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Abstract

We describe an R package named picasso, which implements a unified framework of path-
wise coordinate optimization for a variety of sparse learning problems (Sparse Linear Regression,
Sparse Logistic Regression and Sparse Column Inverse Operator), combined with distinct active
set identification schemes (truncated cyclic, greedy, randomized and proximal gradient selec-
tion). Besides, the package provides the choices between convex (¢; norm) and nonvoncex
(MCP and SCAD) regularizations. These methods provide a broad range of options of different
sparsity inducing regularizations for most commonly used regression approaches, and various
schemes of active set identification allow for the trade-off between statistical consistency and
computational efficiency. Moreover, picasso has a provable linear convergence to a unique
sparse local optimum with optimal statistical properties, which the competing packages (e.g.,
ncvreg) do not have. The package is coded in C and can scale up to large problems efficiently
with the memory optimized via the sparse matrix output.

1 Introduction

Let 6% = (07, ..., 92)T € O* be a parameter vector to be estimated, where Q* € R%. We are interested
in solving a class of regularized sparse learning problems in a generic form:

min, - £(6) +R(6), (1)
where £(0) is the loss function, Ry (0) is the regularization term with a regularization parameter
A. The pathwise coordinate optimization combined with the active set identification, also called
“active shooting algorithm” (Peng et al., 2009), is one the of the most widely applied solvers for a
large variety of sparse learning problems (1) by virtue of its algorithmic simplicity and favorable
property of taking advantage of the model sparsity (Friedman et al., 2007; Breheny and Huang,
2011; Shalev-Shwartz and Tewari, 2011). Recent research also justifies the computational and
statistical superiority of the empirical performance of the pathwise coordinate descent procedure
for a large family of regularized M-estimators, including both convex and nonvoncex regularizations
(Zhao and Liu, 2015), which makes it a more attractive algorithm in practice.
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Figure 1: The pathwise coordinate optimization framework with 3 nested loops : (1) Warm start
initialization; (2) Active set updating and strong rule for coordinate preselection; (3) Active coor-
dinate minimization.

In this paper, we introduce and describe an R package called picasso, where a unified framework
of pathwise coordinate optimization is implemented for a large class of regularized sparse learn-
ing problems with both convex and nonvoncex regularization options. Different types of active
set identification schemes are also provided such that users have the freedom to trade off between
better statistical performance and computational preference. More specifically, the sparse learning
problems we implement include Sparse Linear Regression, Sparse Logistic Regression and Sparse
Column Inverse Operator (Tibshirani, 1996; Banerjee et al., 2008; Liu and Luo, 2012), each with ¢;
norm, MCP and SCAD regularizations (Fan and Li, 2001; Zhang, 2010). Integrated with four dif-
ferent active identification methods for all approaches described above, including truncated cyclic,
greedy, randomized and proximal gradient selection, we provide a wide class of combinations for
sparse learning problems based on pathwise coordinate optimization. Unlike existing packages for
nonvoncex regularized M-estimation, such as ncvreg, the algorithms in picasso have provable lin-
ear convergence to a unique sparse local optimum with optimal statistical properties (e.g. minimax
optimality and oracle properties in Zhao et al. (2014)).

2 Algorithm Design and Implementation

The design of picasso is based on the recent development in the generic pathwise coordinate
optimization algorithm (Zhao et al., 2014). It integrates the warm start initialization, active set
updating strategy, and strong rule for coordinate preselection into the classical coordinate opti-
mization. The overall algorithm contains three structurally nested loops as shown in Figure 1:

(1) Outer loop: The warm start initialization, also referred to as the pathwise optimization
scheme, is adopted to optimize the objective function in a multistage way with a sequence
of decreasing regularization parameters corresponding to solutions from sparse to dense. For
each stage, the algorithm initializes the estimator using the solution from the previous stage.

(2) Middle loop: The algorithm divides all coordinates into active ones (active set) and inactive



ones (inactive set) based on the strong rule (Tibshirani et al., 2012) for coordinate gradient
thresholding. Besides, when the inner loop terminates, the algorithm then exploits one of the
active set update rules, including truncated cyclic, greedy, randomized and proximal gradient
selection, to identify a new active set, which further decreases the objective value and repeats
the inner loops. The middle loop terminates when the active set no longer changes.

(3) Inner loop: The coordinate optimization is conducted only on the current active coordinates
until convergence, with all inactive coordinates remaining zero. Active coordinates are up-
dated efficiently with the “naive update” that only operates on the non-zero coefficients.
Further efficiencies are achieved using the “covariance update” for sparse linear regression
(Friedman et al., 2010). The inner loop terminates when the difference of estimates in suc-
cessive loops is within a predefined numerical precision.

In practice, the warm start initialization, active set updating strategies, and strong rule for
coordinate preselection significantly boost the computational performance, making pathwise coor-
dinate optimization one of the most important computational frameworks for solving the sparse
learning problems. The package is implemented in C with the memory optimized via the sparse
matrix output, and called from R by a user-friendly interface. The numerical evaluations show that
picasso is efficient and scales up to large problems.

3 Examples of User Interface

We illustrate the user interface of picasso by the following examples on sparse linear regression,
sparse logistic regression and sparse undirected graphical model estimation.

3.1 Sparse Linear Regression

Before we proceed with the example, we first introduce some background knowledge. Let 8 € R?
denote the regression coefficient vector, X € R?*" denote the design matrix, and y € R™ denote
the response vector. We solve the following regularized minimization problem

1
in —|ly — X0|3 + R0 2
min o |ly 12 + RA(6), (2)

where R\ (0) = Z?Zl rx(0;) is the regularization function. There are three options for R)(6),
including:

(1) The ¢; regularization, where

rA(07) = 165];
(2) The SCAD regularization, where
6, if 16;] < A,
A0 —0.5(62+22) )
ra(0;) = il :A(%lg) —, i X< |6 <A,
Ay — .
%, if 16;] > vA;



(3) The MCP regularization, where

62 .
oy ={ G- <
A ;
=, if 16;] > vA.
The illustrative examples of the above three regularization functions are provided in Figure 2.
The /1 regularization is convex and computationally tractable, but introduces large estimation
bias. The nonconvex SCAD and MCP regularizations reduce the estimation bias, but are more
computationally challenging. See more technical details in Zhang (2010); Fan and Li (2001).
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Figure 2: The illustrative examples of the ¢1, SCAD, and MCP regularizations. We choose A = 1
and 8 = 2.01 for both SCAD and MCP.

Existing software packages (e.g., ncvreg) adopt a heuristic pathwise coordinate descent al-
gorithms to solve (2). But there is no theoretical guarantee on the obtained estimators due to
the nonconvexity. In contrast, picasso adopt the pathwise calibrated sparse shooting algorithm
(PICASSO), which guarantees linear convergence to a sparse local optimum with good statistical
properties. See more technical details in Zhao et al. (2014).

We then proceed with a concrete example of using picasso to solve sparse linear regression
problems using different regularization functions.

> # Load the library

> library(picasso)

> # parameter settings

>n = 200 # data size

> d = 2000 # data dimension

> cor.X = 0.5 # covariance between predictors in a random resign

> 80 = matrix(cor.X,d,d) + (l-cor.X)=*diag(d) # covariance matrix of random design
> R = chol(S0)

> X = scale(matrix(rnorm(n*d) ,n,d)%*%R*sqrt(n-1)*sqrt(n))/sqrt(n-1)*sqrt(n)

> # generate the design matrix satisfying the column normalization condition
>w = c(2,0,3,-2, rep(0,d-4)) # generate regression coefficient vector

> Y = X\*%w + rnorm(n) # response vector



Using the above R script, we load the picasso package, and generate a simulated dataset with
200 samples and 2000 variables. The true coefficient vector is 8* = [2,0,3, 2,0, ...,0]7, and the
random noise is sampled from a standard n-dimensional normal distribution N(0,I).

> nlambda = 20 # number of regularization parameter
> lambda.ratio = 0.02 # minimum ratio of regularization paramter
> # fitting the linear model with Lasso
> out.1l1l = picasso(X, Y, nlambda = nlambda,lambda.min.ratio = lambda.ratio,
+ family="gaussian", method = "11", alg="greedy", opt="naive",
+ max.act.in=3)
> # fitting the linear model with MCP
> out.mcp = picasso(X, Y, nlambda = nlambda,lambda.min.ratio = lambda.ratio,
+ family="gaussian", method = "mcp", alg="proximal", opt="cov",
+ df=100, max.act.in=3)
> # fitting the linear model with SCAD
> out.scad = picasso(X, Y, nlambda = nlambda,lambda.min.ratio = lambda.ratio,
+ method = "scad")
> # plot the regularization path
> par(mfrow=c(1,3))
> plot(out.11)
> plot(out.mcp)
> plot(out.scad)
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Figure 3: Regularization Path for sparse linear regression. The regularization functions are #1,
SCAD, and MCP respectively from left to right.

Using the above R script, we fit sparse linear models using the /1, MCP, and SCAD regulariza-
tions. This yields three solution paths corresponding to a sequence of 20 regularization parameters
(in Figure 3). For Lasso, wo choose the greedy search scheme for updating the active set in the
middle loop. We choose max.act.in=3, which allows at most three coordinates to be updated
each time in the active set update, to further reduce the iterations of the middle loop. For MCP
regularization, we choose the proximal gradient search scheme for updating the active set and the
option of “covariance update” for the sparse update in the inner loop with the maximal degree of



freedom (nonzero coefficients in the solution) to be 100. For SCAD regularization, we use default
values for unspecified options.

3.2 Sparse Logistic Regression

Before we proceed with the example, we first introduce some background knowledge. Let 8 € R?
denote the regression coefficient vector, X € R%*" denote the design matrix, and y € R” denote
the response vector. We solve the following regularized minimization problem

L1 T T
min - ZZ (log [1 + exp(X{,0)] — 4 X[.0) +RA(6), (3)
where X;, = [X;1,...X;q]7 denotes the i-th row of X.
We then proceed with a concrete example of using picasso to solve sparse linear regression
problem. The generation of simulated dataset is identical to the code for sparse linear regression,
except that the observation model Y is generated as

exp (X%*%w) / (1+exp (X/x%w) )
rbinom(n,rep(1,n),p)

> P
>Y

The model fitting for sparse logistic regression is identical to the code for sparse linear regression,
except that we choose family = "binomial". We provide the solution paths for sparse logistic
regression in Figure 4.
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Figure 4: Regularization Path for sparse linear regression. The regularization functions are ¢1,
SCAD, and MCP respectively from left to right.

3.3 Sparse Column Inverse Operator

Before we proceed with the example, we first introduce some background knowledge. Let X € R?
be a random vector, which follows a d-variate Gaussian distribution with mean 0 and covariance
matrix 3. The graph structure of the Gaussian distribution is encoded by the sparsity pattern of the
inverse covariance matrix, also called precision matrix, ® = £~!. Suppose we have n i.i.d. random



sample {x(), 2@ ... £} from the distribution of X. Our goal is to recovery the underlying
graph structure by estimating ®. In picasso, we adopt the Sparse Column Inverse Operator
(SCIO) Liu and Luo (2012) for this task. More specifically, we solve the following collection of
regularized minimization problems

.1 '
O cRi 595593' — 15,0, + A||©,|1 forall j=1,2,...,d, (4)

where ©,; and I,; denote the j-th columns of ® and I respectively.
We then proceed with a concrete example of using picasso to estimate the undirected graphical
model using different procedures.

> # Load the library

> library(picasso)

> # parameter settings

>n = 200 # data size

> d = 100 # data dimension

> # generate a chain graph

> D = scio.generator(n=n,d=d,graph="band",seed=seed,g=1)
> plot(D) # plot the generated data

Using the above R script, we generates a simulated dataset with 200 samples and 100 variables
(the number of parameters to be estimated is 100 % (100 — 1)/2 = 4950). The true undirected
graphical model has a chain structure, with the (i,7 4+ 1), (i + 1,4)-th entries are non-zero and all
the other off diagonal entries of the precision matrix are zero. This results in the sparsity level as
99/4950 = 0.02. We provide the plot of the adjacency matrix, (empirical) covariance matrix and
the undirected graph pattern in Figure 5 for better visual illustration.

data = D$data # extract the data

nlambda = 50 # number of regularization parameter
Imin.ratio = 0.2 # minimum ratio of regularization paramter
family="graph" # family parameter for graphical model

# fitting the graphical model with SCIO

out.scio = picasso(data, nlambda = nlambda, lambda.min.ratio = lmin.ratio,
family=family)

# plot the sparsity level information and 3 typical sparse graphs

plot(out.scio)

V V + V V V V VvV V

Using the above R script, we estimate the undirected graphical model via SCIO. This yields a
solution path corresponding to sequences of 50 regularization parameters. We provide the plots of
sparsity level curves and 3 typical sparse graphs from the paths for all methods in Figure 6.

4 Numerical Simulation

We compare picasso with R package ncvreg, the most popular one for non-convex regularized
sparse regression, to demonstrate the superior efficiency of our package. Another popular package
sparseset is not considered here, since sparsenet implements a different coordinate minimization
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Figure 5: Plot of data generation from multivariate normal distributions with "chain" structure,
including adjacency matrix, (empirical) covariance matrix, and the graph pattern.
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Figure 6: Plot sparsity level information and 3 typical sparse graphs from the graph path using
SCIO.

algorithm based on calibrated MCP (Mazumder et al., 2011). All experiments are evaluated on a
PC with Intel Core i5 3.2GHz processor. Timings of the CPU execution are recored in seconds and
averaged over 100 replications on a sequence of 50 regularization parameters with approximately the
same estimation errors. The convergence threshold are chosen to be 107> for all experiments. For
picasso, we choose the greedy search scheme and set max.act.in=5 throughout all experiments.

We first compare the timing performance and the statistical performance for sparse linear regres-
sion under well-conditioned scenarios. We choose the (n,d) pairs as (500,5000) and (1000, 10000)
respectively, where n is the number of observation in the response vector Y € R" and d is the



Table 1: Average timing performance (in seconds) and optimal estimation errors with standard

errors in the parentheses on sparse linear regression.

Sparse Linear Regression (Well-Conditioned)

Method | Package 'n = 500, d = 5000 n = 1000, d = 10000
Time Est. Err. Time Est. Err.
¢, norm picasso | 0.5013(0.1404) | 0.3924(0.0662) | 1.4040(0.2358) | 0.2677(0.0346)
ncvreg | 42.521(7.7725) | 0.3924(0.0667) | 138.44(24.122) | 0.2670(0.0345)
MCP picasso | 0.4957(0.1809) | 0.0773(0.0499) | 1.3815(0.2018) | 0.0586(0.0306)
ncvreg | 22.290(2.7846) | 0.0775(0.0499) | 94.746(18.329) | 0.0592(0.0308)
SCAD picasso | 0.4942(0.0875) | 0.0766(0.0505) | 1.4384(0.1883) | 0.0587(0.0306)
ncvreg | 38.476(7.0584) | 0.0769(0.0505) | 139.59(25.226) | 0.0591(0.0309)
Sparse Linear Regression (Ill-Conditioned)
Method | Package ' n = 50,d = 5000 ‘n = 50, d = 10000
Time Est. Err. Time Est. Err.
MCP picasso | 0.1480(0.0098) | 0.4629(0.2840) | 0.2181(0.0310) | 0.4904(0.3232)
ncvreg | 0.0908(0.0053) | 1.5069(0.9596) | 0.1646(0.0087) | 1.7827(0.8856)

dimension of the parameter vector 3 € R%. We also set opt="naive". For the design matrix
X € R™? we generate each row independently from a d-dimensional normal distribution A/(0, ),
where ¥;; = 0.5 for ¢ # j and ¥;; = 1. Then we have Y = X3+ ¢, where 3 has all 0 entries except
Bis0 = 2, B3s0 = 3, Bego = —1.5 and € € R™ has independent N (0, 1) entries. From the summary in
Table 1, we see that while achieving almost identical optimal estimation errors |3 — 3|2, picasso
uniformly outperforms ncvreg under all settings, where picasso is approximately 50 ~ 100 times
faster.

We then compare the timing performance and the statistical performance for sparse linear
regression under ill-conditioned scenarios. We choose the (n,d) pairs as (50,5000) and (50, 10000)
respectively. The generations of X, 3 and € are identical to the settings above, except that 3;; =
0.75 for ¢ # j. Due to the choices that values of d are much larger than n, and a larger value is
chosen for 3;; for 7 # j, the problems considered here are much more challenging than the problems
in the well-conditioned scenarios. We see from Table 1 that though picasso is slightly slower than
ncvreg, its statistical performance is much better than ncvreg.

We also compare the timing performance for sparse logistic regression. The choices of (n, d) pairs
are (500, 2000), (1000, 2000), (500,5000) and (1000, 5000). The generations of X and 3 follow from
the settings for sparse linear regression under well-conditioned scenarios. Then the response vector

Y has independent Bernoulli(%

ncvreg under all settings, and scales better for increasing values of n and d.

We want to make a final comment that further speedups may be achieved for sparse linear
regression with less correlated settings of the design matrix. For example, when the rows of X are
generated independently from some multivariate normal distribution with 3;; = a3l for some
constant a € (0,1), then we may achieve > 100 times of acceleration than ncvreg by setting
opt="cov" and df to be small compared with min{n,d}.

) entries. We see from Table 2 that picasso outperforms



Table 2: Average timing performance (in seconds) with standard errors in the parentheses on sparse
logistic regression.

Sparse Logistic Regression

Method | Package d = 2000 d = 5000
n = 500 n = 1000 n = 500 n = 1000
¢, norm picasso | 0.2127(0.0089) | 0.3918(0.0252) | 0.4583(0.0321) | 0.8054(0.0246)
ncvreg | 1.2464(0.7255) | 5.7377(1.5040) | 2.2527(0.7114) | 10.096(2.4513)
MCP picasso | 0.3820(0.0892) | 0.4860(0.0282) | 0.6197(0.0543) | 0.9942(0.0710)
ncvreg | 0.6639(0.4253) | 2.5244(0.9032) | 0.8451(0.2590) | 2.8319(0.8218)
SCAD picasso | 0.3383(0.0553) | 0.4995(0.0575) | 0.6188(0.0555) | 0.9323(0.0711)
ncvreg | 0.7226(0.1639) | 3.9026(0.9745) | 1.5180(0.5561) | 7.1200(0.8744)

5 Discussion and Conclusion

In general, the picasso package demonstrates significantly improved computational efficiency and
statistical consistency than competing packages (e.g., ncvreg) on non-convex regularized sparse
regression problems. Especially, picasso provides much broader choices of regression and regular-
ization families, which guarantees linear convergence to a unique sparse local optimum with optimal
statistical properties. Further options for trading off statistical consistency and computational effi-
ciency are provided using different active set identification schemes. Overall, the picasso package
has the potential to serve as a powerful toolbox for high dimensional non-convex sparse learning
problems. We will continue to maintain and support this package.
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