pimeta
packageThe pimeta
package is easy. Load your data and then pass it the pima
function!
require("pimeta")
data(sbp, package = "pimeta")
# a parametric bootstrap prediction interval
set.seed(20161102)
pima(y = sbp$y, # effect size estimates
se = sbp$sigmak, # within studies standard errors
B = 50000 # some options (e.g., number of bootstrap samples)
)
Prediction Interval for Random-Effects Meta-Analysis
A parametric bootstrap prediction interval
Heterogeneity variance: DerSimonian-Laird
SE for average treatment effect: standard
Average treatment effect [95%PI]:
-0.3341 [-0.8769, 0.2248]
Average treatment effect [95%CI]:
-0.3341 [-0.5660, -0.0976]
Heterogeneity variance (tau^2):
0.0282
Several type of methods is supported.
# Higgins-Thompson-Spiegelhalter prediction interval
pima(sbp$y, sbp$sigmak, method = "HTS")
# Partlett-Riley prediction interval (Hartung and Knapp's SE)
pima(sbp$y, sbp$sigmak, method = "HK")
# Partlett-Riley prediction interval (Sidik and Jonkman's SE)
pima(sbp$y, sbp$sigmak, method = "SJ")