pathClass: Classification with prior knowledge on
feature connectivity

(Version 0.6.0)

User‘s Guide

Marc Johannes
German Cancer Research Center
Heidelberg, Germany

November 8, 2010

Contents

—

1 Introduction

2 What data do we need
2.1 The data matrix
2.2 Theclasslabels
2.3 Thegraph
2.4 Themapping

W W N NN

3 Which classification methods are available
3.1 Reweighted Recursive Feature Elimination
3.2 network-based SVM
3.3 graph SVM

S G

4 Showing the results 6

1 Introduction

The package pathClass was developed for classification tasks with the usage of prior
knowledge about the feature connectivity. At the German Cancer Research Center we
are dealing mostly with biological data. Thus, in this vignette we demonstrate the usage
of the package and its functions using biologically data.

2 What data do we need

For a standard classification task one needs a data matrix to train on as well as class
labels which tell the algorithm to what class a sample belongs to. However, we now
have an additional source of knowledge, i.e. a graph structure. For the algorithm to
know which feature in the data matrix corresponds to which node in the graph we need
a mapping as well. In the follwing sections we will describe the structure of these data

objects and give examples how to create and use them.

2.1 The data matrix

At first we need a data matrix D™*P with n samples of p measurements. As an example

we load:

> library(Biobase)
> data(sample.ExpressionSet)
> sample.ExpressionSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 26 samples
element names: exprs, se.exprs
protocolData: none
phenoData
sampleNames: A B ... Z (26 total)
varLabels: sex type score
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation: hgu9bav2

This data set contains 500 features measured in 26 samples. However, we need the

transposed version of it:

> x <- t(exprs(sample.ExpressionSet))
> dim(x)

[1] 26 500

2.2 The class labels

We create some class labels using the phenoData object:

> y <- factor(pData(sample.ExpressionSet)$sex)
>y

[1] Female Male Male Male Female Male Male Male
[11] Male Female Male Male Female Female Female Male

[21] Male Female Male Male Female Female
Levels: Female Male

Female Male

Male

Female

From this output we can see that y has the same length as nrow(x), i.e. 26.

2.3 The graph

As a next step we have to create a adjacency matrix that represents the connectivity of
the features in x. Therefore, we download from http://www.hprd.org/download the
file of binary protein-protein interactions in tab delimited format. After extracting the
archive we use pathClass to read the tab-delimited file:

> library(pathClass)
> hprd <- read.hprd('BINARY_PROTEIN_PROTEIN_INTERACTIONS.txt')

However, for the purpose of the vignette we will use a random graph with RefSeq IDs
as rownames and colnames. This graph can be loaded as follows:

> data(adjacency.matrix)

This gives us an adjacency matrix of dimensions 500 x 500. Since most classification
algorithm can “only” use those features which that are present in both the data matrix x
and the adjacency.matrix we have to match both objects to each other. Therefore, we
need a mapping containing the information which protein of adjacency.matrix matches
to which probe set in x.

2.4 The mapping

For most microarrays there is a annotation package available. Since we are dealing with
expression data from chip hgu95av2 we load the corresponding annotation package and
create a mapping from probe set ID to protein ID:

library('hgu95av2.db')

mapped. probes <- mappedkeys (hgu95av2REFSEQ)

refseq <- as.list (hgu95av2REFSEQ[mapped.probes])

times <- sapply(refseq, length)

mapping <- data.frame(probesetID=rep (names(refseq), times=times),
graphID=unlist(refseq),
row.names=NULL,
stringsAsFactors=FALSE)

mapping <- unique (mapping)

head (mapping)

vVV+ + 4+ VVVVYV

probesetID graphID
1000_at NM_001040056
1000_at NM_001109891
1000_at NM_002746
1000_at NP_001035145
1000_at NP_001103361
1000_at NP_002737

O O W N

http://www.hprd.org/download

Now we have a mapping with 44915 rows. It is important that this mapping has at least
two columns named graphID and probesetID since those names are needed internally
when pathClass makes use of the mapping.

In a next step we can make use of the function matchMatrices() to match the data
matrix x to the adjacency.matrix:

> matched <- matchMatrices(x=x, adjacency=adjacency.matrix, mapping=mapping)

The list matched contains copies of x, adjacency.matrix and mapping however with
matching dimensions. Thus, these objects can now be used for classification.

3 Which classification methods are available

That far, all classification algorithms we implemented are based on the support vector
machine (SVM, Vapnik and Cortes 1995). As a standard tool we provide the recur-
sive feature elimination (SVM-RFE, Guyon et al. 2002) algorithm for the SVM. This
algorithm performs a feature selection, however it makes no use of prior knowledge. In
addition to SVM-RFE we implemented three other SVM-based algorithm that use prior
knowledge:

1. Reweighted Recursive Feature Elimination (RRFE, Johannes et al. 2010)
2. Network-based SVM (Zhu et al., 2009)
3. Graph SVM (Rapaport et al., 2007)

The functions to train these methods are called: fit.rfe, fit.rrfe, fit.networkBasedSVM
and fit.graph.svm, respectively. The user can use these functions directly to obtain a

fit object of the corresponding algorithm or use the wrapper-function crossval () to per-
form a x times repeated y-fold cross-validation. Additionally the crossval() function

is able to make use of the multicore architecture of modern PCs or a computing cluster.

To use the parallel version of the method the user has to load the library multicore
prior to calling crossval() and to set the parameter parallel to TRUE.

3.1 Reweighted Recursive Feature Elimination

The RRFE method can be run without using the mapping created above. The reason for
this is, that the method can use all features if the user sets the paramter useAl11Features
to TRUE. Therefore, this method has its own, internal mapping routine. RRFE has an
tuning parameter d € (0,1) that controls the influence of the graph structure on the
ranking of the genes. A value of d — 1 puts more weight on the connectivity infromation
whereas d — 0 relies more on the expression data. To use the RRFE method one can
use:

> res.rrfe <- crossval (x,

+ Vs
+ DEBUG=TRUE,

theta.fit=fit.rrfe,
folds=3,

repeats=1,
parallel=TRUE,
Cs=10"(-3:3),
mapping=mapping,
Gsub=adjacency.matrix,
d=1/2)

+ + + + + + + 4+

or, to use all features:

> res.rrfe <- crossval (x,

+ ¥y

DEBUG=TRUE,
theta.fit=fit.rrfe,
folds=3,

repeats=1,
parallel=TRUE,
Cs=10"(-3:3),
useAllFeatures=TRUE,
mapping=mapping,
Gsub=adjacency.matrix,
d=1/2)

+ + + + + + + + + 4+

Please, have a look into the help files or the paper (Johannes et al., 2010) for more
information on the useAllFeatures option.

3.2 network-based SVM

The network-based support vector machine (Zhu et al., 2009) needs the mapping from
above, since the dimensions of the data objects have to match exactely. However, instead
of an adjacency matrix it needs an adjacency list which we have to create before:

> ad.list <- as.adjacencyList(matched$adjacency)
> res.nBSVM <- crossval (matched$x,

+ ¥y
theta.fit=fit.networkBasedSVM,
folds=3,

repeats=1,

DEBUG=TRUE,
parallel=FALSE,
adjacencyList=ad.list,
lambdas=10"(-1:2),
sd.cutoff=50)

+ + + + + + + +

Since, the algorithm internally uses 1pSolve, it has to calculate a constraints-matrix.
Thus, when having lots of features this matrix can become very big. Therefore, we added
the parameter sd.cutoff which only keeps genes with standard deviation > sd.cutoff.

3.3 graph SVM

Rapaport et al. (2007) developed a supervised classification framework which we refer to
as “graph SVM”. This methods makes use of a so-called diffusion kernel (REF'), which
has to be calculated before using this method:

dk <- calc.diffusionKernel (L=matched$adjacency,
is.adjacency=TRUE,
beta=0)
res.gSVM <- crossval (matched$x,
Vs
theta.fit=fit.graph.svm,
folds=5,

repeats=2,

DEBUG=TRUE,
parallel=FALSE,
Cs=10"(-3:3),
mapping=matched$mapping,
diffusionKernel=dk)

+ + + + +++++V++V

Were beta is a tuning parameter that controls the extent of diffusion. This parameter
should be optimized.

4 Showing the results

We can have a look on the results by typing:
> plot(res.rrfe, toFile=F)

We get a boxplot for each repeat of the cross-validation showing the distribution of
AUC’s obtained by the classifiers trained in the repeat as well as a receiver operator
characteristic (ROC) curve showing the overall performance.

Additionally we can extract the features which have been chosen by the classifier by
using the following function:

> extractFeatures(res.rrfe, toFile=T, fName='OurFeatures.csv')

References

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support
vector machines. Machine Learning, 46(1-3):389-422, 2002. URL http://www.springerlink.com/
index/W68424066825VR3L. pdf.

M. Johannes, J. C. Brase, H. Frohlich, S. Gade, M. Gehrmann, M. Filth, H. Siiltmann, and
T. Beilbarth. Integration of pathway knowledge into a reweighted recursive feature elimination
approach for risk stratification of cancer patients. Bioinformatics, 26(17):2136-2144, Jun 2010. doi:
10.1093/bioinformatics/btq345. URL http://dx.doi.org/10.1093/bioinformatics/btq345.

http://www.springerlink.com/index/W68424066825VR3L.pdf
http://www.springerlink.com/index/W68424066825VR3L.pdf
http://dx.doi.org/10.1093/bioinformatics/btq345

F. Rapaport, A. Zinovyev, M. Dutreix, E. Barillot, and J.-P. Vert. Classification of microarray data
using gene networks. BMC Bioinformatics, 8:35, 2007. doi: 10.1186/1471-2105-8-35. URL http:
//dx.doi.org/10.1186/1471-2105-8-35

V. Vapnik and C. Cortes. Support-vector networks. Machine Learning, Jan 1995. URL http://www.
springerlink.com/index/K238JX04HM87J80G. pdf.

Y. Zhu, X. Shen, and W. Pan. Network-based support vector machine for classification of microarray
samples. BMC Bioinformatics, 10 Suppl 1:521, 2009. doi: 10.1186/1471-2105-10-S1-S21. URL
http://dx.doi.org/10.1186/1471-2105-10-S1-521.

http://dx.doi.org/10.1186/1471-2105-8-35
http://dx.doi.org/10.1186/1471-2105-8-35
http://www.springerlink.com/index/K238JX04HM87J80G.pdf
http://www.springerlink.com/index/K238JX04HM87J80G.pdf
http://dx.doi.org/10.1186/1471-2105-10-S1-S21

	Introduction
	What data do we need
	The data matrix
	The class labels
	The graph
	The mapping

	Which classification methods are available
	Reweighted Recursive Feature Elimination
	network-based SVM
	graph SVM

	Showing the results

