time 3

ps_boot_time Boot time of the system

Description

Boot time of the system

Usage

ps_boot_time()

Value

A POSIXct object.

ps_children List of child processes (process objects) of the process. Note that this
typically requires enumerating all processes on the system, so it is a
costly operation.

Description
List of child processes (process objects) of the process. Note that this typically requires enumerating
all processes on the system, so it is a costly operation.

Usage

ps_children(p, recursive = FALSE)

Arguments

p Process handle.

recursive Whether to include the children of the children, etc.
Value

List of ps_handle objects.

Examples

p <- ps_parent(ps_handle())
ps_children(p)

See Also

Other process handle functions: ps_cmdline, ps_cpu_times, ps_create_time, ps_cwd, ps_environ,
ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

4 ps_cpu_times

ps_cmdline Command line of the process

Description
Command line of the process, i.e. the executable and the command line arguments, in a character
vector. On Unix the program might change its command line, and some programs actually do it.
Usage

ps_cmdline(p)

Arguments

p Process handle.

Details

For a zombie process it throws a zombie_process error.

Value

Character vector.

Examples

p <- ps_handle()
p
ps_name(p)

ps_exe(p)
ps_cmdline(p)

See Also

Other process handle functions: ps_children, ps_cpu_times, ps_create_time, ps_cwd, ps_environ,
ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

ps_cpu_times CPU times of the process

Description
All times are measued in seconds:

* user: Amount of time that this process has been scheduled in user mode.

* system: Amount of time that this process has been scheduled in kernel mode

e childen_user: On Linux, amount of time that this process’s waited-for children have been
scheduled in user mode.

e children_system: On Linux, Amount of time that this process’s waited-for children have
been scheduled in kernel mode.

ps_create_time 5

Usage

ps_cpu_times(p)

Arguments

p Process handle.

Details

Throws a zombie_process() error for zombie processes.

Value

Named real vector or length four: user, system, childen_user, children_system. The last two
are NA on non-Linux systems.

Examples

p <- ps_handle()
p
ps_cpu_times(p)
proc.time()

See Also

Other process handle functions: ps_children, ps_cmdline, ps_create_time, ps_cwd, ps_environ,
ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

ps_create_time Start time of a process

Description

The pid and the start time pair serves as the identifier of the process, as process ids might be reused,
but the chance of starting two processes with identical ids within the resolution of the timer is
minimal.

Usage

ps_create_time(p)

Arguments

p Process handle.

Details

This function works even if the process has already finished.

6 ps_cwd

Value

POSIXct object, start time, in GMT.

Examples

p <- ps_handle()

P
ps_create_time(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_cwd, ps_environ,
ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

ps_cwd Process current working directory as an absolute path.

Description

For a zombie process it throws a zombie_process error.

Usage

ps_cwd(p)

Arguments

p Process handle.

Value

String scalar.

Examples

p <- ps_handle()
p
ps_cwd(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,

ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name, ps_num_threads,

ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate
ps_uids, ps_username

ps_environ 7

ps_environ Environment variables of a process

Description

ps_environ() returns the environment variables of the process, in a named vector, similarly to the
return value of Sys.getenv() (without arguments).

Usage

ps_environ(p)

ps_environ_raw(p)

Arguments

p Process handle.

Details

Note: this usually does not reflect changes made after the process started.

ps_environ_raw() is similar to p$environ() but returns the unparsed "var=value" strings. This
is faster, and sometimes good enough.

These functions throw a zombie_process error for zombie processes.

Value

ps_environ() returns a named character vector (that has a D1ist class, so it is printed nicely),
ps_environ_raw() returns a character vector.

Examples

p <- ps_handle()

p

env <- ps_environ(p)
env[["R_HOME"]]

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

8 ps_handle

ps_exe Full path of the executable of a process

Description

Path to the executable of the process. May also be an empty string or NA if it cannot be determined.

Usage

ps_exe(p)

Arguments

p Process handle.

Details

For a zombie process it throws a zombie_process error.

Value

Character scalar.

Examples

p <- ps_handle()
p
ps_name(p)

ps_exe(p)
ps_cmdline(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,

ps_cwd, ps_environ, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

ps_handle Create a process handle

Description

Create a process handle

ps_is_running 9
Usage
ps_handle(pid = NULL, time = NULL)

S3 method for class 'ps_handle'
format(x, ...)

S3 method for class 'ps_handle'

print(x, ...)
Arguments
pid Process id. Integer scalar. NULL means the current R process.
time Start time of the process. Usually NULL and ps will query the start time.
X Process handle.
Not used currently.
Value

ps_handle () returns a process handle (class ps_handle).

Examples

p <- ps_handle()
p

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_is_running, ps_kill, ps_memory_info, ps_name, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

ps_is_running Checks whether a process is running

Description

It returns FALSE if the process has already finished.

Usage

ps_is_running(p)

Arguments

p Process handle.

Details

It uses the start time of the process to work around pid reuse. L.e.

10 ps_kill

Value

Logical scalar.

Examples

p <- ps_handle()

p
ps_is_running(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_handle, ps_kill, ps_memory_info, ps_name, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

ps_kill Kill a process

Description

Kill the current process with SIGKILL pre-emptively checking whether PID has been reused. On
Windows it uses TerminateProcess().

Usage
ps_kill(p)

Arguments

p Process handle.

Examples

px <- processx::process$new("sleep”, "10")
p <- ps_handle(px$get_pid())

p

ps_kill(p)

p

ps_is_running(p)

px$get_exit_status()

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_memory_info, ps_name, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate
ps_uids, ps_username

ps_memory_info 11

ps_memory_info Memory usage information

Description

A list with information about memory usage. Portable fields:

* rss: "Resident Set Size", this is the non-swapped physical memory a process has used. On
UNIX it matches "top"‘s RES column (see doc). On Windows this is an alias for wset field
and it matches "Memory" column of taskmgr.exe.

* vmem: "Virtual Memory Size", this is the total amount of virtual memory used by the process.
On UNIX it matches "top"‘s VIRT column (see doc). On Windows this is an alias for the
pagefile field and it matches the "Working set (memory)" column of taskmgr . exe.

Usage

ps_memory_info(p)

Arguments

p Process handle.

Details
Non-portable fields:
* shared: (Linux) memory that could be potentially shared with other processes. This matches
"top" ‘s SHR column (see doc).

* text: (Linux): aka TRS (text resident set) the amount of memory devoted to executable code.
This matches "top"‘s CODE column (see doc).

* data: (Linux): aka DRS (data resident set) the amount of physical memory devoted to other
than executable code. It matches "top" ‘s DATA column (see doc).

e lib: (Linux): the memory used by shared libraries.
e dirty: (Linux): the number of dirty pages.
* pfaults: (macOS): number of page faults.

* pageins: (macOS): number of actual pageins.

For on explanation of Windows fields see the PROCESS_MEMORY_COUNTERS_EX structure.

Throws a zombie_process() error for zombie processes.

Value

Named real vector.

Examples

p <- ps_handle()

p
ps_memory_info(p)

http://msdn.microsoft.com/en-us/library/windows/desktop/ms684874(v=vs.85).aspx

12 ps_name

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_name, ps_num_threads
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate
ps_uids, ps_username

ps_name Process name

Description

The name of the program, which is typically the name of the executable.

Usage

ps_name(p)

Arguments

p Process handle.

Details

On on Unix this can change, e.g. via an exec*() system call.

ps_name () works on zombie processes.

Value

Character scalar.

Examples

p <- ps_handle()
p
ps_name(p)

ps_exe(p)
ps_cmdline(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_num_threads,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

ps_num_threads 13

ps_num_threads Number of threads

Description

Throws a zombie_process() error for zombie processes.

Usage

ps_num_threads(p)

Arguments

p Process handle.

Value

Integer scalar.

Examples

p <- ps_handle()

p
ps_num_threads(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

ps_os_type Query the type of the OS

Description

Query the type of the OS
Usage

ps_os_type()

ps_is_supported()

Value

ps_os_type returns a named logical vector. The rest of the functions return a logical scalar.

ps_is_supported() returns TRUE if ps supports the current platform.

14 ps_pids

Examples

ps_os_type()
ps_is_supported()

ps_pid Pid of a process handle

Description

This function works even if the process has already finished.

Usage
ps_pid(p)

Arguments

p Process handle.

Value

Process id.

Examples

p <- ps_handle()

p

ps_pid(p)

ps_pid(p) == Sys.getpid()

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_num_threads, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal,
ps_terminate, ps_uids, ps_username

ps_pids Ids of all processes on the system

Description

Ids of all processes on the system

Usage
ps_pids()

Value

Integer vector of process ids.

ps_ppid 15

ps_ppid Parent pid or parent process of a process

Description

ps_ppid() returns the parent pid, ps_parent () returns a ps_handle of the parent.

Usage

ps_ppid(p)

ps_parent(p)

Arguments

p Process handle.

Details

On POSIX systems, if the parent process terminates, another process (typically the pid 1 process)
is marked as parent. ps_ppid() and ps_parent() will return this process then.

Both ps_ppid() and ps_parent () work for zombie processes.

Value

ps_ppid() returns and integer scalar, the pid of the parent of p. ps_parent () returns a ps_handle.

Examples

p <- ps_handle()
p

ps_ppid(p)
ps_parent(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_num_threads, ps_pid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal,
ps_terminate, ps_uids, ps_username

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_num_threads, ps_pid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal,
ps_terminate, ps_uids, ps_username

16 ps_send_signal

ps_resume Resume (continue) a stopped process

Description

Resume process execution with SIGCONT pre-emptively checking whether PID has been reused.
On Windows this has the effect of resuming all process threads.

Usage

ps_resume(p)

Arguments
p Process handle.
Examples
px <- processx::process$new("sleep”, "10")
p <- ps_handle(px$get_pid())
p

ps_suspend(p)
ps_status(p)
ps_resume(p)
ps_status(p)
ps_kill(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_num_threads, ps_pid, ps_ppid, ps_send_signal, ps_status, ps_suspend, ps_terminal,
ps_terminate, ps_uids, ps_username

ps_send_signal Send signal to a process

Description

Send a signal to the process. Not implemented on Windows. See signals() for the list of signals
on the current platform.

Usage
ps_send_signal(p, sig)

Arguments

p Process handle.

sig Signal number, see signals().

ps_status 17

Details

It checks if the process is still running, before sending the signal, to avoid signalling the wrong
process, because of pid reuse.

Examples
px <- processx::process$new("sleep”, "10")
p <- ps_handle(px$get_pid())
p
ps_send_signal(p, signals()$SIGINT)
p

ps_is_running(p)
px$get_exit_status()

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_num_threads, ps_pid, ps_ppid, ps_resume, ps_status, ps_suspend, ps_terminal, ps_terminate,
ps_uids, ps_username

ps_status Current process status

Description
One of the following:

» "idle": Process being created by fork, macOS only.

* "running"”: Currently runnable on macOS and Windows. Actually running on Linux.
* "sleeping” Sleeping on a wait or poll.

» "disk_sleep” Uninterruptible sleep, waiting for an I/O operation (Linux only).

* "stopped"” Stopped, either by a job control signal or because it is being traced.

* "tracing_stop” Stopped for tracing (Linux only).

* "zombie" Zombie. Finished, but parent has not read out the exit status yet.

e "dead” Should never be seen (Linux).

* "wake_kill" Received fatal signal (Linux only).

* "waking" Paging (Linux only, not valid since the 2.6.xx kernel).

Usage

ps_status(p)

Arguments

p Process handle.

Details

Works for zombie processes.

18 ps_suspend

Value

Character scalar.

Examples

p <- ps_handle()

p
ps_status(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_num_threads, ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_suspend, ps_terminal,
ps_terminate, ps_uids, ps_username

ps_suspend Suspend (stop) the process

Description

Suspend process execution with SIGSTOP pre-emptively checking whether PID has been reused. On
Windows this has the effect of suspending all process threads.

Usage

ps_suspend(p)

Arguments
p Process handle.
Examples
px <- processx::process$new("sleep”, "10")
p <- ps_handle(px$get_pid())
p

ps_suspend(p)
ps_status(p)
ps_resume(p)
ps_status(p)
ps_kill(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,
ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_num_threads, ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_terminal,
ps_terminate, ps_uids, ps_username

ps_terminal 19

ps_terminal Terminal device of the process

Description
Returns the terminal of the process. Not implemented on Windows, always returns NA_character_.
On Unix it returns NA_character_ if the process has no terminal.

Usage

ps_terminal (p)

Arguments

p Process handle.

Details

Works for zombie processes.

Value

Character scalar.

Examples

p <- ps_handle()

p
ps_terminal (p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time

ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name
ps_num_threads, ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminate,
ps_uids, ps_username

ps_terminate Terminate a Unix process

Description

Send a SIGTERM signal to the process. Not implemented on Windows.

Usage

ps_terminate(p)

Arguments

p Process handle.

20 ps_uids

Details

Checks if the process is still running, to work around pid reuse.

Examples
px <- processx::process$new(”"sleep”, "10")
p <- ps_handle(px$get_pid())
p
ps_terminate(p)
p

ps_is_running(p)
px$get_exit_status()

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time

ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name
ps_num_threads, ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal,
ps_uids, ps_username

ps_uids User ids and group ids of the process

Description
User ids and group ids of the process. Both return integer vectors with names: real, effective
and saved.

Usage
ps_uids(p)

ps_gids(p)

Arguments

p Process handle.

Details

Both work for zombie processes.

They are not implemented on Windows, they throw a not_implemented error.

Value

Named integer vector of length 3, with names: real, effective and saved.

Examples

p <- ps_handle()
p

ps_uids(p)
ps_gids(p)

ps_username 21

See Also

ps_username() returns a user name and works on all platforms.

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,

ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_num_threads, ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal,
ps_terminate, ps_username

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,

ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_num_threads, ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal,
ps_terminate, ps_username

ps_username Owner of the process

Description

The name of the user that owns the process. On Unix it is calculated from the real user id.

Usage

ps_username(p)

Arguments

p Process handle.

Details

On Unix, a numeric uid id returned if the uid is not in the user database, thus a username cannot be
determined.

Works for zombie processes.

Value

String scalar.

Examples

p <- ps_handle()

p
ps_username(p)

See Also

Other process handle functions: ps_children, ps_cmdline, ps_cpu_times, ps_create_time,

ps_cwd, ps_environ, ps_exe, ps_handle, ps_is_running, ps_kill, ps_memory_info, ps_name,
ps_num_threads, ps_pid, ps_ppid, ps_resume, ps_send_signal, ps_status, ps_suspend, ps_terminal,
ps_terminate, ps_uids

22 signals

signals List of all supported signals

Description

Only the signals supported by the current platform are included.

Usage
signals()

Value

List of integers, named by signal names.

Index

format.ps_handle (ps_handle), 8

print.ps_handle (ps_handle), 8
ps, 2

ps_boot_time, 3
ps_children, 3, 4-10, 12-21
ps_cmdline, 3,4, 5-10, 12-21
ps_cpu_times, 3, 4, 4, 6-10, 12-21
ps_create_time, 3-5, 5, 610, 12-21
ps_cwd, 3-6, 6, 710, 12-21
ps_environ, 3-6, 7, 8-10, 12-21
ps_environ_raw (ps_environ), 7
ps_exe, 3-7,8,9, 10, 12-21

ps_gids (ps_uids), 20
ps_handle, 3-8, 8, 10, 12-21
ps_is_running, 3-9,9, 10, 12-21
ps_is_supported (ps_os_type), 13
ps_kill, 3-10, 10, 12-21
ps_memory_info, 3-10, 11, 12-21
ps_name, 3-10, 12,12, 13-21
ps_num_threads, 3-10, 12, 13, 14-21
ps_os_type, 13

ps_parent (ps_ppid), 15

ps_pid, 3-10, 12, 13, 14, 15-21
ps_pids, 14
ps_ppid, 3-10, 12-14, 15, 16-21
ps_resume, 3-10, 12-15, 16, 17-21
ps_send_signal, 3-10, 12-16, 16, 18-21
ps_status, 3-10, 12-17, 17, 18-21
ps_suspend, 3—10, 12-18, 18, 19-21
ps_terminal, 3-10, 12-18, 19, 20, 21
ps_terminate, 3-10, 12-19, 19, 21
ps_uids, 3-10, 12-20, 20, 21
ps_username, 3—10, 12-21, 21
ps_username(), 21

signals, 22
signals(), 16

23

	ps
	ps_boot_time
	ps_children
	ps_cmdline
	ps_cpu_times
	ps_create_time
	ps_cwd
	ps_environ
	ps_exe
	ps_handle
	ps_is_running
	ps_kill
	ps_memory_info
	ps_name
	ps_num_threads
	ps_os_type
	ps_pid
	ps_pids
	ps_ppid
	ps_resume
	ps_send_signal
	ps_status
	ps_suspend
	ps_terminal
	ps_terminate
	ps_uids
	ps_username
	signals
	Index

