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1 Introduction

The plotmo function [12] plots regression surfaces. The frontspiece on the title page is
an example. That example is for a random forest, but plotmo can be used on a wide
variety of R models.

It creates a plot for a model variable by plotting the predicted response as the variable
is changed, with all other variables held at their median values. For interaction plots,
two variables are changed while the others are held at their medians.

The first level is used instead of the median for factors. You can change that with the
grid.func and grid.levels arguments.

Each graph shows only a thin slice of the data, because most variables are fixed. Please
be aware of that when interpreting the graphs — over-interpretation is a temptation.

Plotmo was originally part of the earth package [13] and a few connections to that
package still remain.

2 Some examples

Here are some examples which illustrate plotmo on various models (Figure 1). The
models here are just for illustrating plotmo and shouldn’t be taken too seriously.

# use a small set of variables for illustration

library(earth) # for ozone1 data

data(ozone1)

oz <- ozone1[, c("O3", "humidity", "temp", "ibt")]

lm.mod <- lm(O3 ~ humidity + temp*ibt, data=oz) ## linear model

plotmo(lm.mod)

library(rpart) ## rpart

rpart.mod <- rpart(O3 ~ ., data=oz)

plotmo(rpart.mod)

library(randomForest) ## randomForest

rf.mod <- randomForest(O3 ~ ., data=oz)

plotmo(rf.mod)

# partialPlot(rf.mod, oz, temp) # compare to partial-dependence plot

library(gbm) ## gbm

gbm.mod <- gbm(O3 ~ ., data=oz, dist="gaussian", inter=2, n.trees=1000)

plotmo(gbm.mod)

# plot(gbm.mod, i.var=2) # compare to partial-dependence plots

# plot(gbm.mod, i.var=c(2,3))

library(gam) ## gam

gam.mod <- gam(O3 ~ s(humidity) + s(temp) + s(ibt), data=oz)

plotmo(gam.mod, all2=TRUE) # all2=TRUE to show interaction plots
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Figure 1: Plotmo on various models.
These plots were generated with the models on the previous page. A single degree2 plot
for each model type is illustrated here.

library(nnet) ## nnet

set.seed(4)

nnet.mod <- nnet(O3 ~ ., data=scale(oz), size=2, decay=0.01, trace=FALSE)

plotmo(nnet.mod, type="raw", all2=T) # type="raw" gets passed to predict

This is by no means an exhaustive list of models supported by plotmo. The packages
used in the above code are [7, 9, 14, 15,17].

3 Limitations

In general, this function won’t work on models that don’t save the call and data with
the model in a standard way (Section 9).

It’s best to keep the variable names and formula in the original call to the model-
building function simple. The current version of plotmo parses model formulas with
grep, and is liable to get confused by complex formulas. Use temporary variables or
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attach rather than using $ and similar in formulas.

You may get error messages if there are NAs in the data.

4 Alternatives

An alternative approach is to use partial-dependence plots (e.g. Hastie et al. [6] Section
10.13.2). Plotmo sets the “other” variables to their median value, whereas in a partial-
dependence plot at each plotted point the effect of the other variables is averaged. In
general, partial-dependence plots and plotmo plots will differ, but for additive models
(no interaction terms) the shape of the curves is identical.

The termplot function is effective but can be used only on models with a predict

method that supports type="terms", and it doesn’t generate degree2 plots.

Some other possibilities for plotting the response on a per-predictor basis are partial-
residual plots, partial-regression variable plots, and marginal-model plots (e.g. crPlots,
avPlots, and marginalModelPlot in the car package [2]). The effects package is also
of interest [3]. These packages are orientated towards linear and parametric models,
whereas plotmo is mainly for non-parametric models.

All of these plots are different ways of condensing a multi-dimensional model onto the
two dimensions of a page.

5 The ylim and clip arguments

Plotmo determines ylim for the graphs automatically. If the automatic ylim isn’t cor-
rect for your model, specify a ylim when invoking plotmo, or try specifying clip=FALSE.

Here are some details. Typically we want all plots on a page to have the same ylim

(the same vertical axis limits), so we can see the effect of each variable relative to
the other variables. The range of predicted values over all the plots is the obvious
way to set ylim. However, a few wild predictions can make this range very wide,
and reduce resolution over all graphs. Therefore when determining the range, plotmo
ignores outlying predictions (unless clip=FALSE). Predictions that are more than 50%
beyond the range of the observed response are considered outlying. In practice such
outlying predictions seem quite rare.

Old versions of plotmo used a slightly different algorithm for clipping ylim.

4



6 Which variables are plotted?

The set of variables plotted for some common models is listed below [9, 13–16].

The default behavior for your model may leave out some variables that you would like
to see. In that case, use all1 = TRUE and all2 = TRUE.

• earth

degree1 variables in additive (non interaction) terms

degree2 variables appearing together in interaction terms

• rpart

degree1 variables used in the tree

degree2 parent-child pairs

• randomForest

degree1 nine most important variables (ranked on
the first column of model$importance)

degree2 pairs of the four most important variables

• gbm

degree1 variables with relative.influence >= 1%,
up to a maximum of nine variables

degree2 pairs of the four variables with the largest relative influence

• lm, glm, gam, lda, etc.

These are processed using plotmo’s default methods (Section 9):

degree1 all variables

degree2 variables in the formula associated with each other by
terms like x1 * x2, x1:x2, and s(x1,x2)

5



7 Notes on miscellaneous packages

This section gives some specifics on how plotmo and plotres handle some miscellaneous
models [4, 5, 8, 10, 14–16,20].

By default, predict.gbm is called with n.trees = object$n.trees

By default, predict.glmnet is called with s = 0

By default, predict.quantregForest is called with quantiles = .5

By default, predict.cosso is called with M = min(ncol(newdata), 2)

For rpart models, plotres uses the rpart.plot package [11] if it is available, else it
uses the plotting routines built into the rpart package.

The predict methods for rq and rqs models (quantreg package) return multiple
columns, and plotmo chooses the column corresponding to tau = 0.5. Plotmo will
plot prediction intervals if the quantreg model is built with say tau = c(.05, .5,

.95) and plotmo is called with the corresponding level argument, in this case level

= 0.90.

The neuralnet package doesn’t provide a predict method, but plotmo provides one
internally:

predict.nn(object, newdata=NULL, rep="mean", trace=FALSE)

where rep can be an integer, "best", or "mean" (default). These last two are equivalent
if the model was built with nrep = 1. Examples:

plotres(nn.model, predict.rep="mean") # resids for mean prediction over all reps

plotres(nn.model) # same

plotres(nn.model, predict.rep="best") # resids for prediction from best rep
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The predict methods for qda and lda models (MASS package) are extended inter-
nally within plotmo to take a type argument. This can be one of "class" (default),
"posterior", or "response". This selects the "class", "posterior", or "x" field in
the value returned by predict.lda and predict.qda. Use the nresponse argument
to select a column within the selected field. Example (Figure 2):

library(MASS)

lcush <- data.frame(Type=as.numeric(Cushings$Type), log(Cushings[,1:2]))[1:21,]

qda.mod <- qda(Type ~ ., data=lcush)

plotmo(qda.mod, # figure shown below

all2=TRUE, # show all interact plots

type2="image", # use image instead of persp for interact plot

ngrid2=200, # increase resolution in image plot

image.col=c("lightpink", "palegreen1", "lightblue"),

pt.col=as.numeric(Cushings$Type)+1, pt.pch=as.character(Cushings$Type))

for(nresponse in 1:3) # not shown

plotmo(qda.mod, type="post", nresponse=nresponse,

all2=TRUE, persp.border=NA)

persp.theta=30) # same theta for all plots so can compare
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Figure 2: A qda model of the log Cushings data. The background colors in the interac-
tion plot show the predicted class.
The slightly messy look of the a,b,c labels in the top two plots is caused by plotmo’s
automatic jittering of factor labels (see the jitter argument).
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8 Prediction intervals (the level argument)

Use the level argument to plot pointwise confidence or prediction intervals. The
predict method of the model object must support this. Examples (Figure 3):

par(mfrow=c(2,3))

log.trees <- log(trees) # make the resids more homoscedastic

# (necessary for lm)

## lm

lm.model <- lm(Volume~Height, data=log.trees)

plot(lm.model, which=1) # residual vs fitted graph, check homoscedasticity

plotmo(lm.model, level=.90, pt.col=1,

main="lm\n(conf and pred intervals)", do.par=F)

## earth

library(earth)

earth.model <- earth(Volume~Height, data=log.trees,

nfold=5, ncross=30, varmod.method="lm")

plotmo(earth.model, level=.90, pt.col=1, main="earth", do.par=F)

## quantreg

library(quantreg)

rq.model <- rq(Volume~Height, data=log.trees, tau=c(.05, .5, .95))

plotmo(rq.model, level=.90, pt.col=1, main="rq", do.par=F)

## quantregForest

# quantregForest is a layer on randomForest that allows prediction intervals

library(quantregForest)

x <- data.frame(Height=log.trees$Height)

qrf.model <- quantregForest(x, log.trees$Volume)

plotmo(qrf.model, level=.90, pt.col=1, main="qrf", do.par=F)

## gam

library(mgcv)

gam.model <- gam(Volume~s(Height), data=log.trees)

plotmo(gam.model, level=.90, pt.col=1,

main="gam\n(conf not pred intervals)", do.par=F)

The packages used in the above code are [8, 10,13,19].

Confidence intervals versus prediction intervals

Be aware of the distinction between the two types of interval:

(i) intervals for the prediction of the mean response (often called confidence intervals)
(ii) intervals for the prediction of a future value (often called prediction intervals).

The model’s predict method determines which of these intervals get returned and
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Figure 3: Prediction intervals with plotmo. These plots were produced by the code on
the previous page.

plotted by plotmo. Currently only lm supports both types of interval on new data (see
predict.lm’s interval argument), and both are plotted by plotmo.

A reference is Section 3.5 of Julian Faraway’s online linear regression book [1]
http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf.

Assumptions

Just because the intervals are displayed doesn’t mean that they can be trusted. Be
aware of the assumptions made to estimate the limits. At the very least, the model
needs to fit the data adequately. Most models will impose further conditions. For
example, linear model residuals must be homoscedastic.

Examination of the ”Residual versus Fitted” plot is the standard way of detecting issues.
So for example, with linear models use plot.lm(which=1) and with earth models use
plot.earth(which=3). Look at the the distribution of residual points to detect non-
homoscedasity. Also look at the smooth line (the lowess line) in the residuals plot to
detect non-linearity. If this is highly curved, you can’t trust the intervals. One good
place for more background on residual analysis is the Regression Diagnostics: Residuals
section in Weisberg [18].

These are pointwise limits. They should only be interpreted in a pointwise fashion.
So for non-parametric models they shouldn’t be used to infer bumps or dips that are
dependent on a range of the curve. For that you need simultaneous confidence bands,
which none of the models above support.

9
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9 Accessing the model data

Plotmo needs to access the data used to build the model. It does that with the method
functions listed below.

As an example, the job of the plotmo.x function is to return the x matrix used when
the model was built. The default function plotmo.x.default essentially1 does the
following:

(i) it uses model$x

(i) if that doesn’t exist, it uses the rhs of the model formula (so the model must have
a terms field)

(i) if it can’t access that, it uses model$call$x

(i) if all that fails, it prints an error message.

The default method suffices for models that save the call and data with the model
in a standard way. Specific method functions can often be written to handle other
situations.

Method functions

The plotmo method functions are listed below. Use trace=2 to see plotmo calling
these functions.

◦ plotmo.x Return the model x matrix. The default method is described above.

◦ plotmo.y Return the model y matrix. Similar to plotmo.x.

◦ plotmo.predict Make predictions on new data. This is invoked for each subplot.

The default method calls the usual predict method for the model. The prediction
newdata for each subplot is the grid of values for the subplot. The newdata is a
data.frame and not a matrix to allow both numerics and factors in general.

Model-specific predict methods exist for some model classes, usually because a
minor tweak is needed. For example plotmo has an internal one-line function
plotmo.predict.lars — this converts newdata to a matrix before passing it to
predict.lars.

◦ plotmo.type Select a type argument suitable for the current model’s predict

method.

◦ plotmo.prolog Called at the start of plotmo to do any model-specific initializa-
tion.

◦ plotmo.singles Figure out which variables should appear in degree1 plots.

1There are actually a few more complications. For example, it also tries the model field saved with
some lm models.
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◦ plotmo.pairs Figure out which variables should appear in degree2 plots.

◦ plotmo.convert.na.nresponse Convert the default nresponse argument to a
column number for multiple response models.

◦ plotmo.pint Get the prediction intervals when plotmo’s level argument is used.

Environment for the model data

One x isn’t necessarily the same as another x. Plotmo must access the data used to
build the model in the correct environment:

◦ It uses the .Environment attribute of model$terms. (The terms field is standard
for models built with a formula.)

◦ If that isn’t available it uses model$.Environment. (Most models don’t have such
a field.)

◦ If that isn’t available it uses parent.frame(). This last resort is correct if the
model was built in the user’s workspace and plotmo is called from the same
workspace. But all bets are off if the model was created within a function and
plotmo is called from a different function.

The environment isn’t necessary if the data is saved with the model in the x and y

fields of the model.
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10 FAQ

I’m not seeing any interaction plots. How do I change that?

Use all2=TRUE. By default, degree2 plots are drawn only for some types of model
(Section 6).

plotmo always prints messages. How do I make it silent?

Use trace =- 1. The grid message printed by default is a reminder that plotmo is
displaying just a slice of the data.

The image display has blue “holes” in it. What gives?

The holes are areas where the predicted response is out-of-range. Try using clip=FALSE

(Section 5).

I want to add lines or points to a plot created by plotmo. and
am having trouble getting my axis scaling right.

Use do.par=FALSE or do.par=2. With the default do.par=TRUE, plotmo restores the
par parameters and axis scales to their values before plotmo was called.

After plotmo reports an error, traceback() says “No traceback
available”

You can try using trace = -1 when invoking plotmo. This will often (but not always)
allow traceback at the point of failure. (Actually, error handling in plotmo and plotres

needs some work.)

How to cite plotmo

Stephen Milborrow. plotmo: Plot a Model’s Response and Residuals.
R Package (2015).

@Manual{plotmopackage,

title = {plotmo: Plot a Model's Response and Residuals},

author = {Stephen Milborrow},

year = {2015},

note = {R package},

url = {http://CRAN.R-project.org/package=plotmo }

}
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11 Common error messages

This section list some common error messages.

◦ Error in match.arg(type): ’arg’ should be one of ...

The message is probably issued by the predict method for your model. Set plotmo’s
type argument to a legal value for the model, as described on the help page for the
predict method for the model.

◦ Error: model does not have a ’call’ field or an ’x’ field

Plotmo cannot get the data it needs from the model (Section 9).

A workaround is to add the x and y fields to the model object before calling plotmo,
like this

model$x <- xdata

model$y <- ydata

where xdata and ydata are the x and y matrices used to build the model. This
workaround often suffices for plotmo to do its job, assuming the model has a standard
predict method that accepts data.frames.

Otherwise contact the maintainer of plotmo — it is often a straightforward exercise to
add support for a new type of model.

◦ Error: cannot get the original model predictors

These and similar messages mean that plotmo cannot get the data it needs from the
model.

You can try simplifying the way the model function is called.

Perhaps you need to use keepxy or similar in the call to the model function, so the
data is attached to the model object and available for plotmo.

Please see also the discussion for the above error message.

◦ Error: predict.lm(xgrid, type="response") returned the wrong length

◦ Warning: ’newdata’ had 100 rows but variable(s) found have 30 rows

◦ Error: variable ’x’ was fitted with type "nmatrix.2" but type "numeric"

was supplied

◦ Error in model.frame: invalid type (list) for variable ’x[,3]’
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These and similar messages usually mean that predict is misinterpreting the new data
generated by plotmo.

The underlying issue is that many predict methods, including predict.lm, seem to
reject any reasonably constructed new data if the function used to create the model
was called in an unconventional way.

The workaround is to simplify the way the model function is called. Use a formula and
a data frame, or at least explicitly name the variables rather than passing a matrix.
Use simple variable names (so x1 rather than dat$x1, for example).

If the symptoms persist after changing the way the model is called, it’s possible that
the model doesn’t save the data in a form accessible by plotmo (Section 9).
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