Calculations define how (typically numerical) data is to be summarised/aggregated. Common ways of summarising data include sum, avg (mean, median, …), max, min, etc.
Within a pivottabler
pivot table, calculations always belong to a Calculation Group. Calculation groups allow calculations to be defined that refer to other calculations.
Every pivot table always has a default calculation group (called default
). This is sufficient for most scenarios and calculations groups are not referred to again in this vignette. All the calculations defined in this vignette sit in the default
calculation group.
Creating additional calculation groups is only necessary for some advanced pivot table layouts.
The pivottabler package supports several different ways of calculating the values to display in the cells of the pivot table:
Calculations are added to the pivot table using the defineCalculation()
function. The following sections show the different ways this function can be used for each of the above types of calculation.
The most common way to calculate the pivot table is to provide an expression that describes how to summarise the data, e.g. defining a calculation that counts the number of trains:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
The pivottabler package uses the dplyr package. The summariseExpression is an expression that can be used with the dplyr summarise()
function. The following shows several different example expressions:
library(pivottabler)
library(dplyr)
library(lubridate)
# derive some additional data
trains <- mutate(bhmtrains,
ArrivalDelta=difftime(ActualArrival, GbttArrival, units="mins"),
ArrivalDelay=ifelse(ArrivalDelta<0, 0, ArrivalDelta))
# create the pivot table
pt <- PivotTable$new()
pt$addData(trains)
pt$addRowDataGroups("TOC", totalCaption="All TOCs")
pt$defineCalculation(calculationName="TotalTrains", caption="Total Trains",
summariseExpression="n()")
pt$defineCalculation(calculationName="MinArrivalDelay", caption="Min Arr. Delay",
summariseExpression="min(ArrivalDelay, na.rm=TRUE)")
pt$defineCalculation(calculationName="MaxArrivalDelay", caption="Max Arr. Delay",
summariseExpression="max(ArrivalDelay, na.rm=TRUE)")
pt$defineCalculation(calculationName="MeanArrivalDelay", caption="Mean Arr. Delay",
summariseExpression="mean(ArrivalDelay, na.rm=TRUE)", format="%.1f")
pt$defineCalculation(calculationName="MedianArrivalDelay", caption="Median Arr. Delay",
summariseExpression="median(ArrivalDelay, na.rm=TRUE)")
pt$defineCalculation(calculationName="IQRArrivalDelay", caption="Delay IQR",
summariseExpression="IQR(ArrivalDelay, na.rm=TRUE)")
pt$defineCalculation(calculationName="SDArrivalDelay", caption="Delay Std. Dev.",
summariseExpression="sd(ArrivalDelay, na.rm=TRUE)", format="%.1f")
pt$renderPivot()
Calculations can be swapped onto the rows using the addRowCalculationGroups()
method. Transposing the example pivot table from above:
library(pivottabler)
library(dplyr)
library(lubridate)
# derive some additional data
trains <- mutate(bhmtrains,
ArrivalDelta=difftime(ActualArrival, GbttArrival, units="mins"),
ArrivalDelay=ifelse(ArrivalDelta<0, 0, ArrivalDelta))
# create the pivot table
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("TOC", totalCaption="All TOCs") # << ***** CODE CHANGE ***** <<
pt$defineCalculation(calculationName="TotalTrains", caption="Total Trains",
summariseExpression="n()")
pt$defineCalculation(calculationName="MinArrivalDelay", caption="Min Arr. Delay",
summariseExpression="min(ArrivalDelay, na.rm=TRUE)")
pt$defineCalculation(calculationName="MaxArrivalDelay", caption="Max Arr. Delay",
summariseExpression="max(ArrivalDelay, na.rm=TRUE)")
pt$defineCalculation(calculationName="MeanArrivalDelay", caption="Mean Arr. Delay",
summariseExpression="mean(ArrivalDelay, na.rm=TRUE)", format="%.1f")
pt$defineCalculation(calculationName="MedianArrivalDelay", caption="Median Arr. Delay",
summariseExpression="median(ArrivalDelay, na.rm=TRUE)")
pt$defineCalculation(calculationName="IQRArrivalDelay", caption="Delay IQR",
summariseExpression="IQR(ArrivalDelay, na.rm=TRUE)")
pt$defineCalculation(calculationName="SDArrivalDelay", caption="Delay Std. Dev.",
summariseExpression="sd(ArrivalDelay, na.rm=TRUE)", format="%.1f")
pt$addRowCalculationGroups() # << ***** CODE CHANGE ***** <<
pt$renderPivot()
Calculations can be defined that refer to other calculations, by following these steps:
type="calculation"
,basedOn
argument.calculationExpression
argument. The values of the base calculations are accessed as elements of the values
list.For example, calculating the percentage of trains with an arrival delay of greater than five minutes:
library(pivottabler)
library(dplyr)
library(lubridate)
# derive some additional data
trains <- mutate(bhmtrains,
ArrivalDelta=difftime(ActualArrival, GbttArrival, units="mins"),
ArrivalDelay=ifelse(ArrivalDelta<0, 0, ArrivalDelta),
DelayedByMoreThan5Minutes=ifelse(ArrivalDelay>5,1,0))
# create the pivot table
pt <- PivotTable$new()
pt$addData(trains)
pt$addRowDataGroups("TOC", totalCaption="All TOCs")
pt$defineCalculation(calculationName="DelayedTrains", caption="Trains Arr. 5+ Mins Late",
summariseExpression="sum(DelayedByMoreThan5Minutes, na.rm=TRUE)")
pt$defineCalculation(calculationName="TotalTrains", caption="Total Trains",
summariseExpression="n()")
pt$defineCalculation(calculationName="DelayedPercent", caption="% Trains Arr. 5+ Mins Late",
type="calculation", basedOn=c("DelayedTrains", "TotalTrains"),
format="%.1f %%",
calculationExpression="values$DelayedTrains/values$TotalTrains*100")
pt$renderPivot()
The base calculations can be hidden by specifying visible=FALSE
, e.g. to look at how the percentage of trains more than five minutes late varied by month and train operating company:
library(pivottabler)
library(dplyr)
library(lubridate)
# derive some additional data
trains <- mutate(bhmtrains,
GbttDateTime=as.POSIXct(ifelse(is.na(GbttArrival), GbttDeparture, GbttArrival),
origin = "1970-01-01"),
GbttMonth=make_date(year=year(GbttDateTime), month=month(GbttDateTime), day=1),
ArrivalDelta=difftime(ActualArrival, GbttArrival, units="mins"),
ArrivalDelay=ifelse(ArrivalDelta<0, 0, ArrivalDelta),
DelayedByMoreThan5Minutes=ifelse(ArrivalDelay>5,1,0))
# create the pivot table
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("GbttMonth", dataFormat=list(format="%B %Y"))
pt$addRowDataGroups("TOC", totalCaption="All TOCs")
pt$defineCalculation(calculationName="DelayedTrains", visible=FALSE,
summariseExpression="sum(DelayedByMoreThan5Minutes, na.rm=TRUE)")
pt$defineCalculation(calculationName="TotalTrains", visible=FALSE,
summariseExpression="n()")
pt$defineCalculation(calculationName="DelayedPercent", caption="% Trains Arr. 5+ Mins Late",
type="calculation", basedOn=c("DelayedTrains", "TotalTrains"),
format="%.1f %%",
calculationExpression="values$DelayedTrains/values$TotalTrains*100")
pt$renderPivot()
A custom calculation function allows more complex calculation logic to be used. Such a function is invoked once for each cell in the body of the pivot table. Custom calculation functions always have the same arguments defined:
pivotCalculator
is a helper object that offers various methods to assist in performing calculations,netFilters
contains the definitions of the filter criteria coming from the row and column headers in the pivot table,format
provides the formatting definition - this is the same value specified in the defineCalculation()
call,baseValues
provides access to the results of other calculations in the calculation group,cell
provides access to more details about the individual cell that is being calculated
cell
argument is provided to support future scenarios so is not explained here.For example, if we wish to examine the worst single day performance, we need to:
library(pivottabler)
library(dplyr)
library(lubridate)
# derive some additional data
trains <- mutate(bhmtrains,
GbttDateTime=as.POSIXct(ifelse(is.na(GbttArrival), GbttDeparture, GbttArrival),
origin = "1970-01-01"),
GbttDate=make_date(year=year(GbttDateTime), month=month(GbttDateTime), day=day(GbttDateTime)),
GbttMonth=make_date(year=year(GbttDateTime), month=month(GbttDateTime), day=1),
ArrivalDelta=difftime(ActualArrival, GbttArrival, units="mins"),
ArrivalDelay=ifelse(ArrivalDelta<0, 0, ArrivalDelta),
DelayedByMoreThan5Minutes=ifelse(ArrivalDelay>5,1,0))
# custom calculation function
getWorstSingleDayPerformance <- function(pivotCalculator, netFilters, format, baseValues, cell) {
# get the data frame
trains <- pivotCalculator$getDataFrame("trains")
# apply the TOC and month filters coming from the headers in the pivot table
filteredTrains <- pivotCalculator$getFilteredDataFrame(trains, netFilters)
# calculate the percentage of trains more than five minutes late by date
dateSummary <- filteredTrains %>%
group_by(GbttDate) %>%
summarise(DelayedPercent = sum(DelayedByMoreThan5Minutes, na.rm=TRUE) / n() * 100) %>%
arrange(desc(DelayedPercent))
# top value
tv <- dateSummary$DelayedPercent[1]
# build the return value
value <- list()
value$rawValue <- tv
value$formattedValue <- pivotCalculator$formatValue(tv, format=format)
return(value)
}
# create the pivot table
pt <- PivotTable$new()
pt$addData(trains, "trains")
pt$addColumnDataGroups("GbttMonth", dataFormat=list(format="%B %Y"))
pt$addRowDataGroups("TOC", totalCaption="All TOCs")
pt$defineCalculation(calculationName="WorstSingleDayDelay", format="%.1f %%",
type="function", calculationFunction=getWorstSingleDayPerformance)
pt$renderPivot()
The return value from the custom function must be a list containing the raw result value (i.e. unformatted, that is either integer
or numeric
data type) and a formatted value (that is character
data type).
Using a custom calculation function also enables additional possibilities, e.g. including additional information in the formatted value, in this case the date of the worst single day performance (where the code changes compared to the example above are highlighted):
library(pivottabler)
library(dplyr)
library(lubridate)
# derive some additional data
trains <- mutate(bhmtrains,
GbttDateTime=as.POSIXct(ifelse(is.na(GbttArrival), GbttDeparture, GbttArrival),
origin = "1970-01-01"),
GbttDate=make_date(year=year(GbttDateTime), month=month(GbttDateTime), day=day(GbttDateTime)),
GbttMonth=make_date(year=year(GbttDateTime), month=month(GbttDateTime), day=1),
ArrivalDelta=difftime(ActualArrival, GbttArrival, units="mins"),
ArrivalDelay=ifelse(ArrivalDelta<0, 0, ArrivalDelta),
DelayedByMoreThan5Minutes=ifelse(ArrivalDelay>5,1,0))
# custom calculation function
getWorstSingleDayPerformance <- function(pivotCalculator, netFilters, format, baseValues, cell) {
# get the data frame
trains <- pivotCalculator$getDataFrame("trains")
# apply the TOC and month filters coming from the headers in the pivot table
filteredTrains <- pivotCalculator$getFilteredDataFrame(trains, netFilters)
# calculate the percentage of trains more than five minutes late by date
dateSummary <- filteredTrains %>%
group_by(GbttDate) %>%
summarise(DelayedPercent = sum(DelayedByMoreThan5Minutes, na.rm=TRUE) / n() * 100) %>%
arrange(desc(DelayedPercent))
# top value
tv <- dateSummary$DelayedPercent[1]
date <- dateSummary$GbttDate[1] # << CODE CHANGE <<
# build the return value
value <- list()
value$rawValue <- tv
value$formattedValue <- paste0(format( # << CODE CHANGE (AND BELOW) <<
date, format="%a %d"), ": ", pivotCalculator$formatValue(tv, format=format))
return(value)
}
# create the pivot table
pt <- PivotTable$new()
pt$addData(trains, "trains")
pt$addColumnDataGroups("GbttMonth", dataFormat=list(format="%B %Y"))
pt$addRowDataGroups("TOC", totalCaption="All TOCs")
pt$defineCalculation(calculationName="WorstSingleDayDelay", format="%.1f %%",
type="function", calculationFunction=getWorstSingleDayPerformance)
pt$renderPivot()
Including two values in each cell somewhat reduces the readability however.
With this approach, the pivot table performs little or no calculations. The values to display are predominantly calculated in R code before the pivot table is created. This pivot table is used primarily as a visualisation mechanism.
Returning to the original simple example of the number of trains operated by each train operating company:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
In the example above, pivottabler
calculated the values in each pivot table cell. We can alternatively calculate the values explictly in R code and instead just use the pivot table to display them:
library(pivottabler)
# perform the aggregation in R code explicitly
trains <- bhmtrains %>%
group_by(TrainCategory, TOC) %>%
summarise(NumberOfTrains=n()) %>%
ungroup()
# a sample of the aggregated data
head(trains)
## # A tibble: 6 × 3
## TrainCategory TOC NumberOfTrains
## <fctr> <fctr> <int>
## 1 Express Passenger Arriva Trains Wales 3079
## 2 Express Passenger CrossCountry 22865
## 3 Express Passenger London Midland 14487
## 4 Express Passenger Virgin Trains 8594
## 5 Ordinary Passenger Arriva Trains Wales 830
## 6 Ordinary Passenger CrossCountry 63
# display this pre-calculated data
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", type="value", valueName="NumberOfTrains")
pt$renderPivot()
In the current version of pivottabler
there is no way to explictly pre-calculate the totals. Instead, two workarounds are possible. Either the totals can be hidden or a summarise expression can be specified to calculate the totals. Both of these examples are presented below.
library(pivottabler)
# perform the aggregation in R code explicitly
trains <- bhmtrains %>%
group_by(TrainCategory, TOC) %>%
summarise(NumberOfTrains=n()) %>%
ungroup()
# display this pre-calculated data
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("TrainCategory", addTotal=FALSE) # << *** CODE CHANGE *** <<
pt$addRowDataGroups("TOC", addTotal=FALSE) # << *** CODE CHANGE *** <<
pt$defineCalculation(calculationName="TotalTrains", type="value", valueName="NumberOfTrains")
pt$renderPivot()
library(pivottabler)
# perform the aggregation in R code explicitly
trains <- bhmtrains %>%
group_by(TrainCategory, TOC) %>%
summarise(NumberOfTrains=n()) %>%
ungroup()
# display this pre-calculated data
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", # << *** CODE CHANGE (AND BELOW) *** <<
type="value", valueName="NumberOfTrains",
summariseExpression="sum(NumberOfTrains)")
pt$renderPivot()
A pivot table can display data from multiple data frames. The following summarises the possible functionality:
defineCalculation()
function1.Important: When adding multiple data frames to a pivot table, the data frame columns used for the data groups (i.e. row/column headings) must be conformed, i.e.:
It is also worth noting that only the first data frame added to the pivot table is used when generating the row/column headings.
The example below illustrates using two data frames with a single pivot table:
library(pivottabler)
library(dplyr)
# derive some additional data
trains <- mutate(bhmtrains,
ArrivalDelta=difftime(ActualArrival, GbttArrival, units="mins"),
ArrivalDelay=ifelse(ArrivalDelta<0, 0, ArrivalDelta),
DelayedByMoreThan5Minutes=ifelse(ArrivalDelay>5,1,0)) %>%
select(TrainCategory, TOC, DelayedByMoreThan5Minutes)
# in this example, bhmtraindisruption is joined to bhmtrains
# so that the TrainCategory and TOC columns are present in both
# data frames added to the pivot table
cancellations <- bhmtraindisruption %>%
inner_join(bhmtrains, by="ServiceId") %>%
mutate(CancelledInBirmingham=ifelse(LastCancellationLocation=="BHM",1,0)) %>%
select(TrainCategory, TOC, CancelledInBirmingham)
# create the pivot table
pt <- PivotTable$new()
pt$addData(trains, "trains")
pt$addData(cancellations, "cancellations")
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="DelayedTrains", dataName="trains",
caption="Delayed",
summariseExpression="sum(DelayedByMoreThan5Minutes, na.rm=TRUE)")
pt$defineCalculation(calculationName="CancelledTrains", dataName="cancellations",
caption="Cancelled",
summariseExpression="sum(CancelledInBirmingham, na.rm=TRUE)")
pt$renderPivot()
In the example above, the number of trains more than five minutes late is calculated from the trains
data frame and the number of trains cancelled at Birmingham New Street is calculated from the cancellations
data frame.
The formatting of calculation results is specified by setting the format
parameter when calling the defineCalculation
function.
A number of different approaches to formatting are supported:
format
is a text value, then pivottabler invokes base::sprintf()
with the specified format.format
is a list, then pivottabler invokes base::format()
, where the elements in the list become arguments in the function call.format
is an R function, then this is invoked for each value.The above are the same approaches used when formatting data groups. See the Data Groups vignette for more details.
Examples of the first two approaches above can be found in previous examples in this vignette. An example of the third approach can be found in the Data Groups vignette.
By default, where no data exists (for a particular combination of row and column headers) pivottabler
will leave the pivot table cell empty. Sometimes it is desirable to display a value in these cells. This can be specified in two ways in the defineCalculation()
function - either by specifying a value for either the noDataValue
or noDataCaption
arguments. The differences between these two options are as follows:
Comparison | noDataValue argument | noDataCaption argument |
---|---|---|
Allowed Data Type(s) | integer or numeric |
character |
format argument applies |
Yes (will be formatted) | No (will be displayed as-is) |
Will be used in other calculations | Yes | No |
If the requirement is only to display a different value when there is no data, then noDataCaption
is the right choice. Both approaches are demonstrated below, where the Virgin Trains, Ordinary Passenger cell has no data, so the empty cell value/caption is shown.
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()", noDataValue=0)
pt$renderPivot()
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()", noDataCaption="-")
pt$renderPivot()
In the current version of the pivottabler
package, each cell in the pivot table is calculated independently and sequentially. Batch execution of cells is under consideration for a future version.
For large data frames, the current approach can significantly increase the time required to calculate the pivot table cell values. In such cases, aggregating the data explictly in R code (where this is possible) before creating the pivot table can reduce the overall time required.
For example, duplicating the bhmtrains
sample data frame to create a larger data set.
# create a larger data frame
manytrains <- rbind(bhmtrains, bhmtrains, bhmtrains, bhmtrains, bhmtrains, bhmtrains,
bhmtrains, bhmtrains, bhmtrains, bhmtrains, bhmtrains, bhmtrains)
paste0("manytrains consists of ", nrow(manytrains), " rows and is ", format(object.size(manytrains), units="auto"), " in size.")
## [1] "manytrains consists of 1004520 rows and is 92 Mb in size."
# function for generating a pivot
library(pivottabler)
generatePivot <- function(data) {
pt <- PivotTable$new()
pt$addData(data)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$evaluatePivot()
}
# time creating a pivot table (without aggregating the data first)
system.time(replicate(10, generatePivot(manytrains))) / 10
## user system elapsed
## 1.250 0.150 1.426
# aggregate the larger data frame
library(dplyr)
aggmanytrains <- manytrains %>%
group_by(TrainCategory, TOC) %>%
summarise(TotalTrains=n()) %>%
ungroup()
# time creating a pivot table (using the pre-aggregated data frame)
system.time(replicate(10, generatePivot(aggmanytrains))) / 10
## user system elapsed
## 0.122 0.000 0.125
If the pivot table contains only one data frame, then specifying the data frame when calling defineCalculation()
is not necessary.↩