An introduction to the polmineR (v0.6.0)

Andreas Blaette (andreas.blaette@Quni-due.de)
June 22, 2016

1 Purpose

The purpose of the package polmineR is to facilitate the interactive analysis
of corpora using R. Core objectives for the development of the package are
performance, usability, and a modular design.

There are quite a few R packages for text mining already, it is quite un-
necessary to implement again what has already been implemented. Thus, this
package is also meant to serve as an interface between the Corpus Workbench
(CWB)EL an efficient system for storing and querying large corpora, and existing
packages for mining text with advanced statistical methods. There are several
relevant packages on CRANE|

Quantitative text analytics may bear the risk to get out of touch with the
original text. The driller seeks to keep the actual text analysed accessible. This
is a further reason why the CWB is used as a backend. Apart from the speed
of text processing, the Corpus Query Processor (CQP) and the CQP syntaxﬂ
provide a great machinery to query corpora. Queries found can be viewed with
a concordancer.

Using a combination of R and the CWB implies a software architecture you
will also find in the TXM projecdﬂ TXM, among other things, offers a rich
functionality for importing corpora into the CWB. A very specific concern of
the driller is to provide the means to examine and to compare subcorpora that
are generated based on the metainformation stored as structural attributes to
the CWB corpus. In line with the French tradition of discourse analysis (and
for technical reasons), these subcorpora are called partitions here. The driller
may be particularly useful for analyses of diachronic variation and synchronic
change.

Thttp://cub.sourceforge.net/
%http://cran.r-project.org/web/views/NaturalLanguageProcessing.html
P proj g guag g
3http://cwb.sourceforge.net/files/CQP_Tutorial.pdf

4http://sourceforge.net/projects/txm/

http://cwb.sourceforge.net/
http://cran.r-project.org/web/views/NaturalLanguageProcessing.html
http://cwb.sourceforge.net/files/CQP_Tutorial.pdf
http://sourceforge.net/projects/txm/

2 Corpora

The driller is an instrument to analyse corpora imported to the CWB. The CWB
distinguishes structural attributes (s-attributes) that will contain the metainfor-
mation that can be used to generate subcorpora, and positional attributes (p-
attributes). Typically, the p-attributes will be "word’, "pos’ (for part-of-speech)
and ’lemma’ (for the lemmatized word form).

The driller was developed for analysing corpora with a flat XML strucutre.
Future versions of the driller will be able to process nested XML. Yet so far,
it is generally speaking necessary that all metadata are attributes of one XML
element. This may be unproblematic if you work with a corpus of newspaper
articles, for instance (attributes might be ’date’; author’, 'newspaper’, 'page’
etc.). For the corpora of plenary debates that were the impetus to develop the
packageﬂ a respective transformation generated the flat XML structure.

In the package, two (very small) sample corpora from the PolMine project
are included. The corpus "PLPRBTTXT” is a set of five plenary protocols (out
of several hundred) of the German Bundestag. The sample corpus can only be
used if the respective registry files contain the path to the binary files of the
indexed corpora. The setting is managed by a configure file that is called when
the package is installed.

The sample corpora are encoded in latin-1, the traditional encoding used
by the CWB. The package is not yet entirely generic as far as encodings are
concerned. Problems may still arise when using a utf-8 encoded corpus. Future
versions of the driller will be generic in this respect.

3 Installation

3.1 System requirements

For the time being, only the installation on Linux and Mac OS is supported.

For a Windows installation, the driller itself should not be the problem. The
parallelization the package implements may only be used on a Mac/Linux system
(due to forking), but multicore processing can be switched of. However, there
may be problems with the rcqp package, as it uses several libraries potentially
unavailable on Windows[F]

3.2 Dependencies

The driller relies on a few packages (see DESCRIPTION): The tm and the reqp
package are crucial.

The tm package offers a wealth of functions for textmining. It is imported
primarly because of the TermDocumentMatrix class and related methods. Once
an object of that class has been generated, all tm functions can be used. There

5See http://polmine.sowi.uni-due.de
6 A workaround may be an installation in a Linux virtual machine.

http://polmine.sowi.uni-due.de

are quite a few packages that use the tm TermDocumentMatrix as an input (e.g.
topicmodels or 1sa). So in a sense, tm is not just a dependency but the link that
pushes the R world of text mining open once you have extracted information
from a CWB corpus using the driller.

Installation of the rcqp package can be tricky. The rcqp package is however
core for the whole driller project. It provides the API for connecting to the
CWB.

Apart from R packages reqp requires (plyr, for instance) that can be installed
easily with install.packages(), rcqp requires a few non-R libraries (pkg-config,
libffi, gettext, glib). The installation files are easily found in the web. Then
the ./configure, make, make install procedure is needed. A tricky hurdle is that
pkeg-config requires glib, and glib requires pkg-config. A workaround is to start
the pkg-config installation with ./configure —without-internal-glib. To install
glib on a Mac, I found it useful to use homebrew as an installer (brew install
glib).

3.3 Loading the package

As mentioned, the rcqp package is the most important dependency of the driller.
The CORPUS_REGISTRY environment variable before needs to be set before
you load polmineR.

if (
require(rcqp, quietly = T)
&& require(polmineR.sampleCorpus, quietly = T)
)
execute <- TRUE
} else {
execute <- FALSE

}

Using registry '/Users/blaette/Lab/cwb/registry’.

if (execute){
library(polmineR)
library(polmineR.sampleCorpus)
use ("polmineR.sampleCorpus")

}

##

Attaching package: ’polmineR’

##

Die folgenden Objekte sind maskiert von ’package:rTcqp’:
##

corpus, kwic, size

##

Das folgende Objekt ist maskiert ’package:plyr’:
##

count

4 Default settings

Default settings are stored in the general options settings.

if (execute){
to view all options defined for polmineR
options() [grep("polmineR", names(options()))]

setting options
options("polmineR.corpus" = "PLPRBTTXT")
options("polmineR.left" = 15)
options("polmineR.right" = 15)
options("polmineR.mc" = FALSE)

Various methods will get default values from the options set. See the docu-
mentation for kwic, for instance.

5 Setting up a partition

Usually, any session using the driller will start with initializing a partition. The
return of a call of the partition function is a S4 partition object, and almost
every function of the driller package will require a partition object as an input.

In this example, I set up a partition with the speeches, not the interjec-
tions, deliverd by members of the CDU parliamentary group in the parliament
of Northrhine-Westfalia. Attributes are handed over as a list. Setting up a par-
tition sometimes consumes some time, so you will get messages about progress.

if (execute){
bt <- partition("PLPRBTTXT", text_type="speech")
cdu <- partition(
"PLPRBTTXT",
text_type="speech", text_party="CDU_CSU"
)

Setting up partition

... encoding of the corpus: latinl

... computing corpus positions and retrieving strucs
... computing partition stize

... partition s set up

##

Setting up partition

... encoding of the corpus: latinl

... computing corpus postitions and retrieving strucs
... computing partition stize

... partition s set up

To get some basic information about the partition that has been set up, the
"'show’-method can be used. It is also called when you simply type the name of
the partition object.

if (execute){
cdu

}

** partition object *x*

corpus: PLPRBTTXT

name:

sAttributes: text_type = speech

#it text_party = CDU_CSU

cpos: 570 pairs of corpus positions
size: 56811 tokens

count: not available

Note that is possible to omit steps of the initialization of a partition object,
thus speeding up the initialization significantly. Setting up a table with meta-
data and retrieving term frequencies can be switched off (metadata=FALSE,
tf=FALSE). Other functions (context, distribution) however require respective
information and do not work if the partition object lacks this information. Set-
ting up a partition may be a bit slow, but generates information that allows
further analytical steps based on a partition object to be much quicker.

There are two methods to set up a partition, 'grep’ and ’in’. If the method
is ’in’, you can provide a character vector for every s-attribute. If the method
is 7grep”, all s-Attribute values are kept that match a regex. As an example for
the ’in’-procedure, if you want a partition comprising of CDU/CSU and FDP
as parties, you might formulateﬂ

7Sometimes, you will want to be more specific about the start and end date of a partition.
In this case, you can set a dateRange.

if (execute){
coalition <- partition(
"PLPRBTTXT",
text_type="speech", text_party=c("CDU_CSU", "FDP")
)
}

Setting up partition

... encoding of the corpus: latinl

... computing corpus positions and retrieving strucs
... computing partition size

... partition s set up

If you work with a flat XML structure, the order of the provided s-attributes
may be relevant for speeding up the set up of the partition. For a nested XML,
it is important that with the order, you move from ancestors to childs. For
further information, see the documentation of the function.

6 Getting a tm TermDocumentMatrix

For many applications, term-document matrices are the point of departure.
The tm class TermDocumentMatrix serves as an input to several R packages
implementing advanced text mining techniques. Obtaining this input from a
corpus imported to the CWB will usually involve setting up a partitionCluster
and then applying a method to get the matrix.

if (execute){

base <- partition("PLPRBTTXT", text_type="speech")

parties <- partitionBundle(
base, def=list(text_party=NULL),
pAttribute="word", progress=TRUE, verbose=FALSE
)

tdm <- as.TermDocumentMatrix(parties, col="count")

class(tdm)

show (tdm)

m <- as.matrix(tdm)

m[c("Integration", "Zuwanderung", "Migration"),]

7 Context analysis

The partition object has a method that will give you immediate access to view
the concordances of a (single-word) word found in a partition by indexing the

partition object accordingly (here: min["Minderheitsregierung"]). This a
shortcut that may be useful at times. Usually, the context function will be
called first, the summary method will give some information on the resulting
context object.

if (execute){
integration <- context(
bt, "Integration", pAttribute="word",
left=20, right=20
)

summary (integration)

}

... count for pAttribute word not available
... computing term frequencies (for p-attribute word)
... getting cpos

... generating contezxts

... counting tokens

... statistical test: 11

##

*xx Context object - general information: **
CWB-Korpus: PLPRBTTXT

Partition:

Node: Integration

P-Attribute: word

Node count: 23

Stat table length: 392

Note that is is possible to provide a query that uses the full CQP syntax.
The statistical analysis of collocations to the query can be accessed as the slot
"stat” of the context object (here: min@stat).

To view some concordances, the context object can be indexed accordingly.
If you put a query in double brackets, it is used as a filter, giving you those
concordances containing this query (e.g. min[["Scheitern"]]). If you run
R in a console, you may use xterm color highlighting. The colors can be set
via drillingControls. This applies also for the metainformation you receive as
output.

8 Distribution of queries

To understand the occurance of a phenomenon, the distribution of query results
across one or two dimensions will often be interesing. This is done via the
"distribution’ function. The query may use the CQP syntax. The function is a
wrapper for three different functions. Which one is called will depend on the
number of queries provided and whether one or two s-attributes are provided as

dimensions. The output depends on the input and the respective function that
is called.

if (execute){

one query / one dimension
oneQuery <- dispersion(
bt, query = '"Gerechtigkeit"',
"text_party", progress = F
)

multiple quertes / one dimenstion
twoQueries <- dispersion(
bt,
c('"[eE]Juro.*"', '"Br.ssel"'),
"text_party", progress = F
)

multiple queries / two dimensions
twoDim <- dispersion(

bt, query = '"Regierung"',

c("text_date", "text_party"), progress = F
)

9 Compare

To identify the specific vocabulary of a corpus of interest, a keyness test based
on the chi square test can be performed. The following example also shows how
a partitio can be used based on a grep procedue.

if (execute){
coalition <- enrich(coalition, pAttribute="word")
bt <- enrich(coalition, pAttribute="word")
vocabulary <- compare(coalition, bt, included=TRUE)

}

10 Shiny

If the driller runs on a local installation, some shiny apps can be tested that are
included in the package by calling polmineR().

The apps will search the global environment for partition objects and offer to
choose one of these from a drop-down menu. Thus, for using the apps, relevant
partition objects should be generated first during a command-line R session.
Then you may start calling the apps.

The apps are still experimental and at times may throw out errors before
you get a result. They are included to demonstrate how using the driller is
meant to be made more convenient in future versions of the package.

	Purpose
	Corpora
	Installation
	System requirements
	Dependencies
	Loading the package

	Default settings
	Setting up a partition
	Getting a tm TermDocumentMatrix
	Context analysis
	Distribution of queries
	Compare
	Shiny

