October 13, 2002
Permax Computations

The permax package is designed to perform permutation analysis of data from gene
expression microarray experiments or other types of high dimensional data. The basic
approach has been briefly described in Mutter et. al. (2001) and in Ibrahim et. al. (2002).
The arguments and usage of the functions are described in the help files in the package.
This document gives additional details on the computations, and describes features for
analyzing clustered and stratified data, available beginning with permax version 2.1.
“Clustered” here refers to an experimental situation where there is correlation among
arrays within groups. First methods for independent arrays will be described followed by
extensions for clustered data.

DATA STRUCTURE FOR INDEPENDENT ARRAYS

Permax is designed for data, such as that arising in gene expression microarray
experiments, where a large number of different attributes are measured on each
experimental unit. For independent arrays, Let X;; be the value of attribute ¢ on unit 7,
i=1,...,1,5=1,...,n. The I x n array (X;;) corresponds to the data argument to the
permax, permsep and permcor functions. The different units are assumed to be
independent, except as described in the Clustered and Stratified Data Section, below.
When two groups of units are being compared, eg from different tissue types or with
different treatments, the units 1,...,n; are assumed to be from group 1 and the units
ny+1,...,n from group 2.

TEST STATISTICS

There are 3 main types of analyses performed by the permax package. The permax
function uses t statistics to compare two groups. The permsep function analyzes complete
separation between two groups, which is defined as all values from one group being larger
than all values from the other. The permcor function examines correlations between the
gene expression levels and a continuous phenotype (covariate). The actual values, log
values, or ranks can be used in the statistics.

The basic test used in permax for comparing attribute ¢ between two groups is the ordinary
pooled variance t statistic
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where ng =n —ny, 711 Z] 1 ng/nh X2z = ZJ —n141 ij/n27 Sii = Z?L1(Xij - 711‘)2.
and SQZ‘ = 2= n1+1(X XQZ) .

It is a well known result that 7} is a monotone function of the statistic n;X1;, where the
function also depends on the values of ny, ng, U; = 377 Xjj, and V; = 377, XZQJ Since
these quantities are all fixed for any permutation of the units between the two groups, it is

only necessary to evaluate the statistic n; X1; when evaluating the permutation distribution
of T;.

With two groups, the Wilcoxon test for equality of the distributions for attribute 7 is based
on the statistic e om

Wi=> > (I{Xz'j > Xu} +% X = u}) : (1)

j=1l=n1+1

Let ¢;; be the rank of X;; in {X;1,..., X;,}, using the average of the ranks for tied
observations. Then W; = 3., ¢;; — ni(n1 +1)/2 (see eg Bickel and Doksum, 1977, p.
348-9). Comparing this with the results for the t statistic above, it follows that the
permutation test based on (1) is equivalent to the permutation t test computed from the
ranks of the data, and that only -7, ¢;; needs to be evaluated on each permutation. Thus
the same computational algorithm can be used for both t tests and for Wilcoxon tests,
with the data values replaced by ranks in the latter case.

For the permcor function, with a single group of n units, and a covariate (phenotype)
taking values 71, ..., Z,, the statistic used is the estimated linear correlation between Z;
and Xj;,

> (Xiy — X)(Z; = Z)
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where X; = U;/n and Z = Y; Z;/n. The standard t statistic for testing for no association
between the ith attribute and Z is

R =

Ri(n —2)Y%/(1 — R})Y2,

Since this statistic is a monotone function of R;, it is only necessary to evaluate R; when
evaluating the permutation distribution of this test.

SIMULTANEOUS INFERENCE

With a high-dimensional multivariate response on each unit, and with a separate statistic
computed for each attribute, there are a large number of comparisons being made. Permax
uses the free step-down approach of Westfall and Young (1993, Section 2.6) to compute
simultaneous p-values that control the overall (or familywise) error rate. Suppose T1,...,T;
are the observed values of the individual test statistics, with the attributes ordered so that



Ty <--- < Ty, and let T be the value of statistic for the 7th attribute computed from an
independent sample. In this approach, the adjusted upper-tail p-values are defined by
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where the probabilities are computed under the null hypothesis, conditional on the
observed data. Similarly, the lower tail p-values are defined by

pr =P (minTy <)
and
ﬁi = max{ﬁla"'aﬁi—lap <r?>ln7—’l* Z 7—;)}7 > 1.

The same formulas, with the T; replaced by the appropriate statistics, can be used to
define adjusted p-values for the other analyses considered here. In Section 2.8 of Westfall
and Young (1993), it is shown that this approach does control the familywise error rate in
the strong sense.

Westfall and Young (1993) focus on defining adjusted p-values from individual p-values,
rather than from individual test statistics. For the computations using the individual
statistics to be meaningful for all attributes, the statistics need to be defined on a common
scale. The standardized t statistic above has a distribution that is invariant to location and
scale shifts. However, since the marginal distribution of the different attributes could still
be quite different, this does not guarantee complete comparability among the different
attributes. This problem would not be corrected by using the t distribution to compute
individual p-values from the t statistics and using these in place of the statistics in the
formulas, since the underlying data may not be normally distributed. This issue is not
addressed further here, but should be considered in any practical applications.

In the permax package, the adjusted p-values above are approximated using the null
permutation distribution. The data are first standardized to simplify the computations.
For the standard t statistic, T} is a monotone function of the corresponding n; X;, but the
function also depends on the the values U; and V;, which in general could be different for
different attributes. The values for each attribute are first standardized so that U; = 0 and
Vi/(n —1) =1 for all i. Then n;Xy; is computed from the standardized values. The
permutation test based on these quantities is equivalent to that obtained from the T;, even
with regard to the distribution of the maximum over a set of attributes.

For attribute ¢, the upper tail simultaneous p-value is computed as
D; = max {ﬁh e Ditt, Z [(nlyli < nllgx nly(lllj))/P} ) (2)
- <
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where P is the number of permutations and nlyg) is the value of the statistic for the pth

permutation. Again here the attributes have been ordered so that X1 < -+ < X1;.
(Equation (2) is the exact permutation adjusted p-value if all permutations are
enumerated, and an estimate if random permutations are generated.) Similarly, the lower
tail simultaneous p-value is computed as

P; = max {]51, coyDict, Z[(nlyli > I}g?nlxgllj))/P} :
” >

Prior to version 2.2, the permax package used the permutation distributions of max; T; and
min; 7; to determine the simultaneous p-values for all genes. The Westfall-Young method
gives the same p-values for the most significant genes, but often gives smaller p-values for
other genes.

If the null of no difference is rejected for those genes for which p; < «, then the familywise
error rate is controlled at the level a. An interpretation of this is that if the experiment is
repeated with the same analysis procedure, then the chance of there being any false
positives (genes with no true difference declared as significant) is < . Benjamini and
Hochberg (1995) also note that the false discovery rate (proportion of the genes declared to
be significant that are false positives) is < the familywise error rate, so only declaring genes
to be significant if the p-value is < « also guarantees that the false discovery rate is < a. A
quantity that can be used to provide additional information about possible false positives is
the average number of positives (genes more extreme than a specified critical value) in the
null permutation distribution. This quantity estimates the expected number of positives at
a given cutoff level under the global null hypothesis. If it is small, then it is likely that
there are few false positives in the actual sample at that cutoff. This quantity is computed
by the permax function, along with the proportion of permutations with as many or more
positives, and the proportion of permutations with any positives.

Bonferroni procedures are also often used to control familywise error rates. Let p; be the
individual permutation p-values with no correction for multiple comparisons. The single
step Bonferroni procedure rejects the null for those genes for which p; < «/I. It can be
improved by using multiple step approaches. Hochberg (1988) gave a step-up approach
where the genes are first ordered so that pny < --- < p(p). If ¥ is the largest i for which
Py < af/(I — i+ 1), then Hochberg’s procedure rejects the null for all genes with p; < pj-.
(This is termed a ‘step-up’ procedure because it starts with the least significant gene and
proceeds to check genes one by one until a significant gene is found, and then declares all
more significant genes to be significant.) The individual one-tailed p-values in both
directions are also returned by the permax and permcor functions.

For the Wilcoxon test, after applying the rank transformation to each set {X;1,..., Xi,},
the ranks are centered to sum to 0, but they are not re-scaled, since the rank
transformation has already converted the data to a common scale. (A minor note: with
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ties, the value of V; computed from the ranks varies slightly with the number and location
of the ties, but basing the comparison on W; as defined above may still be more
appropriate than using a standardized version.)

The correlation statistics R; are already centered and transformed to a common scale. The
upper tail and lower tail adjusted p-values are computed as described above, with R; in
place of T;. To facilitate the calculations, the data are first standardized so that
U=0=%;Zjand V; =1=3;Z7. Then R; = Y, X;;Z;. (Note: this same
standardization is still applied even if ranks are used for the X;; in the correlation statistic,
to keep the correlation statistics between —1 and 1.)

In computing the permutation distribution for the two group problem, permutations of
units within the two groups have no effect on the values of the statistics, so only the

()

distinct ways of choosing the ny units in group 1 need to be considered. Each of these
occurs the same number of times (n1!ny!) in the full permutation distribution. When
enumerating all possible combinations, these combinations are systematically generated.
For random permutations, the combinations are randomly generated, and the same
combination may occur more than once. Note that each permutation is applied to the
experimental units as a whole (that is, all the attributes are permuted together). In this
way the correlation structure among the attributes is maintained. If attributes were
permuted separately, then the correlation structure among the attributes would be lost.

In the permcor function, since it is assumed that the covariate values could be different for
every unit, all n! permutations would be generated when the full permutation distribution
is used. This is only feasible if n is fairly small. In generating the permutations, the values
of the Z; are permuted, while the X;; are kept fixed.

The uniform generator of Wichmann and Hill (1982) is used to generate random numbers
for the random combination and permutation algorithms. The main deficiency of this
algorithm is that it has a relatively short period. However, since a large number of
calculations are performed for each permutation or combination, it will not be feasible to
perform a very large number of permutations, so the period of almost 7 x 10'2 should be
more than adequate.

COMPLETE SEPARATION

In the two group problem, the permsep function computes a p-value based on the number
of attributes with complete separation. Complete separation occurs in the ith attribute if
either

max X;; < min X;;

1<j<m n1+1<j<n
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or
min X;; > max Xj;.

1<j<m n1+1<j<n
The permsep function counts the number of attributes with complete separation. Call this
value N,. Let N be the number of attributes with complete separation in the pth
permutation. The p-value is given by 3°, I(N, < N))/P. The average number of
attributes with complete separation, >°, N (?) /P, and the proportion of permutations with
any attributes with complete separation, -, (0 < NP) /P, are also reported.

CLUSTERED AND STRATIFIED DATA

Clustered or stratified data refers to the setting where experimental units can be grouped
into clusters or blocks. Units from the same cluster may be correlated, but units from
different blocks are independent. For example, if a microarray experiment were run on
tissue taken from mice, and several sets of tissue were collected from each mouse and
different treatments applied to the different tissue sets from each mouse, then the sets of
outcomes from each mouse would be a block or cluster. In this setting, let X,;; be the
value for attribute ¢ on unit j from cluster k, i =1,..., I, 7=1,... my, k=1,... K.

With clustered data, the group membership in the two group problem (for permax) or the
covariate values (for permcor) can be defined at either the cluster level or at the level of
the individual unit. In the former case, each unit in a cluster belongs to the same group, or
has the same covariate value, while in the latter case different units within a cluster may
belong to to different groups or have different covariate values. In a split-plot experiment,
the first would correspond to whole plot effects and the second to sub-plot effects.

In the functions in the permax package, the first case can be analyzed by using the cluster
argument to specify the cluster membership, and specifying permute.cluster=TRUE. In
this case, statistics are computed as described above, but only whole clusters are permuted.
This maintains the within cluster dependencies in the permuted data sets. In the permax
function, since the number of clusters in each group remains fixed, the number of units in
the groups will vary, if the cluster sizes are not equal. Similarly in permcor, since the
covariate values are permuted among the clusters, the number of individual units with a
given value will vary if the cluster sizes are not equal. This means the phenotype values
need to be re-standardized for each permutation. Note: In many situations permuting
whole clusters will produce the same results as an analysis where first each cluster is
replaced with a single set of summary statistics (eg the cluster means >=; Xi;/ms), and
then the cluster summary statistics are analyzed as a sets of values from independent units.

For the second case, with unit level effects, permutations are only applied within clusters.
Again this maintains the correlation structure in the clusters. There are two options for
computing the statistics. In the first (unstratified), the data are standardized and the test



statistics are computed exactly as described above. The only difference in this case is that
the reference set used in the permutation distribution is restricted to within cluster
permutations. Consider, for example, a classic balanced randomized block experiment.
Here the permutation distribution can be thought of as permuting the treatment labels
among the units. By only permuting treatment labels within blocks, treatment balance will
be maintained within blocks for all permutations considered, while the unrestricted
permutation distribution would include permutations where treatment assignments are
unbalanced within blocks, and hence where the treatment effects in the permuted sample
would be confounded with block effects. (Note: the unstratified tests may not be
appropriate in general for unbalanced, clustered data.)

The second option is to use stratified tests. In this case, statistics are computed separately
within clusters and then combined over clusters. For the stratified tests in permax, the
data are first standardized within each cluster. That is, defining U, = Z;”:’CI Xiji and

Vie = 254 ijk, in the two group problem the data are standardized so that U;;, = 0 and
Vie/(mg — 1) = 1. When ranks are used, values are ranked separately within each cluster,
and the ranks centered separately within each cluster.

In the two group problem, define X, to be the average of the standardized attribute i
values in group [ within cluster k. The stratified statistic for attribute ¢ is

Nig

_ — — m
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k k k
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where ny; is the number of subjects in group 1 in cluster k, no, = my — nyg, and the wy are
user supplied cluster weights (argument weights in permax), which default to 1/K. For
the correlation analysis, the stratified statistic is

> wipRi,
k

where R;; is the estimated correlation for attribute ¢ within cluster k. Here the user
supplied weights wj, (argument weights in permcor) are renormalized to sum to 1, and
again default to 1/K.

Units are again only permuted within clusters in the stratified case. P-values are computed
from the permuted data sets as described earlier.

In the special case of the two group problem with paired data, where each cluster consists
of two units, one from each group, the Wilcoxon signed-rank statistic can be used by
specifying signed.rank=TRUE in the permax function. In this case, the differences

X1k — Xior are first calculated (using log values if 1logs=TRUE). The absolute values of the
differences are then ranked, and then the sign of the difference attached to the rank. Pairs
with X1, — Xjor = 0 are given a signed rank of 0. The statistic is computed as the sum of
the ranks over all pairs. This is a monotone function of the sum of the ranks where the



difference is positive, which is also sometimes used as the test statistic. The permutation
distribution is obtained by permuting group membership within pairs, which has the effect
of flipping the signs on the signed ranks, but leaving the ranks of the absolute differences
unchanged. The calculations are performed as above for the case with cluster specified
and stratify=FALSE, with an appropriate set of pseudo-data. In particular, the absolute
differences are ranked and the signed ranks created as defined above. The signed rank is
put into the group 1 observation and the negative of the signed rank is put into the group 2
observation. Permuting the pair membership and computing the sum of the group 1 values
for each permutation then generates the permutation distribution of the signed-rank
statistic. The difference between this test and the test obtained with ranks=TRUE,
stratify=FALSE and signed.rank=FALSE is that in the latter case the data values are
ranked and differences of the ranks taken in each pair, while in the signed-rank test
differences of the values are taken and then ranked. Also, if ranks=TRUE and
stratify=TRUE is specified with paired data, then the resulting test is equivalent to the
sign test.

The permsep function also has the same options described above for clustered data. If the
cluster argument is given, either whole cluster permutations or within cluster
permutations are used, depending on the value of permute.cluster. If stratify=FALSE,
then complete separation is defined using all values, while if stratify=TRUE, then complete
separation is only examined within clusters. In the latter case, values from different
clusters can overlap, as long as the groups are separated within each cluster.

CUSTOM STATISTICS

In principle, other statistics can be used by replacing the Fortran functions tsum (for the
two group problem) and dip (for correlation tests) with new functions to compute the
desired statistics. However, considerable care is needed as the data have been pre-processed
prior to calling these functions. Also, note that each is called once for each attribute in the
data set on the original data, and once for each attribute on each permuted data set.

The function tsum is called from subroutine ptn. The specification for tsum is

function tsum(ng,d,n,igl,istrt,nclust,mclust,mctl,wght)
integer ng,n,igl(ng),istrt,nclust,mclust(nclust) ,mctl(nclust)
real tsum,d(n,*),wght(nclust)

where the values passed from ptn are



ng

n
igl
istrt
nclust
mclust
mctl
wght

number of columns (units) in group 1 (ny above)

d(1,j) = Xj; for the current i in ptn (not a typo: d(1,j), not d(i,j));
X,; have been standardized as described above; columns of d have been
sorted on cluster labels if cluster was specified

# attributes (I above) = # rows in d

ig1(j) = column # in d of the jth unit in group 1

=1 if tests should be stratified

# clusters (=1 if cluster=NULL)

mclust (k) = # units in cluster k&

mctl(k) = # units in group 1 in cluster £

the weights for the stratified test; actually the user supplied

weights wy multiplied by my /(nixmnax)

The function dip is called from the subroutine ptcor. The specification of dip is

function dip(ng,x,icx,y,icy,nclust,mclust,istrt,wght)
integer ng,icx,icy,nclust,mclust (nclust) ,istrt
real dip,x(ng*icx),y(ng*icy),wght(nclust)

where the values passed from ptcor are

ng
X

icx

y

icy
nclust
mclust
istrt
wght

number of columns (units) in the data set (n above)
x(1+(j-1)*icx) = Xj; for the current i in ptcor;

X;; have been standardized as described above; columns of (X;;) have been
sorted on cluster labels if cluster was specified

increment in the index of x (should = # attributes,

since the ith attribute is a row vector in the array)
y(1+(j-1)*icy) = Z;, standardized as described above (sorted on
cluster and then permuted within cluster)

increment in the index of y (should = 1)

# clusters (=1 if cluster=NULL)

mclust (k) = # units in cluster &

=1 if tests should be stratified

the user supplied weights wy for the stratified test (3w = 1)
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