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1 Overview

Quantitative real-time PCR is an imprtant technique in medical and biomedical applicaitons. The pcr
package provides a unified interface for quality assessing, analyzing and testing qPCR data for statistical
significance. The aim of this document is to describe the different methods and modes used to relatively
quantify gene expression of qPCR and their implemenation in the pcr package.
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2 Getting started

The pcr is available on github. To install it using devtools:
# install package from github (under development)
devtools::install_github('MahShaaban/pcr')

The development version of the package can be similarly obtained through:
# install package from github (under development)
devtools::install_github('MahShaaban/pcr@develop')

# load required libraries
library(pcr)

The following chunck of code locates a dataset of CT values of two genes from 12 different samples and
performs a quick analysis to obtain the expression of a target gene c-myc normalized by a control GAPDH
in the Kidney samples relative to the brain samples. pcr_analyze provides differnt methods, the default
one that is used here is ‘delta_delta_ct’ applies the populat (∆∆CT ) method.
# default mode delta_delta_ct
## locate and read raw ct data
fl <- system.file('extdata', 'ct1.csv', package = 'pcr')
ct1 <- readr::read_csv(fl)

## add grouping variable
group_var <- rep(c('brain', 'kidney'), each = 6)

# calculate all values and errors in one step
## mode == 'separate_tube' default
res <- pcr_analyze(ct1,

group_var = group_var,
reference_gene = 'GAPDH',
reference_group = 'brain')

res

## # A tibble: 2 x 8
## group gene normalized calibrated relative_expression error
## <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 brain c_myc 6.860 0.000 1.000000 0.17395402
## 2 kidney c_myc 4.365 -2.495 5.637283 0.09544632
## # ... with 2 more variables: lower <dbl>, upper <dbl>

The output of pcr_analyze is explained in the documnetation of the function ?pcr_analyze and the method
it calls ?pcr_ddct as well as in a later secion of this document. Briefly, the input includes the CT value
of c-myc normalized to the control GAPDH, The calibrated value of c-myc in the kidney relative to the
brain samples and the final relative_expression of c-myc. In addition, an error term and a lower and
upper intervals are provided.

The previous analysis makes a few assumptions that will be explained later in this documnet. One of which is
a perfect amplification efficiency of the PCR reation. To assess the validity of this assumption, pcr_assess
provides a method called efficiency. The input data.frame is the CT values of c-myc and GAPDH at
different input amounts/dilutions.
## locate and read data
fl <- system.file('extdata', 'ct3.csv', package = 'pcr')
ct3 <- readr::read_csv(fl)
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## make a vector of RNA amounts
amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3)

## calculate amplification efficiency
res <- pcr_assess(ct3,

amount = amount,
reference_gene = 'GAPDH',
method = 'efficiency')

res

## # A tibble: 1 x 4
## gene intercept slope r_squared
## <chr> <dbl> <dbl> <dbl>
## 1 c_myc 3.01448 0.02645619 0.02070273

In the case of using the ∆∆CT , the assumption of the amplification efficiency is critical for the reliability
of the model. In particulare, the slope and the Rˆ2 of the line between thel log input amount and ∆CT or
differnce between the CT value of the target c-myc and GAPDH. Typically, The slope should be very small
(less than 0.01). slope here is appropriate 0.0264562, A value of the amplification efficiency itselt is given by
10−1/slope, so the assumption holds true.

3 Background

3.1 Glossary

• Amplification efficiency: The ability of the reaction to amplify a certain amount of input RNA in a
sample

• CT : Cycle Threshold is the number of cycles required for the fluorescent signal to cross the threshold

• ∆CT : Difference between two CT values (e.g. CT,c−myc − CT,GAP DH)

• ∆∆CT : Difference between two ∆CT values (e.g. ∆CT,T reatment −∆CT,T reatment)

• Reference gene: A gene known not to change its expression between the groups of interest, so
any change in its signal should be due to the amplification of the PCR. Used for normalization.
(e.g. GAPDH or β-actine)

• Reference group: An experimental group used to express mRNA level in comparison to. Used for
caliberation. (e.g. control or time point 0)

• Standard: A sample of known concentration

3.2 Analysis methods

In contrast with the absoute quantifiction of the amount of mRNA in a sample, relative quantification
uses a internal control (reference gene) and/or a control group (reference group) to quantify the mRNA
of interest relative to these references. This relative quantification is sufficent to draw conculsions in most
of the biomedical applications involving qPCR. A few methods were developed to perform these relative
quantification. These methods require different assumptions and models. The most commen two of these
methods are explained here.
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3.2.1 Comparative CT methods

The comparative CT methods assume that the cDNA templates of the gene/s of interest as well as the
control/reference gene have similar amplification efficiency. And that this amplification efficiency is near
perfect. Meaning, at a certain threshold during the linear portion of the PCR reaction, the amount of
the gene of the interest and the control double each cycle. Another assumptions is that, the expression
difference between two genes or two samples can be captured by subtracting one (gene or sample of interest)
from another (reference). This final assumption requires also that these references doesn’t change with the
treatment or the course in question.
The formal derivation of the double delta CT model is described here (Livak and Schmittgen 2001). Briefly,
The ∆∆CT is given by:

∆∆CT = ∆CT,q −∆CT,cb

And the relative expression by:

2−∆∆CT

Where:

• ∆CT,q is the difference in the CT (or their average) of a gene of interest and a reference gene in a
group of interest

• ∆CT,cb is the the differnece in the CT (or their average) of a gene of interest and a reference gene in a
reference group

And the error term is given by:

s =
√
s2

1 + s2
2

Where:

• s1 is the standard devaition of a gene of interest

• s2 is the standard devaition of a reference gene

3.2.2 Standard curve methods

In comparison, this model doesn’t assume perfect amplification but rather actively use the amplification in
calculating the relative expression. So when the amplification efficiency of all genes are 100% both methods
should give similar results. The standard curve method is applied using two steps. First, serial dilutions of
the mRNAs from the samples of interest are used as input to the PCR reaction. The linear trend of the
log input amount and the resulting CT values for each gene are used to calculate an intercept and a slope.
Secondly, these intercepts and slopes are used to calculate the amounts of mRNA of the genes of interest and
the control/reference in the samples of interest and the control sample/reference. These amounts are finally
used to calculate the relative expression in a manner similar to the later method, just using division instead
of subtraction.
The formal deriviation of the model is described here (Yuan et al. 2006). Briefly,
The amount of RNA in a sample is given by:

log amount = CT − b
m
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And the relative expression is given by:

10log amount

where:

• CT is the cycle threshold of a gene

• b is the intercept of CT ~ log10 input amount

• m is the slope of CT ~ log10 input amount

And the error term is given by:

s = (cv)(X̄)

Where:

cv =
√
cv2

1 + cv2
2

Where:

• s is the standard deviation

• X̄ is the average

• cv is the coefficient of variation or relative standard deviation

3.3 Quality Assessment of qPCR

Fortunately, regardless of the method used in the analysis of qPCR data, The quality assessment are done in
a similar way. It requires an experiment similar to that of calculating the standard curve. Serial dilutions of
the genes of interest and controls are used as input to the reaction and different calculations are made.

• The amplification efficiency is approximated be the linear trend between the difference between the CT

value of a gene of interest and a control/reference (∆CT ) and the log input amount. This piece of
information is required when using the ∆∆CT model. Typically, the slope of the curve should be very
small and thr R2 value should be very close to one. A value of the amplification efficiency itselt is given
by 10−1/slope and should be close to 2. Other analysis methods are recommended when this is not the
case.

• Similar curves are required for each gene using the CT value instead of the differnce for applying the
standard curve method. In this case, a separate slope and intercept are required for the calculation of
the relative expression.

3.4 Testing statistical significance

Using the later two methods and there assumptions, useful statistics such as p-values and confidence intervals
can be calculated.
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3.4.1 Two-group tests

Assuming that the assumptions of the first methods are holding true, the simple t-test can be used to test
the significance of the difference between two conditions (∆CT ). t-test assumes in addition, that the input
CT values are normally distributed and the variance between conditions are comparable. Wilcoxon test can
be used when sample size is small and those two last assumptions are hard to achieve.

3.4.2 Linear regression

Two use the linear regression here. A null hypothesis is formulated as following,

CT,target,treatment − CT,control,treatment = CT,target,control − CT,control,control or ∆∆CT

This is exactly the (∆∆CT ) as explained earlier. So the ∆∆CT is estimated and the null is rejected when
∆∆CT 6= 0.

4 The pcr package

4.1 Motivation

To illustrate the use of the pcr packge in applying these methods on qPCR data, we use real qPCR real
qPCR datasets from two published papers. In addtion, we compare the results obtained by the pcr package
to that of the original paper to ensure the reliablity. First, Livak et al. (Livak and Schmittgen 2001) obtained
total RNA from human tissues; brain and kidney. c-myc and GAPDH primers were then used for cDNA
synthesis and used as input in the PCR reaction. 6 replicates for each tissue were run in separate sample.
This dataset is refered to as ct1 through this document and is shown along with the difference calculations
in Table 1 and 2. Another dataset was generated from separate assay. Only running the samples in the same
tube this time with pairs of primates that has different reporting dyes. This is refered to as ct2 and is shown
in Table 3 and 4. Finally, CT values from a qPCR experiment using differnt input amounts of c-myc and
GAPDH was conducted. The dataset is refered to as ct3 and is shown in Table 5. Secondly, Yuan et al.
(Yuan et al. 2006) extracted total RNA from Arabidopsis thaliana plant treated and control samples, 24
samples each. And performed a qPCR to using MT7 and ubiquitin primers. This dataset is refered to as ct4
and Table 6 showes the results of the different testing methods that were applied in the original paper.
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Table 1: Relative quantification using comparative (∆∆CT ) method (separate tubes)

Tissue c-myc CT GAPDH CT
∆CT

c-myc - GAPDH
∆∆CT

∆CT −∆CT,Brain

c-mycN

Rel. to Brain
Brain 30.72 23.7

30.34 23.56
30.58 23.47
30.34 23.65
30.5 23.69
30.43 23.68

Average 30.49 ± 0.15 23.63 ± 0.09 6.86 ± 0.17 0.00 ± 0.17 1.0 (0.9–1.1)
Kidney 27.06 22.76

27.03 22.61
27.03 22.62
27.1 22.6
26.99 22.61
26.94 24.18

Average 27.03 ± 0.06 22.66 ± 0.08 4.37 ± 0.10 –2.50 ± 0.10 5.6 (5.3–6.0)

Table 2: Relative quantification using the standard curve method (separate tube)

Tissue c-myc (ng) GAPDH (ng) c-mycN

norm. to GAPDH
c-mycN

Rel. to Brain
Brain 0.033 0.51

0.043 0.56
0.036 0.59
0.043 0.53
0.039 0.51
0.040 0.52

Average 0.039 ± 0.004 0.54 ± 0.034 0.07 ± 0.008 1.0 ± 0.12
Kidney 0.40 0.96

0.41 1.06
0.41 1.05
0.39 1.07
0.42 1.06
0.43 0.96

Average 0.41 ± 0.016 1.02 ± 0.052 0.40 ± 0.025 5.5 ± 0.35
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Table 3: Relative quantification using comparative (∆∆CT ) method (same tube)

Tissue c-myc CT GAPDH CT
∆CT

c-myc - GAPDH
∆∆CT

Ave.∆CT −Ave.∆CT,Brain

c-mycN

Rel. to Brain
Brain 32.38 25.07 7.31

32.08 25.29 6.79
32.35 25.32 7.03
32.08 25.24 6.84
32.34 25.17 7.17
32.13 25.29 6.84

Average 6.99 ± 0.21 0.00 ± 0.21 1.0 (0.86–1.15)
Kidney 28.73 24.30 4.43

28.84 24.32 4.52
28.51 24.31 4.20
28.86 24.25 4.61
28.86 24.34 4.52
28.70 24.18 4.52

Average 4.47 ± 0.14 –2.53 ± 0.14 5.77 (5.23–6.37)

Table 4: Relative quantification using the standard curve method (same tube)

Tissue c-myc (ng) GAPDH (ng) c-mycN

norm. to GAPDH
c-mycN

Rel. to Brain
Brain 0.031 0.618 0.05

0.038 0.532 0.07
0.032 0.521 0.06
0.038 0.550 0.07
0.032 0.577 0.06
0.037 0.532 0.07

Average 0.06 ± 0.008 1.0 ± 0.14
Kidney 0.365 0.049 0.35

0.338 1.035 0.33
0.423 1.042 0.41
0.334 1.086 0.31
0.334 1.021 0.33
0.372 1.139 0.33

Average 0.34 ± 0.035 5.4 ± 0.55

Table 5: Average CT value for c-myc and GAPDH at different input amounts
Input RNA

(ng)
c-myc

Average CT

GAPDH
Average CT

∆CT

c-myc - GAPDH
1.0 25.59 ± 0.04 22.64 ± 0.03 2.95 ± 0.05
0.5 26.77 ± 0.09 23.73 ± 0.05 3.04 ± 0.10
0.2 28.14 ± 0.05 25.12 ± 0.10 3.02 ± 0.11
0.1 29.18 ± 0.13 26.16 ± 0.02 3.01 ± 0.13
0.05 30.14 ± 0.03 27.17 ± 0.06 2.97 ± 0.07
0.02 31.44 ± 0.16 28.62 ± 0.10 2.82 ± 0.19
0.02 32.42 ± 0.12 29.45 ± 0.08 2.97 ± 0.14
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Table 6: Statistical significance using different testing methods

Test ∆∆CT

(estimate) p-value Confidence Interval

Multiple Regression -0.6848 <0.0001 (-0.4435, -0.9262)
ANOVA -0.6848 <0.0001 (-0.4435, -0.9262)
t-test -0.6848 <0.0001 (-0.4147, -0.955)
Wilcoxon test -0.6354 <0.0001 (-0.4227, -0.8805)

4.2 Assess pcr_assess

pcr_assess is a wrapper for the implemented quality assessment methods; pcr_efficiency and
pcr_standard. Both methods can be called directly using the method names or through pcr_assess by
passing a string to the argument method; ‘efficiency’ or ‘standard_curve’ for calculating the amplification
efficiency or the standard curve for each gene respectively.

4.2.1 Amplification efficiency pcr_efficiency

To calculate the amplification efficiency in a qPCR experiment, the main input is a data.frame with columns
contain the CT values for each gene and raws correspond to the different input amounts/dilutions (Table 5).

The following code apply the calculation on the data.frame, ct3. It has two columns c_myc and GAPDH
and 3 raws for each of the input amounts coded in the variable amounts. A reference gene passed to the
reference_gene argument, in this case, the column name GAPDH.
library(pcr)
library(ggplot2)
library(cowplot)

## locate and read data
fl <- system.file('extdata', 'ct3.csv', package = 'pcr')
ct3 <- readr::read_csv(fl)

## make a vector of RNA amounts
amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3)

## calculate amplification efficiency
res <- pcr_assess(ct3,

amount = amount,
reference_gene = 'GAPDH',
method = 'efficiency')

knitr::kable(res,
caption = '\\label{table:table7} amplification efficiency of c-myc')

Table 7: amplification efficiency of c-myc

gene intercept slope r_squared
c_myc 3.01448 0.0264562 0.0207027

The output of pcr_assess is a data.frame of 4 columns and n rows equals the input genes except for the
reference. For each gene an intercept, slope and R2 is calculated for a the difference between it and the
reference (∆CT ) (Table 7).
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When the argument plot is TRUE a graph is produced instead shows the average and standard deviation of of
the ∆CT at difference input amounts. In addition, a linear trend line is drawn (Fig 1).
gg <- pcr_assess(ct3,

amount = amount,
reference_gene = 'GAPDH',
method = 'efficiency',
plot = TRUE)

gg +
labs(x = 'log10 amount', y = 'Delta Ct') +
theme(strip.background = element_blank(),

strip.text = element_blank())
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Figure 1: Amplification efficiency of c-myc

The relavant summaries in calculating efficiency is the slope. Typically, slope should be very low (less than
0.1). Means the ∆CT are not changing much as consequnce of changing the input concentration. A value of
the amplification efficiency itselt is given by 10−1/slope and should be close to 2.

4.2.2 Standard curve pcr_standard

To caclulate the standard curve for individual genes, pcr_assess takes a data.frame similar to that described
above as input ct3, and the same amount variable. The following code calculates the curves for the two
columns/genes by fitting a line between their CT values and the log input amounts.
## calculate standard curve
res <- pcr_assess(ct3,

amount = amount,
method = 'standard_curve')

knitr::kable(res,
caption = '\\label{table:table8}Standard curves of c-myc and GAPDH')
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Table 8: Standard curves of c-myc and GAPDH

gene intercept slope r_squared
c_myc 25.69669 -3.388095 0.9965504
GAPDH 22.68221 -3.414551 0.9990278

The output put is similar to the previous call, except when ‘standard_curve’ is passed to method curves are
calculated for individual genes, column gene (Table 8).

The information of the standard curves are required when using the standard curve methods, so we retain
the relevant ones in the variables intercept and slope. Typically, the r_squared should be close to 1.
intercept <- res$intercept
slope <- res$slope

When the argument plot is TRUE a graph is returned instead. A panel for each gene showing the raw CT

values and the log input amounts (Fig. 2).
gg <- pcr_assess(ct3,

amount = amount,
method = 'standard_curve',
plot = TRUE)

gg +
labs(x = 'Log 10 amount', y = 'CT value')

GAPDH c_myc
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Figure 2: Standard curve of c-myc and GAPDH

4.3 Analyze pcr_analyze

Similarly, pcr_analyze is a wrapper and unified interface for difference analysis models; pcr_ddct, pcr_dct
and pcr_curve. The models can be invoked by calling these functions difreclty or through the argument
method to pcr_analyze. Possible input to the argument method are ‘delta_delta_ct’, ‘delta_ct’ and
‘relative_curve’ for calculating the double delta CT , delta CT and the standard curve models respectively.
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4.3.1 Doube delta CT (∆∆CT ) pcr_ddct

To apply the double delta CT model, the default method of pcr_analyze, the main input is a data.frame
with columns containing the genes and the rows the CT values from different samples. In addition, a group
variable group_var corresponding to these rows/samples is required. Finally, a reference_gene and a
reference_group are entered.

The following code chunck applies this method to a data.frame of 12 samples from 2 groups ct1 (Table 1).
# default mode delta_delta_ct
## locate and read raw ct data
fl <- system.file('extdata', 'ct1.csv', package = 'pcr')
ct1 <- readr::read_csv(fl)

## add grouping variable
group_var <- rep(c('brain', 'kidney'), each = 6)

# calculate all values and errors in one step
## mode == 'separate_tube' default
res1 <- pcr_analyze(ct1,

group_var = group_var,
reference_gene = 'GAPDH',
reference_group = 'brain')

knitr::kable(res1,
caption = '\\label{table:table9} Double delta $C_T$ method (separate tubes)')

Table 9: Double delta CT method (separate tubes)

group gene normalized calibrated relative_expression error lower upper
brain c_myc 6.860 0.000 1.000000 0.1739540 0.886410 1.128146
kidney c_myc 4.365 -2.495 5.637283 0.0954463 5.276399 6.022850

The output of pcr_analyze is 8 columns; contains the calculatations of each gene in each group and the
error terms (Table 9). This analysis uses the default mode, ‘separate_tube’ as the input dataset came for an
experiment where the target c_myc and the control gene GAPDH were ran in separate tubes.

In contrast, the ct2 dataset, also shown in Table 3, came from an identical experment except the samples
were run in the same tube. So the followin analysis invokes a different mode, ‘same_tube’.
# calculate all values and errors in one step
## mode == 'same_tube'
res2 <- pcr_analyze(ct2,

group_var = group_var,
reference_gene = 'GAPDH',
reference_group = 'brain',
mode = 'same_tube')

knitr::kable(res2, caption = '\\label{table:table10} Double delta $C_T$ method (same tube)')

Table 10: Double delta CT method (same tube)

group gene normalized calibrated relative_expression error lower upper
brain c_myc 6.996667 0.00 1.000000 0.2103014 0.8643567 1.156930
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group gene normalized calibrated relative_expression error lower upper
kidney c_myc 4.466667 -2.53 5.775717 0.1425015 5.2324932 6.375336

The only difference here is that the average of the CT values for the target gene c_myc is calculated after
normalizing by the reference gene GAPDH. The rest of the calculations are expected to be slighlty different
than the previous case (Table 10).

Figure 3 shows the results of these two analysis. Bars represent the average relative expression of c-myc in
the kidney, normalized by GAPDH and calibrated by the brain. The error bars are the standard deviations.
gg1 <- ggplot(res1, aes(x = group, y = relative_expression)) +

geom_col(width = .7) +
geom_errorbar(aes(ymin = lower, ymax = upper), width = .5) +
labs(x = '', y = 'Relative mRNA expression') +
ggtitle(label = 'Separate tubes')

gg2 <- ggplot(res2, aes(x = group, y = relative_expression)) +
geom_col(width = .7) +
geom_errorbar(aes(ymin = lower, ymax = upper), width = .5) +
labs(x = '', y = 'Relative mRNA expression') +
ggtitle(label = 'Same tubes')

plot_grid(gg1, gg2)
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Figure 3: Relative expression of c-myc using double delta CT

4.3.2 Delta CT (∆CT ) pcr_dct

This method is a variation of the double delta CT model. It can be used to calculate the fold change of in one
sample relative to the others. For example, it can be used to compare and choosing a control/reference genes.
## example to check fold change of control gens
## locate and read file
fl <- system.file('extdata', 'ct1.csv', package = 'pcr')
ct1 <- readr::read_csv(fl)
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## make a data.frame of two identical columns
pcr_hk <- data.frame(

GAPDH1 = ct1$GAPDH,
GAPDH2 = ct1$GAPDH
)

## add grouping variable
group_var <- rep(c('brain', 'kidney'), each = 6)

Here, we used the column GAPDH from the dataset ct1 to make a data.frame, pcr_hk of two identical
columns GAPDH1 and GAPDH2 two show how such comparison can be done.

The input to pcr_analyze is identical to that of the previous call, only method is specified this time to
‘delta_ct’.
# delta_ct method
## calculate caliberation
res <- pcr_analyze(pcr_hk,

group_var = group_var,
reference_group = 'brain',
method = 'delta_ct')

knitr::kable(res, caption = '\\label{table:table11} Delta $C_T$ method')

Table 11: Delta CT method

group gene calibrated fold_change error lower upper
brain GAPDH1 0.000 1.000000 0.0913783 0.9386256 1.065388
kidney GAPDH1 -0.965 1.952063 0.0777174 1.8496888 2.060104
brain GAPDH2 0.000 1.000000 0.0913783 0.9386256 1.065388
kidney GAPDH2 -0.965 1.952063 0.0777174 1.8496888 2.060104

Similarly, the output contains the calculated model and the error terms (Table 11). The difference here will
be skiping the normalization step and caliberating the CT values of all genes to a reference_group.

Figure 4 shows the average relative fold change of the identical housekeeping genes and there error terms in
two tissue samples.
ggplot(res, aes(x = group, y = fold_change, group = gene, fill = gene)) +

geom_col(position = 'dodge') +
geom_errorbar(aes(ymin = lower, ymax = upper, group = gene)) +
theme(legend.position = 'top',

legend.direction = 'horizontal') +
labs(x = '', y = 'Relative fold change')

14



0.0

0.5

1.0

1.5

2.0

brain kidney

R
el

at
iv

e 
fo

ld
 c

ha
ng

e

gene GAPDH1 GAPDH2

Figure 4: GAPDH relative fold change using delta CT

4.3.3 Standard curve pcr_curve

The calculation of the standard curve method involves to steps as explained earlier. First, a standard curve is
calculted for each gene to find the intercept and the slope. Then the relative expression is calculated.

To apply this method to the ct1 dataset (Table 2). We used the variables slope and intercept that were
calculated earlier using the ct3 dataset (Table 8).
## calculate standard amounts and error
res1 <- pcr_analyze(ct1,

group_var = group_var,
reference_gene = 'GAPDH',
reference_group = 'brain',
intercept = intercept,
slope = slope,
method = 'relative_curve')

knitr::kable(res1,
caption = '\\label{table:table12} Standard curve method (separate tubes)')

Table 12: Standard curve method (separate tubes)

group gene normalized calibrated error lower upper
brain c_myc 0.0731034 1.000000 0.0085340 0.8832608 1.116739
kidney c_myc 0.3992171 5.460996 0.0255136 5.3970866 5.524905

The output of pcr_analyze is the same as explained before. The calculated averages and error term of target
genes in each group relative to the reference gene and gourp (Table 12).
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The argument mode can be can be used to change the way the CT values are averaged when samples from
different genes were ran in the same tube (Table 4).
## calculate standard amounts and error
res2 <- pcr_analyze(ct2,

group_var = group_var,
reference_gene = 'GAPDH',
reference_group = 'brain',
intercept = intercept,
slope = slope,
method = 'relative_curve',
mode = 'same_tube')

knitr::kable(res2,
caption = '\\label{table:table13} Standard curve method (same tube)')

Table 13: Standard curve method (same tube)

group gene normalized calibrated error lower upper
brain c_myc 0.066439 1.000000 0.0091634 0.8620773 1.137923
kidney c_myc 0.371088 5.585394 0.0378101 5.4835041 5.687284

The output is similar to that descriped earlier (Table 13).

Figure 5 shows the output of the standrd curve method. Relative expression values of c-myc in the kideny
normalized by GAPDH and calibrated to the brain are shown as bars, Averages ± standard deviations.
gg1 <- ggplot(res1, aes(x = group, y = calibrated)) +

geom_col() +
geom_errorbar(aes(ymin = lower, ymax = upper), width = .7) +
labs(x = '', y = 'Relative mRNA expression') +
ggtitle(label = 'Separate tubes')

gg2 <- ggplot(res2, aes(x = group, y = calibrated)) +
geom_col() +
geom_errorbar(aes(ymin = lower, ymax = upper), width = .7) +
labs(x = '', y = 'Relative mRNA expression') +
ggtitle(label = 'Same tubes')

plot_grid(gg1, gg2)
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Figure 5: Relative expression of c-myc using the standard curve

4.4 Test pcr_test

Testing for statistical significance between conditions is important to ensure validity and replicability of the
analysis. Different statistical methods require differnt assumptions. So the choice of which test to use depends
on many factors. Among these factors are the number of the conditons/groups, the sample and replicate
sizes and the type of desired comparison.

pcr_test provides a unified interface to different testing methods, which is similar to that used before for
analysis and quality assessment.

Here, we used a dataset ct4 of 48 samples and two gene columns ref and target. The samples came from two
groups as indicated in the variable group. argumets reference_gene and reference_control are used to
construct the comparison the same way they were used to calculate the relative expression.
# locate and read data
fl <- system.file('extdata', 'ct4.csv', package = 'pcr')
ct4 <- readr::read_csv(fl)

# make group variable
group <- rep(c('control', 'treatment'), each = 12)

# analyze the testing data
res <- pcr_analyze(ct4,

group_var = group,
reference_gene = 'ref',
reference_group = 'control')

ggplot(res, aes(x = group, y = relative_expression)) +
geom_col() +
labs(x = '', y = 'Relative mRNA expression')

17



0.0

0.5

1.0

1.5

control treatment

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n

Figure 6: Relative expression of target gene using delta delta CT

We start by analyzing the dataset ct4 using the default method of pcr_analyze, ‘delta_delta_ct’ and show
a bar graph of the results (Fig. 6).

Finallys we used the pcr_test to perfom differnt tests. The resulting output tables can be compared to the
results from the original paper that provided the dataset (Table 6).
# test using t-test
tst1 <- pcr_test(ct4,

group_var = group,
reference_gene = 'ref',
reference_group = 'control',
test = 't.test')

knitr::kable(tst1,
caption = '\\label{table:table14} t-test summary')

Table 14: t-test summary

gene estimate p_value lower upper
target -0.684825 3.43e-05 -0.955952 -0.413698

When the argument test is set to ‘t.test’ a simple two-group t-test is carried out and an estimate for the
differnce between groups for the change in the target relative to a control gene is provided. In addtion, a
p_vale, a lower and upper 95% confidence intervals are provided as well (Table 14).
# test using wilcox.test
tst2 <- pcr_test(ct4,

group_var = group,
reference_gene = 'ref',
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reference_group = 'control',
test = 'wilcox.test')

knitr::kable(tst2,
caption = '\\label{table:table15} Wilcoxon test summary')

Table 15: Wilcoxon test summary

gene estimate p_value lower upper
target -0.6354 3e-06 -0.8805 -0.4227

When the argument test is set to ‘wilcox.test’, Wilcoxon test method is used instead and similar output is
provided (Table 15).

The linear regression can be applied to more than two groups and more advanced comparisons.
# testing using lm
tst3 <- pcr_test(ct4,

group_var = group,
reference_gene = 'ref',
reference_group = 'control',
test = 'lm')

knitr::kable(tst3,
caption = '\\label{table:table16} Linear regression summary')

Table 16: Linear regression summary

gene term estimate p_value lower upper
target group_vartreatment -0.684825 2.83e-05 -0.9549519 -0.4146981

The output of the test, ‘lm’ contains an extra column term to show the different comparison terms used to
calculate the results (Table 16).

5 Comparison with existing pacakges

Pabinger et al. surveyed the tools used to analyze qPCR data across different platforms (Pabinger et al.
2014). They included 9 R packages which provide very useful analysis and visualization methods. Some
of these packages focuses one cetain models and some are designed to handle high-throughput qPCR data.
Most of these packages are hosted in CRAN and a few on the BioConductor so they adhere to bioconductor
methods and data containers. In comparison, pcr provides a unified interface for different quality assessment,
analysis and testing models. The input and the output are tidy data.frame, and the package source code
follows the tidyverse paractices. This package is targets the small scale qPCR experimental data and there R
user practioners. The interface and documentation choices were made with such users in mind and require no
deep knowledge in specific data structures or complex statistical models.
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6 Miscellaneous

In this section, we discuss briefly some common issues that arises when using real-time qPCR data and some
simpliefied solutions using the pcr package. Mainy, we use linear models to quantify the effect of variables
external to the reaction conditions on the resulting data and analysis. Either to identify such effects or to
inform further experiments that are more likely to yeild better results once the sources of the problems were
removed. The examples are applied to the ct4 dataset alone with some artificial variable.

6.1 Testing advanced desgins and hypotheses

When considering testing, multiple variable in an experiment or their interactions the argument model_matrix
should be used in pcr_test. The model_matrix should be constructed first to reflect the hypothesis at hand.
For example, when having multiple dose of a treatmen. A vector of numerical values is constructed first
to indicate the dose that were used with each sample. Along with the main grouping variable group, they
should be combined in a data.frame and the function model.matrix is used. The first argument to this
fuction is the formula of the comparison.
# testing advanced designs using a model matrix
# make a model matrix
group <- relevel(factor(group), ref = 'control')
dose <- rep(c(100, 80, 60, 40), each = 3, times = 2)
mm <- model.matrix(~group:dose, data = data.frame(group, dose))

# test using t-test
res <- pcr_test(ct4,

reference_gene = 'ref',
model_matrix = mm,
test = 'lm')

knitr::kable(res,
caption = "\\label{table:table17} Testing advanced hypotheses")

Table 17: Testing advanced hypotheses

gene term estimate p_value lower upper
target model_matrixgroupcontrol:dose 0.0048448 0.1752664 -0.0023371 0.0120266
target model_matrixgrouptreatment:dose -0.0035766 0.3121407 -0.0107585 0.0036053

In this case, the estimate effect of the interaction term between dose and group is very small and the
p_value is very large (Table 17).

6.2 Varying RNA quality among samples

The quality of the RNA is very critical and should be measured and pass the minimum threshold. Including
the scaled qualities , quality, can be added to an interaction term in a linear model, to rule out its effect on
the analysis if suspected to have any.
# using linear models to check the effect of RNA quality
# make a model matrix
group <- relevel(factor(group), ref = 'control')
set.seed(1234)
quality <- scale(rnorm(n = 24, mean = 1.9, sd = .1))
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mm <- model.matrix(~group + group:quality, data = data.frame(group, quality))

# testing using lm
res <- pcr_test(ct4,

reference_gene = 'ref',
model_matrix = mm,
test = 'lm')

knitr::kable(res,
caption = "\\label{table:table18} Check the effect of varying RNA quality")

Table 18: Check the effect of varying RNA quality

gene term estimate p_value lower upper
target model_matrixgrouptreatment -0.6561369 0.0000301 -0.9113989 -0.4008748
target model_matrixgroupcontrol:quality -0.2093469 0.0301799 -0.3964965 -0.0221973
target model_matrixgrouptreatment:quality 0.0865875 0.3321284 -0.0951329 0.2683078

The randomly generated quality seems to infuluence the results as indicated by the big estimate for the
term ‘model_matrixgroupcontrol:quality’ and its p_value (Table 18).

6.3 Combining data from multiple runs

The questions of whether it’s permissable to combine data from multiple runs depends on many factors.
However, in practice it might be the only available option. In that case, one way to ensure the reliabilty of
the data, is to use consider carefully which samples to run each time. Randamization or blocking can be used
to avoid that batch effect or at least leave a chance to detect it if exists.
# using linear model to check the effects of mixing separate runs
# make a model matrix
group <- relevel(factor(group), ref = 'control')
run <- factor(rep(c(1:3), 8))
mm <- model.matrix(~group + group:run, data = data.frame(group, run))

# test using lm
res <- pcr_test(ct4,

reference_gene = 'ref',
model_matrix = mm,
test = 'lm')

knitr::kable(res,
caption = "\\label{table:table19} Combining data from multiple qPCR runs")

Table 19: Combining data from multiple qPCR runs

gene term estimate p_value lower upper
target model_matrixgrouptreatment -0.681075 0.0126696 -1.1979712 -0.1641788
target model_matrixgroupcontrol:run2 -0.057975 0.8163730 -0.5748712 0.4589212
target model_matrixgrouptreatment:run2 -0.103625 0.6786077 -0.6205212 0.4132712
target model_matrixgroupcontrol:run3 -0.129725 0.6044471 -0.6466212 0.3871712
target model_matrixgrouptreatment:run3 -0.095325 0.7029678 -0.6122212 0.4215712
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Here, we contructed a variable run to similate a situation in which a dataset was generated in three separate
runs. By including run in a model_matrix, its effect can be estimated. In this case, the estimate are very
small and the p_value are very large, so it can be igored (Table 19).

7 Citation

citation("pcr")

8 Contribution

I’d be glad to recieve any comments or ideas to help the package forward.

8.1 Bug reporting

• To report a bug please use the issue page on github

8.2 Code contributions

• Fork this repo to your github account

• Clone the repo to your machine and make changes

• Push to your account

• Submit a pull request at this repo

8.3 Contacts:

My email is: mahmoud.s.fahmy@students.kasralainy.egu.eg

9 Notes

• It seems like there is a tiny mistake in the original table presented in (Livak and Schmittgen 2001) in
calulating the average of CT values of the GAPDH in the brain samples and the subsequent calculations.
The tables shown here from this study are the corrected ones.

• The original (Livak and Schmittgen 2001) serial dilution dataset provides only averages and standard
deviations of CT values. We used these summaries to regenerate a dataset of raw CT values using
the rnorm(n = 3, mean = average, sd = sd) to show how they could be used from the start in a
typical analysis. So the subsequent calculaitons that involve this data set might be slighlty different
than the original tables in the paper.
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