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Computes nonparametric probability distributions (probability density functions, cumulative
distribution functions and quantile functions) using kernel smoothing. Supports univariate,
multivariate and conditional distributions, and weighted data (possibly useful mixed with
fuzzy clustering or frequency data). Also, supports empirical continuous cumulative distribu-
tion functions and their inverses, and random number generation.

Pre-Intro

This package is based on function objects.

Some functions (constructors) return other functions (models), which can be evaluated.

This is equivalent but different to the d, p, q, r approach used in R’s stats package.

Introduction

This package computes (constructs and evaluates) nonparametric probability distributions
using kernel smoothing.

Currently, this includes:

� Nonparametric probability density functions (NPPDFs).

� Nonparametric cumulative distribution functions (NPCDFs).

� Nonparametric quantile functions (NPQFs or NPCDF inverses).

It supports univariate, multivariate and conditional distributions.

By default, univariate and conditional models, use cubic hermite splines as intermediate
models. The spline approach is required if computing statistics (from probability distri-
butions rather than from data), and is more efficient if plotting the models or evaluating
many points.

NPPDFs can be used to visualize the shape of probability distributions, and compute their
means and modes. NPCDFs can be used to compute probabilities, including multivariate
probabilities. And NPQFs can be used to compute medians and quantiles, and for inversion
sampling.

Models may be weighted, possibly useful mixed with fuzzy clustering or frequency data.
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This package also supports:

� Empirical continuous (not step) cumulative distribution functions (continuous ECDFs)
and their inverses (continuous EQFs or continuous ECDF inverses).

� Regression-like models.

� Random number (or random sample) generation.

However, ECDFs, EQFs and regression-like models are only discussed in appendices.

The philosophy behind nonparametric probability distributions, is to model data directly,
with as few assumptions as possible.

Loading the Packages

I’m going to load (and attach) the probhat, fclust, moments and scatterplot3d packages.

> library (probhat)

> library (fclust)

> library (moments)

> library (scatterplot3d)

Preparing the Data

I’m going to use the trees data (from the datasets package) and the unemployment data
(from the fclust package).

> data (trees)

> data (unemployment)

> #refer to datasets for a description of these variables

> #(and converting to metric)

> # -> m

> Height = 0.3048 * trees$Height

> # -> cm

> Girth = 2.54 * trees$Girth

> # -> m^3

> Volume = 0.0283168 * trees$Volume

> #refer to fclust for a description of these variables

> #note that this data set contains three variables

> #(however, I'm only using two variables)

> un.rate = unemployment$Total.Rate

> lt.rate = unemployment$LongTerm.Share

New matrix objects.

> trees.2.2 = cbind (Height, Volume)

> trees.2.3 = cbind (Height, Girth, Volume)

> unemployment.2 = cbind (un.rate, lt.rate)

I’ve provided some more information on the trees.2 and unemployment.2 data in Appendix
5 and Appendix 6.
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Univariate Models
(and Core Functionality)

Theory

We can evaluate univariate models using the following expressions.

f(x) =

∑
i g(x∗i ,bw, x)

n

F (x) =

∑
i G(x∗i ,bw, x)

n

Where:

g(L,bw, x) =
2

bw
k(

2

bw
(x− L))

G(L,bw, x) = K(
2

bw
(x− L))

And where k() is the kernel PDF, K() is the kernel CDF, bw is the bandwidth, n is the
number of data points and x∗ is a vector of data points.

By default, this package uses what I refer to as simplified bell curves as kernels, and a
smoothness parameter of 0.65.

Note that more information about the kernel and smoothing parameters is Appendix 1 and
Appendix 2.

Probability Density Functions

We can use the nppdfuv() function to construct univariate NPPDFs.

> f = nppdfuv (Height)

We can plot the density with the data points.

> plot (f, TRUE)
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We can evaluate the object (which is a function), however, this isn’t that useful.

> f (20)

[1] 0.06783298

Note that the argument can be a vector.

Also, we can compute the mean and mode and using the npmean() and npmode() functions.

> npmean (f)

[1] 23.16688

> mode.Height = npmode (f)

> mode.Height

[1] 23.73624

> plot (f)

> abline (v=mode.Height, lty=2)
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Computing the mean this way is inefficient, however, it can be used on conditional distribu-
tions too, discussed later. Note that the function used to compute modes has had limited
testing and there may be unknown problems, especially if trying to compute multiple modes
from multimodal distributions.

Cumulative Distribution Functions

We can use the npcdfuv() function to construct univariate NPCDFs.

> F = npcdfuv (Height)

> plot (F, TRUE)
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Like nppdfuv objects we can evaluate an npcdfuv object.

Let’s say that we want to compute the probability that height is between 20 and 22 meters.

> F (22) - F (20)

[1] 0.1888409

Quantile Functions

We can compute an nonparametric quantile function by inverting the NPCDF.

> F.inv = npcdfuv.inverse (Height)

> plot (F.inv)
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Like nppdfuv and npcdfuv objects we can evaluate an npcdfuv.inverse object.

Let’s say we want to compute the median or other quantiles.

> #median

> F.inv (0.5)

[1] 23.35132

> #5 number summary

> F.inv (c (0, 0.25, 0.5, 0.75, 1) )

[1] 16.82496 21.79035 23.35132 24.67816 28.89504

Note that NPQFs are not the exact inverse of NPCDFs, because of the interpolation
method used.

> F (F.inv (0.5) )

[1] 0.500011

Bivariate Models

We can evaluate bivariate models using the following expressions.

fX1,X2(x1, x2) =

∑
i[g(x∗[i,1],bw1, x1) ∗ g(x∗[i,2],bw2, x2)]

n

FX1,X2(x1, x2) =

∑
i[G(x∗[i,1],bw1, x1) ∗G(x∗[i,2],bw2, x2)]

n

It’s also possible to compute what I refer to as a chained quantile function, which evaluates
the univariate NPQF for the first variable, and then evaluates the conditional NPQF for
the second variable, conditional on the first variable.

We can construct bivariate NPPDFs and NPCDFs using the nppdfmv() and npcdfmv()
functions.
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> bvf = nppdfmv (trees.2.2)

> bvF = npcdfmv (trees.2.2)

Currently, the constructors for multivariate and conditional distributions require a matrix
(not data.frame) with unique column names.

> plot (bvf)
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> plot (bvf, TRUE)

HeightVolume

> plot (bvF)
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> plot (bvF, TRUE)

HeightVolume

Or alternatively:

> #plot (f, all=TRUE)

Like univariate models we can evaluate them.

> bvf (c (20, 0.5) )

[1] 0.0911542

Note that the argument can be a vector or a matrix. If it’s a standard vector then it’s
converted to a matrix by rbind(). Each row in the matrix is one point to evaluate. Also
note that the columns need to be in the same order as the data matrix.

In general, bivariate models aren’t useful in themselves except for visualizing the shape of
probability distributions. However, we can use bivariate models (and multivariate mod-
els generally) to compute conditional probability distributions and compute multivariate
probabilities, which are discussed later.
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Refer to the barsurf package for information on how to change colors, if required.

Multivariate Models

Bivariate models generalize to multivariate models (with m > 2) easily, however, they’re
difficult to visualize.

fX1,X2,...,Xm(x1, x2, ..., xm) =

∑
i[g(x∗[i,1],bw1, x1) ∗ g(x∗[i,2],bw2, x2)) ∗ ... ∗ g(x∗[i,m],bwm, xm)]

n

FX1,X2,...,Xm(x1, x2, ..., xm) =

∑
i[G(x∗[i,1],bw1, x1) ∗G(x∗[i,2],bw2, x2)) ∗ ... ∗G(x∗[i,m],bwm, xm)]

n

Where m is the number of variables.

Likewise, it’s possible to compute the chained quantile function for three or more variables.

> mvf = nppdfmv (trees.2.3)

> mvF = npcdfmv (trees.2.3)

Currently, you can’t plot multivariate models (with m > 2). However, refer to Appendix 3
on how to plot all marginal distributions.

Conditional Models

We can derive conditional models from multivariate models.

We can compute a conditional distribution (conditional on one variable) using:

fX2|X1(x2) =
fX1,X2(x1, x2)

fX1(x1)

FX2|X1(x2) =

∫ x2

−∞

fX1,X2(x1, u)

fX1(x1)
du

And we can compute a conditional distribution (conditional on two variables) using:

fX3|X1,X2(x3) =
fX1,X2,X3(x1, x2, x3)

fX1,X2(x1, x2)

FX3|X1,X2(x3) =

∫ x3

−∞

fX1,X2,X3(x1, x2, u)

fX1,X2(x1, x2)
du

And this can be generalized to m variables.

Note that it’s possible for the denominator to be zero, in which case, in theory, we can’t
evaluate the functions. However, the R functions below returns NAs.

We can construct conditional nonparametric models using the nppdfc(), npcdfc() and
npcdfc.inverse() functions.
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> median.Height = median (Height)

> median.Girth = median (Girth)

> cf = nppdfc (Volume ~ c (Height=median.Height, Girth=median.Girth), trees.2.3)

> cF = npcdfc (Volume ~ c (Height=median.Height, Girth=median.Girth), trees.2.3)

> cF.inv = npcdfc.inverse (

Volume ~ c (Height=median.Height, Girth=median.Girth),

trees.2.3)

> plot (cf)
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Fuzzy Clustering
(and Weighted Data)

Fuzzy clustering computes a membership matrix, with each row representing each data
point and each column representing each cluster (not variable). Each row represents the
membership of that data point in each cluster as numbers in the interval (0, 1).

The following computes memberships for three clusters and then the weights for the first
cluster.

> w = FKM.gk (unemployment.2, k=3, seed=2)$U [,1]

> w = w / sum (w)

Note that a weighted scatterplot is given in Appendix 6.

However, fuzzy clustering is limited by itself. I use the term “Membership-Weighted Data
Analysis” to refer to the process of modelling the data, weighted according to a membership
matrix. I’m going to focus on nonparametric probability distributions, however, there are
other ways of modelling such data.

We can compute a weighted bivariate model easily.

> wf = nppdfmv (unemployment.2, w=w)

> plot (wf)



Spurdle, A. probhat 0.1.1 11

un.rate

lt.
ra

te

 5e−04 

 0.001 

 0.0015 

 0.002 

 0
.0

02
5 

 0
.0

03
5 

0 5 10 15 20 25

0
20

40
60

80

> plot (wf, TRUE)

un.ratelt.rate

Computing Multivariate Probabilities

As given earlier, we can compute the probability that a random variable is between a pair
of values as:

P(a ≤ X ≤ b) = F (b) − F (a)

We can compute the probability that two random variables are between two pairs of values
as:

P(a1 ≤ X1 ≤ b1, a2 ≤ X2 ≤ b2) = FX1,X2(b1, b2)−[FX1,X2(a1, b2)+FX1,X2(b1, a2)]+FX1,X2(a1, a2)

Where a is a vector of lower limits and b is a vector of upper limits.
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This is the volume under the bivariate PDF.

It could be computed by computing the multiple integral of the multivariate PDF, numer-
ically. However, it’s more efficient to evaluate the multivariate CDF, combinatorically.

This can be generalized to three or more variables, however, the formulation is difficult to
write.

We can use the comb.prob() function, which has three arguments.

> #probability that:

> #( 20 <= Height <= 30,

> # 20 <= Girth <= 24,

> # 0.2 <= Volume <= 0.8

> #)

> a = c (20, 20, 0.2)

> b = c (30, 24, 0.8)

> comb.prob (mvF, a, b)

[1] 0.04821105

Note that it’s possible to compute multiple regions at once by making a and b matrices
with each row representing one region.

Expanding on an earlier point, a and b (or their columns, if matrices) must be in the same
order as the data matrix. So, in this example, height must come first, girth must come
second and volume must come last.

Random Number Generation

We can generate random numbers using the nprng() function which uses NPQF or chained
quantile functions for inversion sampling.

> chained.inv = chained.npcdfmv.inverse (trees.2.3)

> trees.2.rs = nprng (chained.inv, 31)

> Height.rs = trees.2.rs [,"Height"]

> Girth.rs = trees.2.rs [,"Girth"]

> Volume.rs = trees.2.rs [,"Volume"]

The trees.2.rs data is given in Appendix 7.

Note that I’ve used the same sample size, however, you could use any sample size.

Conditional Probabilities and Conditional Statistics

It’s possible to compute conditional densities, probabilities, medians and quantiles from
conditional distributions, simply by evaluating the conditional distributions.

> #probability that volume is between 0.2 and 0.8 cubic meters

> #given median height and median girth

> cF (0.8) - cF (0.2)

[1] 0.6354307

> #median of volume in cubic meters
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> #given median height and median girth

> cF.inv (0.5)

[1] 0.6835995

Likewise, it’s possible to compute conditional means and modes from conditional probabil-
ity density functions.

> #mean of volume in cubic meters

> #given median height and median girth

> npmean (cf)

[1] 0.6881425

> #mode of volume in cubic meters

> #given median height and median girth

> mode.Volume.c = npmode (cf)

> mode.Volume.c

[1] 0.6776767

> plot (cf)

> abline (v=mode.Volume.c, lty=2)

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

x

y



Spurdle, A. probhat 0.1.1 14

Appendix 1:
Simplified Bell Curves

> x = seq (-1, 1, length.out=200)

> y = sbc.pdf (x)

> plot (x, y, type="l")

> abline (v=c (-0.5, 0.5), h=c (0.5), lty=2)
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> y = sbc.cdf (x)

> plot (x, y, type="l")
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Appendix 2:
More Smoothing Information

The kernel PDF should be zero centered, symmetrical, smooth and integrate to one, with
positive densities over the interval (-1, 1) and zero densities outside this interval. And the
kernel CDF should differentiate to a PDF with these properties.

The smoothness parameter (which can be a scalar or a vector) is multiplied by the range
for each variable, to give a (vector) bandwidth parameter.

bwj = smoothnessj ∗ [max(x∗[,j]) − min(x∗[,j])]

If the bandwidth parameter is provided then the smoothness parameter is ignored.

Also note that you may want to set spline=FALSE or increase the number of control points,
if you decrease the bandwidth.

Marginal distributions can be used to determine (near) optimal smoothing parameters.
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Appendix 3:
Plotting Marginal Distributions

> plot (marginal (mvf), 3, 1, TRUE)
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Appendix 4:
Empirical Continuous Cumulative Distribution Functions
and Their Inverses

Continuous ECDFs require unique x values, and a small amount of random variation is
automatically added if they’re not unique.

Given any x value (from the data), the continuous ECDF at that point can be computed
using the following expression.

P(X ≤ x) = F (x) =

∑
i I(x∗i ≤ x) − 1

n− 1

Where I() is 1 if the enclosed expression is true and is 0 if false.

The resulting points can be interpolated by a cubic hermite spline. However, the resulting
functions don’t necessarily appear smooth.

We can compute a continuous ECDF and plot it in a similar way to a univariate NPCDF.

> F = eccdf (Height)

> plot (F, TRUE)
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And compute a continuous EQF and plot it in a similar way to a univariate NPQF.

> F.inv = eccdf.inverse (Height)

> plot (F.inv, TRUE)
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Likewise, they can be evaluated.

> #median

> F.inv (0.5)

[1] 23.16439

> #5 number summary

> F.inv (c (0, 0.25, 0.5, 0.75, 1) )

[1] 19.20064 21.94504 23.16439 24.38539 26.51573

Both of these models can be weighted.

Note that like NPQFs (using kernel smoothing), continuous EQFs are not the exact inverse
of continuous ECDFs. And the difference may be greater than NPQFs, because in general,
they’re not as smooth.

Also note that unlike the other probability distributions in this package, empirical models
don’t use smoothing. And ECQFs may be preferable to NPQFs if you want to compute
the median or other quantiles, without any smoothing. These quantiles can be regarded
as quantiles of the data itself rather than estimates derived from a model.
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Appendix 5:
The trees.2 Data

> head (trees.2.3, 3)

Height Girth Volume

[1,] 21.3360 21.082 0.2916630

[2,] 19.8120 21.844 0.2916630

[3,] 19.2024 22.352 0.2888314

> tail (trees.2.3, 3)

Height Girth Volume

[29,] 24.3840 45.720 1.458315

[30,] 24.3840 45.720 1.444157

[31,] 26.5176 52.324 2.180394

> summary (trees.2.3)

Height Girth Volume

Min. :19.20 Min. :21.08 Min. :0.2888

1st Qu.:21.95 1st Qu.:28.07 1st Qu.:0.5493

Median :23.16 Median :32.77 Median :0.6853

Mean :23.16 Mean :33.65 Mean :0.8543

3rd Qu.:24.38 3rd Qu.:38.73 3rd Qu.:1.0562

Max. :26.52 Max. :52.32 Max. :2.1804

> skewness (trees.2.3)

Height Girth Volume

-0.3748690 0.5263163 1.0643575

> cov (trees.2.3)

Height Girth Volume

Height 3.771863 8.038694 0.5408160

Girth 8.038694 63.534802 3.5881865

Volume 0.540816 3.588187 0.2166597

> stripchart (Height, "jitter", pch=1)



Spurdle, A. probhat 0.1.1 20

20 22 24 26

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
● ●

> plot (Height, Volume)

●●●

●
● ●

●
●

●
●

●

●●●
●

●

●

●
●●

●
●

●
●

●

● ●
●

●●

●

20 22 24 26

0.
5

1.
0

1.
5

2.
0

Height

V
ol

um
e

> scatterplot3d (Height, Girth, Volume, type="h", angle=112.5, pch=16)
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Appendix 6:
The unemployment.2 Data
(Membership-Weighted)

> head (unemployment.2, 3)

un.rate lt.rate

[1,] 7.1 48.3

[2,] 11.2 56.2

[3,] 6.7 40.5

> tail (unemployment.2, 3)

un.rate lt.rate

[30,] 4.1 36.0

[31,] 13.4 63.8

[32,] 8.8 23.7

> summary (unemployment.2)

un.rate lt.rate

Min. : 3.200 Min. :18.60

1st Qu.: 6.925 1st Qu.:28.07

Median : 8.100 Median :42.70

Mean : 9.478 Mean :41.08

3rd Qu.:12.550 3rd Qu.:50.17

Max. :21.600 Max. :67.80

> skewness (unemployment.2)

un.rate lt.rate

0.87244093 -0.01797293

> cov (unemployment.2)

un.rate lt.rate

un.rate 18.49660 34.25571

lt.rate 34.25571 185.49706

> s = 1 - w / max (w)

> plot (unemployment.2, pch=16, col=rgb (s, s, s) )
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Appendix 7:
Random Sample

> head (trees.2.rs, 3)

Height Girth Volume

[1,] 22.95304 28.79547 0.2416357

[2,] 20.06461 30.65187 0.4118361

[3,] 20.37315 24.48549 0.6319733

> tail (trees.2.rs, 3)

Height Girth Volume

[29,] 21.71691 26.93537 0.1985119

[30,] 24.72109 46.56862 1.6976521

[31,] 23.67594 26.96112 0.2310965

> summary (trees.2.rs)

Height Girth Volume

Min. :18.82 Min. :21.59 Min. :0.01697

1st Qu.:21.54 1st Qu.:26.93 1st Qu.:0.48333

Median :23.10 Median :31.38 Median :0.71777

Mean :23.18 Mean :33.09 Mean :0.84802

3rd Qu.:25.12 3rd Qu.:40.46 3rd Qu.:1.20243

Max. :27.02 Max. :57.14 Max. :2.05974

> skewness (trees.2.rs)

Height Girth Volume

-0.1506225 0.8170970 0.5812684

> cov (trees.2.rs)

Height Girth Volume

Height 5.2555253 13.090285 0.7598902

Girth 13.0902852 79.860959 3.7643193

Volume 0.7598902 3.764319 0.2905019

> stripchart (Height.rs, "jitter", pch=1)
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> plot (Height.rs, Volume.rs)
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> scatterplot3d (Height.rs, Girth.rs, Volume.rs, type="h", angle=112.5, pch=16)
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Appendix 8:
Regression-Like Models

Regression-like models (in this package) construct a spline by constructing a sequence of
conditional distributions, and then computing a descriptive statistic (mean, mode, median
or quantile) from each conditional distribution.

The constructors require a formula object with two variables. It’s possible to include a
data matrix with three or more variables, in which case, the conditional distributions are
conditional on the medians of the other variables.

Nonparametric regression models with two variables should be equivalent to regression-like
models with two variables. However, this isn’t true for three or more variables.

Linear (or additive) models allow you to interpret the effect of any predictor variable on
the response, (mostly) independently of the other effects, unless there are interactions. In
principle, regression-like models don’t allow such interpretations, because the effect of any
predictor variable on the response is conditional on the other predictor variables’ values.

I’m assuming that if the effects are approximately additive and there’s sufficient data
density in the center of the multivariate distribution, then the conditioning values shouldn’t
make a lot of difference. However, I haven’t tested this assumption. Even if true, in general,
I recommend using linear (or additive) models rather than regression-like models for three
or more variables.

Note that currently, the PDF of the conditioning variables must not evaluate to NA (refer
to the section on conditional distributions). Also note that regression-like models with
three or more variables haven’t had a lot of testing.

The conditional mean and mode:

> reg.mean = reglike (mean (Volume) ~ Height, trees.2.2)

> reg.mode = reglike (mode (Volume) ~ Height, trees.2.2)

> plot (reg.mean, TRUE)

> lines (reg.mode, col="darkgreen")
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Note that some of the conditional distributions are bimodal.



Spurdle, A. probhat 0.1.1 28

The conditional median and quartiles:

> reg.median = reglike (median (Volume) ~ Height, trees.2.2)

> reg.q.25= reglike (quantile (Volume, 0.25) ~ Height, trees.2.2)

> reg.q.75= reglike (quantile (Volume, 0.75) ~ Height, trees.2.2)

> plot (reg.median, TRUE)

> lines (reg.q.25, col="darkgreen")

> lines (reg.q.75, col="darkgreen")
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