Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel

A Quick Guide for the ppbdDMAT Package

Drew Schmidt!, Wei-Chen Chen?, George Ostrouchov'?,
Pragneshkumar Patel!

IRemote Data Analysis and Visualization Center
University of Tennessee,
Knoxville, TN, USA
2Computer Science and Mathematics Division,

Oak Ridge National Laboratory,
Oak Ridge, TN, USA

Contents

Acknowledgement

1. Introduction
1.1. Installation e
1.2. Package Examples

2. Class Methods
3. Using the pbdDMAT Package
4. An Example

References

ii

ii Quick Guide for ppdDMAT

Acknowledgement

Ostrouchov, Schmidt, and Patel were supported in part by the project “NICS Remote Data
Analysis and Visualization Center” funded by the Office of Cyberinfrastructure of the U.S.
National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV
center. Chen and Ostrouchov were supported in part by the project “Visual Data Exploration
and Analysis of Ultra-large Climate Data” funded by U.S. DOE Office of Science under Con-
tract No. DE-AC05-000R22725.

This work used resources of National Institute for Computational Sciences at the University
of Tennessee, Knoxville, which is supported by the Office of Cyberinfrastructure of the U.S.
National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV
center. This work also used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-000R22725. This work used resources
of the Newton HPC Program at the University of Tennessee, Knoxville.

We thank our colleague, Ed D’Azevedo from the Computational Mathematics Group, Com-
puter Science and Mathematics Division, Oak Ridge National Laboratory (ORNL), for his
discussions and illuminating advice using ScaLAPACK and distributed matrix computation.

We also thank Brian D. Ripley, Kurt Hornik, and Uwe Ligges from the R Core Team for
discussing package release issues and helping us solve portability problems on different plat-
forms.

We also thank Douglas Bates, for the enlightening discussions in numerically solving linear
least squares problems. Finally, we thank Dirk Eddelbuettel for his discussions on using Repp
in large scale, high performance computing.

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel

Abstract

With the size of data ever growing, the use of multiple processors in a single analysis
becomes more and more a necessity. The Programming Big Data (pbd) project attempts
to address the R language’s current shortcomings in parallel distributed computations.
The pbdDMAT package for R provides high level S4 methods for the pbdBASE distributed
matrix data type. These methods focus on computationally burdensome problems with
block-cyclically distributed data, such as linear algebra, in such a way that the syntax for
operating on new data types mimics R’s syntax for ordinary matrices as closely as possible.
This allows someone already familiar with R syntax to achieve vast speed improvements
via parallelism with a mostly already familiar syntax, and without the need to learn
complicated parallel programming techniques. Much of the heavy lifting is performed by
the PBLAS and ScalLAPACK libraries. In addition to performance improvements through
parallelism, use of this system with more than one processor allows the user to break R’s
local memory barrier, namely the requirement that a vector be indexed by a 32-bit integer,
by only storing subsets of the vector on each processor.

1. Introduction

The pbdDMAT package (Programming with Big Data: Distributed Matrix Algebra Compu-
tation) ™ (Schmidt et “al. 2012b) is a (mostly) implicitly parallel system for doing distributed
matrix computations in R.”(R Core Team 2012) It offers numerous high level methods for a
the ppbdBASE™ (Schmidt et “al. 2012a) distributed matrix type ddmatrix which intentionally,
very closely resemble the existing R syntax for non-distributed matrices. Much of the heavy
lifting — especially that involving distributed linear algebra — is handled by the well-known
Fortran libraries Scalable Linear Algebra Package (ScaLAPACK) and the Parallel Basic Lin-
ear Algebra Subroutines (PBLAS).™ (Blackford et “al. 1997)

Ordinarily, a user of these libraries would have to deal with a great many more headaches than
the user of ppdDMAT. Of note, a user of the ppbdDMAT system can achieve great speedups
with only the most minimal interaction with the more cumbersome sides of ScaLAPACK,
such as the MPI layer for ScaLAPACK, the Basic Linear Algebra Communication Subrou-
tines (BLACS).” (Dongarra and Whaley 1995) Local storage issues, descriptor vectors, and
BLACS communications are very much still there, but almost all of these problems have been
abstracted away for the user. In addition to offering copycat routines for linear algebra, the
pbdDMAT package also offers many other routines that look native to R, but operate on these
special distributed matrix data types.

The principal goal of the ppbdDMAT package is to provide R users with access to extremely
powerful distributed, implicitly parallel computation, all while preserving the friendly and
familiar R syntax for these computations, so that effectively, much existing R code could used
with this system with only trivial modifications, yet receive massive performance boosts.

1.1. Installation

The pbdDMAT package is available from the CRAN at http://cran.r-project.org, and
can be installed via a simple

R Script

http://cran.r-project.org

2 Quick Guide for pbdDMAT

[install.packages("pbdDMAT")]

This assumes only that you have MPI installed and properly configured on your system. If
the user can successfully install the package’s three principal dependencies, ppdMPI™ (Chen
et "al. 2012a), pbdSLAP~(Chen et “al. 2012b), and pbdBASE™(Schmidt et “al. 2012a) (each
available from the CRAN), then the installation for pbdDMAT should go smoothly. If you
experience difficulty installing either these packages, you should see their documentation.

1.2. Package Examples
One can quickly get started with ppdDMAT by learning from the following five examples:
Shell Script

(### Under command mode, Tun the demo with 2 processors by

(Use Rscript.eze for windows system)

mpiexec -np 2 Rscript -e "demo(a_reductions,
package="'pbdDMAT ', ask=F,echo=F)"

mpiexec -np 2 Rscript -e "demo(b_matprod,
package="'pbdDMAT ', ask=F,echo=F)"

mpiexec -np 2 Rscript -e "demo(c_solve,
package="'pbdDMAT ', ask=F,echo=F)"

mpiexec -np 2 Rscript -e "demo(d_svd, package='pbdDMAT',ask=F,echo=F)"

mpiexec -np 2 Rscript -e "demo(e_cholesky,
package='pbdDMAT ', ask=F,echo=F)"

2. Class Methods

The pbdDMAT package contains many methods for the pbdBASE distributed matrix data
type, each with a very similar (usually identical) look and feel to its R counterpart. Table™1
provides an incomplete list of the new methods for class ddmatrix. For details and other
methods, see the official ppdDMAT documentation.

3. Using the ppbdDMAT Package

Most of the difficulty in using ppdDMAT — creating and manipulating the distributed data
type — actually lies in ppbdBASE. Therefore we consider it crucial that the user of ppdDMAT
read, at the least, the first few sections of the ppdDMAT vignette. Once the pbdBASE issues
are handled, generally the user can just call ddmatrix methods exactly as he/she would with
ordinary R matrices. So if the user wants to compute the singular value decomposition in
parallel on a distributed matrix, the call is the same as if the user wants the singular value
decomposition in serial of an ordinary R matrix. Some functions have extra headaches over
their R counterparts, such as apply(), but every consideration has been taken to minimize
the occurrence of these.

4. An Example

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel

R S4 Method Overloading

+, =, % /[, A, %%, %)%
t O, %*%
solve ()
La.svd(), svd(), chol (), 1u()

(a) Linear Algebra Methods

R S4 Method Overloading

scale()
cov()
prcomp ()

(b) Statistical Methods

R S4 Method Overloading

min(), max ()
sum(), prod()
mean(), median()
rowSums (), colSums ()
rowMeans (), colMeans ()

R S4 Method Overloading

apply O
round (), ceiling(), floor()
sqrt)
abs ()
exp(), log()

(c) Reductions

(d) Transformations

Table 1: Computational Methods for Class ddmatrix

Let’s take a look at some example code. Here, we will do some distributed matrix multipli-
cation, as well as solving some systems of equations. You probably should not use a large
process grid for this problem. Anything bigger than 8 x 8 is massive overkill. A 2 x 2, 2 x 4,
or 4 x 4 process grid (4, 8, or 16 processes respectively) should be more than plenty — so a
humble laptop or desktop should more than suffice. You’ve got to crawl before you can drag
race.

Throughout, we will preface distributed objects by a d, purely for pedagogical reasons. Non-
distributed objects will not have any preface. So x is not distributed, but dx is.

To convince you that this new stuff is really doing the same things as the old stuff, we are
going to randomly generate a 500 x 500 matrix on process 0, and then distribute that matrix
across the process grid, using a 32 x 32 blocking dimension. If you are using more than 4 pro-
cesses, you might consider backing that off to 16 x 16, but it’s not really necessary; remember,
the purpose here is to learn.

Generating Test Data

~
init.grid ()

Number of rows and columns to generate
nrows <- b5e2
ncols <- be2

mn <- 10
sdd <- 100

ScalLAPACK blocking dimension
bldim <- c(4, 4)

N

4 Quick Guide for pbdDMAT

Generate data on process 0, then distribute to the others
if (comm.rank ()==0) {
x <- matrix(rnorm(n=nrows*ncols, mean=mn, sd=sdd),
nrow=nrows, ncol=ncols)
b <- matrix(rnorm(n=ncols*2, mean=mn, sd=sdd), nrow=ncols,

ncol=2)
} else {
x <- NULL
b <- NULL

dx <- as.ddmatrix(x=x, bldim=bldim)
db <- as.ddmatrix(x=b, bldim=bldim)

continued in the next block of code

All of this information is covered in the pbdBASE documentation and vignette™ (Schmidt
et "al. 2012c), and while all of the above code is in pbdBASE, it is good to go over this process
again:

e Load the package with library (pbdDMAT)

e Use init.grid() to initialize the process grid and MPI communicator(s). You
can optionally specify nprow= for the number of process rows here, and npcol= for
the number of process columns. Not specifying means that the function will choose
the “best” option for you, meaning a grid that is as close to square as possible for the
number of processors you have given it.

e Generate the 500x 500 ordinary non-distributed R matrix of random normal data
with mean 10 and sd 100 on process 0. Here, we use the ppbdMPI function comm.rank ()
to make sure that only process 0 generates the data. The other processes store NULL in
x. Likewise, we do the same for the 500 x 2 vector b/db, the “right hand sides” for the
systems we will be solving.

e Distribute the data from process 0 and store it as a distributed matrix named dx.
Here we specify a blocking dimension of 32, so really 32 x 32. ScaLAPACK and PBLAS
routines usually require square blocking, so while we could block in many other ways,
like 32 x 16, this may not be a good plan. Whenever the bldim= option is present,
specifying only a single integer n will always be equivalent to specifying c(n, n).

Before continuing, it is good to reiterate that this is not an efficient way to do business if you
are using many processes. You need to use multiple processes to either read in the matrix into
pieces from disk in parallel, or you need to do random generation in parallel using multiple
(perhaps all) processes.

Now that we have our data and have dealt with the pbdBASE side of things, it’s pure easy
street from here. Now we just forget that there is anything distributed at all going on and

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 5

write our code exactly as we would with plain, vanilla R.

First, we will multiply the transpose of dx and calculate the inverse of this product, storing
the result in dx_inv. Finally, we solve the system of equations with two right hand sides
dx_inv * solns = db.

Simple Matrix Operations

Computations in parallel
dx_inv <- solve(t(dx) %*% dx)
solns <- solve(dx_inv, db)

continued in the next block of code

Notice that we’re doing matrix computations just the same way you would with vanilla R.
And to prove that it really is the same, we can undistribute our results and “check our work”:

Comparing Results to R

p
Undistribute solutions to process O

pbd_dx_inv <- as.matrix(dx_inv, proc.dest=0)
pbd_solns <- as.matrix(solns, proc.dest=0)

Compare our solution with R's --- not in parallel
if (comm.rank ()==0) {

r_x_inv <- solve(t(x) %*% x)

r_solns <- solve(r_x_inv, b)

print (all.equal (pbd_dx_inv, r_x_inv))
print (all.equal (pbd_solns, r_solns))
}

shut down the MPI communicators
finalize ()

The above script is in the ppdDMAT directory, located at inst/examples/dmat_vignette_eg.R.
To run the code, you would make a batch execution call. Say you have 4 processors you wish
to use for this analysis. Then you could execute the script via the command:

replace the 4 below with hoever many processors you actually want
to use
mpirun -np 4 Rscript dmat_vignette_eg.R

from a terminal. If everything works correctly, then two TRUE’s will print to the terminal.

6 Quick Guide for pbdDMAT

References

Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling
S, Henry G, Petitet A, Stanley K, Walker D, Whaley RC (1997). ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA. ISBN 0-89871-
397-8 (paperback). URL http://netlib.org/scalapack/slug/scalapack_slug.html/.

Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012a). “pbdMPI: Programming with
Big Data — Interface to MPI.” R Package, URL http://cran.r-project.org/package=
pbdMPT.

Chen WC, Schmidt D, Ostrouchov G, Patel P (2012b). “pbdSLAP: Programming with Big
Data — Scalable Linear Algebra Packages.” R Package, URL http://cran.r-project.
org/package=pbdSLAP.

Dongarra J, Whaley RC (1995). “A User’s Guide to the BLACS.” Technical report, University
of Tennessee. UT-CS-95-281.

R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.r-project.org/.

Schmidt D, Chen WC, Ostrouchov G, Patel P (2012a). “pbdBASE: Programming with Big
Data — Core pbd Classes and Methods.” R Package, URL http://cran.r-project.org/
package=pbdBASE.

Schmidt D, Chen WC, Ostrouchov G, Patel P (2012b). “pbdDMAT: Programming with
Big Data — Distributed Matrix Algebra Computation.” R Package, URL http://cran.
r-project.org/package=pbdDMAT.

Schmidt D, Chen WC, Ostrouchov G, Patel P (2012c). “A Quick Guide for the ppdBASE
package.” R Vignette, URL http://cran.r-project.org/package=pbdBASE.

http://netlib.org/scalapack/slug/scalapack_slug.html/
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdSLAP
http://cran.r-project.org/package=pbdSLAP
http://www.r-project.org/
http://www.r-project.org/
http://cran.r-project.org/package=pbdBASE
http://cran.r-project.org/package=pbdBASE
http://cran.r-project.org/package=pbdDMAT
http://cran.r-project.org/package=pbdDMAT
http://cran.r-project.org/package=pbdBASE

	Acknowledgement -0.3cm
	1. Introduction
	1.1. Installation
	1.2. Package Examples

	2. Class Methods
	3. Using the pbdDMAT Package
	4. An Example
	References

